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INTRODUCTION

Phytoplankton and bacteria can use a variety of
nitrogenous substrates to meet their metabolic de-
mands, including inorganic forms such as NO3

– and
NH4

+, and organic forms such as urea and amino
acids. In estuarine ecosystems, urea concentrations
are typically lower than concentrations of NO3

– (e.g.
Glibert et al. 2006) and thus generally contribute only
a small percentage of total nitrogen (N) uptake rela-
tive to NO3

– and NH4
+. However, in some coastal

regions and periods of the year, urea uptake can
exceed 50% of total N uptake by phytoplankton (e.g.
Kudela & Cochlan 2000, Twomey et al. 2005). More-
over, urea fertilizer use is increasing globally, leading
to elevated urea concentrations due to runoff in many
coastal and estuarine environments (Glibert et al.
2006).

Some species of phytoplankton, including many
harmful algal species, use urea at higher rates than
NO3

– (Kudela & Cochlan 2000, Fan et al. 2003, Collos
et al. 2004). In fact, many harmful dinoflagellates pre-
fer urea both in culture and in the field. For example, a
large bloom of Lingulodinium polyedrum, a red tide
dinoflagellate, off Newport Beach, California, USA,
had higher urea than NO3

– and NH4
+ uptake rates

(Kudela & Cochlan 2000). A study of Alexandrium
catanella N kinetics also reported higher urea uptake
rates compared to inorganic N uptake rates in culture
(Collos et al. 2004). In addition, after elevated levels of
urea were observed in aquaculture ponds, a consor-
tium of harmful dinoflagellates, including Karlodinium
veneficum (reported as Gyrodinium galatheanum),
Gymnodinium nelsonii, Prorocentrum minimum, and
Katodinium sp. increased in biomass (Glibert & Terlizzi
1999). Furthermore, the percent contribution of urea to
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total N uptake was highly correlated with the percent-
age of dinoflagellates in the plankton community of
Moreton Bay, Australia (Glibert et al. 2006).

Dinoflagellates are not the only taxon that uses
urea at high rates. Blooms of the pelagophyte Aureo-
coccus anophagefferens can be fueled by high urea
concentrations in some environments (Kana et al.
2004, Mulholland et al. 2004). In Florida Bay and on
the western Florida shelf, USA, both higher rates of
urea uptake and urease activity were found when the
cyanobacterium Synechococcus sp. dominated the as-
semblage than when diatoms dominated the as-
semblage (Glibert et al. 2004, Heil et al. 2007).
Another cyanobacterium, Trichodesmium sp. (strain
NIBB1067), had higher urea uptake rates than N2 fix-
ation rates when grown on urea (Mulholland et al.
1999). The estuarine species Chloromorum toxicum
(formerly the rhaphidophyte Chattonella cf. verricu-
losa), grows better on urea or NH4

+ than on NO3
–

(Tomas 2005).
In order for a phytoplankton cell to use urea, it must

first be transported into the cell via either passive or
active transport. Most phytoplankton have active urea
transport systems (Antia et al. 1991, Mulholland &
Lomas 2008). Urea is also produced intracellularly as
the byproduct of the ornithine-urea cycle of arginine
biosynthesis and catabolism (Antia et al. 1991) or cata-
bolism of purines (Allen et al. 2006, Berg & Jørgensen
2006). Inside the cell, urea must then be catabolized by
urease or ATP:urea amidolyase (UALase) before urea-
N enters the GS/GOGAT pathway as NH4

+ (Antia et al.
1991, Berges & Mulholland 2008). The urease cata-
bolism pathway for converting urea into CO2 and NH4

+

is more common in phytoplankton than is UALase,
which appears to be present only in the Chlorophyceae
(Syrett & Leftley 1976, Antia et al. 1991).

In the past decade, the study of urease activity has
been limited to a few representative phytoplankton
species from the Bacillariophyta (diatoms), Dinophyta
(dinoflagellates), Pelagophyta, and Cyanophyta (Col-
lier et al. 1999, Peers et al. 2000, Dyhrman & Anderson
2003, Fan et al. 2003, Lomas 2004). The urease gene
has been detected in many species of other taxonomic
groups, but the rates of urease activity are unknown
(Bruhn et al. 2002, Collier & Baker 2004). Due to the
paucity of urease activity data, it is difficult to deter-
mine which taxonomic groups of phytoplankton are
better competitors for urea and whether this ability is
regulated by different N sources. Urease activity is
hypothesized to be higher in species that now com-
monly proliferate in harmful algal blooms. To test this,
growth rates, internal N pools, and urease activity
rates were determined in laboratory cultures of 5 spe-
cies from 3 taxonomic groups grown on different N
substrates.

MATERIALS AND METHODS

Species studied. Five phytoplankton species were
investigated under controlled laboratory conditions.
These included 3 harmful or toxic dinoflagellates (Pro-
rocentrum minimum, Karlodinium veneficum [for-
merly K. micrum; Bergholtz et al. 2006], and Hetero-
capsa triquetra), the common cryptophyte Storeatula
major, which is often a prey species for K. veneficum
(e.g. Li et al. 2001), and the haptophyte Isochrysis sp.
Three species were derived from strains isolated from
the Chesapeake Bay, USA: P. minimum by M. Johnson
(PM-1, Horn Point Laboratory, Cambridge, MD), K.
veneficum (Leadbeater et Dodge) Larsen (strain GE)
by A. Li and D. Stoecker (Provasoli-Guillard National
Center for Culture of Marine Phytoplankton, CCMP
1974), and S. major Butcher ex Hill (strain g) by A.
Lewitus (Baruch Marine Laboratory, Georgetown, SC).
H. triquetra was obtained from CCMP (CCMP 449)
and was originally from the St. Lawrence estuary in
Canada. Isochrysis sp. was isolated from near Provi-
denciales Island in the Turks and Caicos Islands (Mil-
ford strain, C-ISO) and was obtained from G. Wikfors
(NOAA, National Marine Fisheries Service Laboratory,
Milford, CT).

Culture conditions. The 5 species of phytoplankton
were grown under identical nutrient and light condi-
tions. Non-axenic cultures were grown in f/20 media
(Guillard & Ryther 1962) with nitrogen (NO3

–, NH4
+, or

urea) and phosphate (PO4
3–) substrates added at f/20

concentrations (88 µM N, 3.6 µM N, respectively; N:P =
24). All species were acclimated to the culture condi-
tions described above for a period of several weeks
to months before the experiments were conducted.
Duplicate or triplicate cultures were grown in 2 l
glass bottles in a 20°C incubator room at 300 µmol
photons m–2 s–1 on a 12:12 h light:dark cycle over the
course of the experiment. Culture preparation and
sampling were done under sterile conditions to reduce
introduction of new bacterial strains into the cultures.

Phytoplankton and bacteria biomass. During the
2 wk of each experiment, 10 ml samples for phyto-
plankton and bacterial counts were taken each morn-
ing after swirling the culture. These were preserved in
4% glutaraldehyde. Depending on the density of the
culture, samples varying from 1 to 20 ml (and diluted
with artificial seawater [salinity of 15] to a final volume
of 20 ml) were also collected to determine cell counts
and cell diameters (except Prorocentrum minimum)
using a Coulter Counter (Coulter Multisizer II). P. min-
imum cell diameter was determined using epifluores-
cent microscopy. Bacterial biomass was calculated
from bacterial counts made on a flow cytometer (Beck-
man Dickinson FACSCalibur) using the DNA stain
SYTO 13 (del Giorgio et al. 1996) and an estimate of
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19.5 fg C per bacterial cell for estuarine bacteria
(Ducklow 2000).

Nutrient analysis. When each culture reached the
mid- or late exponential phase as determined by cell
counts, samples were collected for the analyses of par-
ticulate carbon (PC) and nitrogen (PN), and of internal
cell N pools. No residual N remained in the Storeatula
major and Isochrysis sp. cultures at the time of sam-
pling, although approximately 44 µM N remained in
the dinoflagellate cultures at the time of sampling
(data not shown).

For all analyses, phytoplankton were filtered (25 to
75 ml) onto a combusted (1 h at 450°C) GF/F filter.
Samples for PC and PN were stored in a –20°C freezer,
dried at 50°C for 3 d, and then analyzed on a Control
Equipment CHN elemental analyzer. Internal cell N
samples were placed into 5 ml of boiling water to break
apart the cell walls, then immediately frozen (Raim-
bault & Mingazzini 1987). After thawing, samples were
separated into two 2 ml subsamples and diluted to 5 ml
for NH4

+ analyses and 4 ml for urea analyses. NH4
+

internal cell concentrations were measured using the
indophenol method of Parsons et al. (1984), while urea
internal cell concentrations were analyzed using the
diacetylmonoxime method (Revilla et al. 2005). Total N
concentrations were corrected by adding intracellular
NH4

+ concentrations to PN to account for loss of NH4
+

from volatilization when filters were dried for mea-
surement by CHN elemental analyzer.

Urease activity. Subsamples (n = 15) from each cul-
ture for urease activity were collected at mid- to late
exponential phase by filtering 25 to 75 ml of culture
onto combusted GF/F filters and then immediately
freezing them in liquid N2. The urease activity samples
were transferred to a –80°C freezer for overnight stor-
age. An exception to this procedure occurred for Karlo-
dinium veneficum samples, which were immediately
frozen in a –80°C freezer.

One day following sample collection, urease activity
was assayed on the filters according to Solomon et al.
(2007). To assess Michaelis-Menten kinetic parameters
for urease enzyme activity, rates were determined on
triplicate subsamples that were enriched with urea
concentrations of 0.25, 0.5, 1.36, and 3 mM N. One set
of triplicate tubes had 0 addition.

Data analysis. The kinetic parameters Km (half-satu-
ration constant for enzyme activity) and Vmax (maxi-
mum rate of enzyme activity) are defined by the
Michaelis-Menten equation (Michaelis & Menten
1913):

where S is the concentration of the substrate urea. To
make comparisons among species and with other pub-

lished studies, specific urease activity (Vmax, µM N h–1)
was normalized on both a per cell (Vmax-cell, fmol N
cell–1 h–1) and a per cell volume basis (Vmax-vol, fmol N
µm–3 h–1).

The mean urease activity at each assayed urea con-
centration was calculated for each species and for each
growth N substrate. First, the subsamples (n = 3) of
urease activity from each individual culture were aver-
aged at each urea concentration. Next, sets of averages
for each species (n = 2 or 3 depending on species)
grown on the same N source were combined to obtain
an overall mean urease activity at each urea concen-
tration. Using the overall mean urease activity data,
both Km or Vmax were calculated by using SigmaPlot
software (SYSTAT), using the best fit to the Michaelis-
Menten kinetic curve.

Statistical testing was done to determine whether
there were differences in growth rate and intracellular
N concentrations between species grown on NO3

–,
NH4

+, or urea. Significant differences among N sources
were determined by 1-way analysis of variance
(ANOVA) and post-hoc comparisons (Tukey HSD)
using data from each individual species.

ANOVAs were also conducted to determine signifi-
cant differences in Km and Vmax among species or N
sources. Values of Km and Vmax for each culture were
obtained using the best fit to the Michaelis-Menten
curve using SigmaPlot software (SYSTAT). The calcu-
lated Km and Vmax values were checked to determine if
the data had a normal distribution using the S-PLUS
statistics program (Insightful). Because the original
data did not have a normal distribution, they were
transformed using the log10(x+1) function. One-way
ANOVAs and post-hoc comparisons (Tukey HSD),
using the transformed Km or Vmax data, were run to test
for effect of species or N source.

RESULTS

Growth rates and biomass

Phytoplankton and bacterial growth rates in the cul-
tures varied depending on the species and growth N
source. Among the phytoplankton studied, the dinofla-
gellate Heterocapsa triquetra had the lowest growth
rates (0.21 ± 0.04 to 0.24 ± 0.00 d–1) while the haptophyte
Isochrysis sp. had the highest growth rates (0.72 ± 0.01 to
0.85 ± 0.01 d–1; Table 1). Isochrysis sp. had higher growth
rates on NO3

– than on the other N substrates (ANOVA,
Tukey HSD, p < 0.05). The cryptophyte Storeatula major
had a significantly higher growth rate on NH4

+ (0.71 ±
0.03 d–1) than on NO3

– (0.65 ± 0.02 d–1; p < 0.05). For all
other species, differences in growth rate between N sub-
strates were not significant (ANOVA, p > 0.05).

V V
S
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=
+max ( )

151



Aquat Microb Ecol 52: 149–157, 2008

Bacteria net growth rates in the Karlodinium venefi-
cum and Heterocapsa triquetra cultures were less than
0.22 d–1 (data not shown), while in the Prorocentrum
minimum, Storeatula major, and Isochrysis sp. cul-
tures, bacteria net growth rates were comparable to or
greater than the phytoplankton growth rates, varying
from 0.25 to 0.91 d–1. Regardless of growth rates, bac-
terial density was low (900 to 5 × 104 bacteria ml–1), and
bacterial carbon biomass contributed only 0.01 to 0.3%
to the total carbon biomass in all cultures.

Biochemical state of cells

All dinoflagellates had larger internal pools of NH4
+

than did the other species (Table 2). With the exception
of Heterocapsa triquetra grown on NO3

–, this was also

true for internal pools of urea (Table 2).
Intracellular concentrations of urea in
Prorocentrum minimum, Karlodinium
veneficum, and H. triquetra were 3- to 40-
fold higher in cells grown on urea than
those grown on NO3

–, while in Storeatula
major and Isochrysis sp., the internal
pools of urea were smaller in cells grown
on urea than on NO3

–, although this dif-
ference was not significant (Table 2,
ANOVA, Tukey HSD, p < 0.05). Also, with
the exception of S. major, intracellular
urea concentrations were higher for cells
grown on urea than on NH4

+. In the
dinoflagellates grown on urea, urea made

up 9.9 to 42% of total cellular N, but only made up
<1.5% in the other species grown on urea (Table 2).
Intracellular NH4

+ contributed from 1.51 to 54% of
total cellular N in all 5 species.

Urease activity

The dinoflagellates Prorocentrum minimum and
Karlodinium veneficum had significantly higher 
Vmax-cell and Vmax-vol rates than the other 3 species (1-
way ANOVA, p < 0.05; Figs. 1 & 2, Table 3). The next
highest Vmax-cell rates were seen in the dinoflagellate
Heterocapsa triquetra, followed by the cryptophyte
Storeatula major, and lastly the haptophyte Isochrysis
sp. K. veneficum had significantly higher rates of 
Vmax-cell when grown on NO3

– or urea than when grown
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Phytoplankton n Growth substrate – Nitrogen
species NO3

– NH4
+ Urea

Dinoflagellates
Prorocentrum minimum 3 0.34 ± 0.02 0.31 ± 0.04 0.29 ± 0.01
Karlodinium veneficum 3 0.42 ± 0.06 0.52 ± 0.06 0.49 ± 0.07
Heterocapsa triquetra 2 0.21 ± 0.04 0.24 ± 0.00 0.23 ± 0.01
Cryptophyte
Storeatula major 3 0.65 ± 0.02 0.71 ± 0.03 0.69 ± 0.02
Haptophyte
Isochrysis sp. 2 0.85 ± 0.01 0.72 ± 0.01 0.78 ± 0.00

Table 1. Growth rates (d–1 ± SD) of 5 phytoplankton species grown on NO3
–, 

NH4
+, and urea. n: number of replicate cultures

Phytoplankton n Growth NH4
+ % of total Urea % of total Total cellular Cell volume

species substrate (mM-N) cellular N (mM-N) cellular N N (pg-at N cell–1) (µm–3)

Dinoflagellates
P. minimum 3 NO3

– 233 ± 124 15.3 ± 5.80 36.3 ± 33.0 2.92 ± 2.84 2.02 ± 0.38 1436
NH4

+ 314 ± 138 25.2 ± 8.86 12.4 ± 16.0 0.98 ± 1.20 1.76 ± 0.24 1436
Urea 280 ± 46.8 25.4 ± 4.98 110 ± 18.0 9.92 ± 1.60 1.59 ± 0.08 1436

K. veneficum 3 NO3
– 503 ± 148 45.0 ± 9.62 21.6 ± 30.6 2.54 ± 2.20 1.49 ± 0.22 1345

NH4
+ 477 ± 71.1 53.8 ± 4.99 33.7 ± 6.15 2.76 ± 2.32 1.19 ± 0.13 1345

Urea 246 ± 74.7 39.0 ± 9.65 280 ± 53.0 42.0 ± 8.98 0.84 ± 0.07 1345
H. triquetra 2 NO3

– 86.3 ± 52.0 30.9 ± 13.9 2.40 ± 3.39 0.79 ± 1.12 0.35 ± 0.06 1293
NH4

+ 79.5 ± 6.66 23.1 ± 4.90 13.6 ± 10.5 3.55 ± 1.92 0.46 ± 0.13 1293
Urea 19.3 ± 0.12 7.87 ± 1.63 80.6 ± 0.79 32.8 ± 6.67 0.33 ± 0.07 1293

Cryptophyte 
S. major 3 NO3

– 5.41 ± 1.10 2.33 ± 0.47 6.07 ± 4.91 2.47 ± 1.83 0.85 ± 0.09 3635
NH4

+ 5.48 ± 0.57 3.44 ± 0.29 5.82 ± 2.90 3.62 ± 1.72 0.58 ± 0.06 3635
Urea 6.61 ± 1.11 4.46 ± 0.76 2.18 ± 0.62 1.47 ± 0.42 0.54 ± 0.01 3635

Haptophyte 
Isochrysis sp. 2 NO3

– 27.9 ± 2.82 3.15 ± 0.46 8.66 ± 6.87 0.96 ± 0.73 0.14 ± 0.01 167.8
NH4

+ 19.3 ± 10.2 2.44 ± 1.24 1.64 ± 2.29 0.20 ± 0.29 0.13 ± 0.00 167.8
Urea 10.5 ± 1.28 1.51 ± 0.25 4.94 ± 4.08 0.72 ± 0.62 0.12 ± 0.01 167.8

Table 2. Intracellular NH4
+ and urea concentrations per cell, N content of cells, and contribution of NH4

+ and urea to total cellular N
content (±SD) of phytoplankton grown on different N sources. Full species names as in Table 1. n: number of replicate cultures
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Fig. 1. Kinetic curves of urease activity per
cell in 5 phytoplankton species as a function
of urea concentration. Each line represents
data from cultures grown on a different N
substrate. The kinetic parameters for each

relationship are reported in Table 3

Phytoplankton n NO3
– NH4

+ Urea
species Vmax-cell Km r2 p Vmax-cell Km r2 p Vmax-cell Km r2 p

Dinoflagellates
P. minimum 3 38.9 ± 3.28 0.61 ± 0.15 0.98 <0.01 23.7 ± 6.47 0.14 ± 208 0.64 0.10 43.4 ± 10.1 0.44 ± 0.33 0.86 0.02
K. veneficum 3 32.1 ± 5.93 0.26 ± 0.93 0.64 0.11 15.1 ± 5.38 0.11 ± 0.25 0.34 0.30 36.7 ± 9.31 0.60 ± 0.45 0.87 0.02
H. triquetra 2 9.14 ± 2.82 0.92 ± 0.72 0.85 0.03 12.1 ± 3.23 1.77 ± 0.96 0.94 <0.01 4.71 ± 1.44 0.46 ± 0.46 0.70 0.08

Cryptophyte
S. major 3 8.46 ± 2.26 0.27 ± 0.28 0.49 0.19 9.23 ± 3.90 0.55 ± 0.70 0.66 0.10 9.22 ± 1.77 0.48 ± 0.29 0.90 0.01

Haptophyte
Isochrysis sp. 2 2.24 ± 0.42 608 ± 337 0.92 0.01 1.15 ± 0.19 867 ± 381 0.95 <0.01 2.03 ± 0.44 1269 ± 624 0.95 <0.01

Table 3. Average urease kinetic parameters (±SD), specific urease activity normalized on a per cell basis (Vmax-cell, fmol N cell–1 h–1)
and half-saturation constant for enzyme activity (Km, mM N), for 5 phytoplankton species (see Table 1 for full names). Data repre-
sent mean (±SD) for all replicates. The correlation coefficient (r2) represents the best fit to a non-linear model, and the p-value

shows whether the fit is significant. All measurements were conducted during mid- to late exponential growth phase
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on NH4
+ (1-way ANOVA, Tukey HSD, p < 0.01). The

same was true for P. minimum, but not as significant (1-
way ANOVA, Tukey HSD, p = 0.23). There were no sig-
nificant differences in Vmax-cell among N sources in the
other 3 species (1-way ANOVA, Tukey HSD, p >0.43).

The patterns of Vmax-vol rates among species differed
somewhat from those of Vmax-cell. As above, Karlo-
dinium veneficum and Prorocentrum minimum had
the highest rates of Vmax-vol; however, Storeatula major
had the lowest Vmax-vol (Fig. 2). K. veneficum had sig-
nificantly higher average Vmax-vol than Heterocapsa tri-
quetra, S. major, and Isochrysis sp. (1-way ANOVA,
Tukey HSD, p < 0.05). Both P. minimum and K. venefi-
cum had higher Vmax-vol when grown on urea or NO3

–

than when grown on NH4
+.

Overall differences in Km between species were not
significant (1-way ANOVA, p > 0.05), but significant
differences among N sources were seen in 1 species
(Table 3): Karlodinium veneficum had significantly
lower Km when grown on NO3

– and NH4
+ than when

grown on urea (1-way ANOVA, Tukey HSD, p < 0.01).

DISCUSSION

Among the 5 phytoplankton species studied, the 3
dinoflagellates exhibited the highest rates of urease
activity and the largest intracellular pools of NH4

+

and urea. Three factors may have contributed to
these differences. First, the dinoflagellate cultures,
when grown on all N sources, had some residual N in
the media when urease activity was assessed, com-
pared to Storeatula major and Isochrysis sp., for
which the cultures had no residual N in the media for
all growth N sources. Thus, methodological differ-
ences may have contributed to the differences in ure-
ase activity or in the sizes of the internal pools. How-
ever, this is unlikely to be the case for urease activity,
as a previous study of urease regulation in the
dinoflagellate Alexandrium fundyense showed that
urease activity increased when the cells were N
starved (Dyhrman & Anderson 2003). Thus, it is likely
that the rates of urease activity for the dinoflagellates
were conservative.

154

Fig. 2. As in Fig. 1, except urease activity
is given on a per cell volume basis
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Differences in cell size may also have contributed to
differences in internal N pools. The cryptophyte Store-
atula major had the largest cell size, but smaller NH4

+

and urea pools despite having a total intracellular N
content comparable to that of the smaller dinoflagel-
lates (Table 2). The haptophyte Isochrysis sp. had the
smallest cell size and the smallest urea pools, but not
the smallest NH4

+ pools. Regardless of cell size, intra-
cellular urea concentrations of the species studied here
were comparable to concentrations found in other spe-
cies, which range from non-detectable to 15 mM N in
the diatoms Phaeodactylum tricornutum and Thalas-
siosira gravida and the green alga Chlorella fusca
(Wheeler 1983). The diatom T. weissflogii (0.42 ±
0.08 mM N) had significantly lower urea concentra-
tions compared to the dinoflagellate Prorocentrum
minimum (2.71 ± 0.21 mM N) and the pelagophyte
Aureococcus anophagefferens (4.65 ± 0.31 mM N)
when grown on urea (Fan et al. 2003). When grown on
urea, all 3 dinoflagellates had higher intracellular urea
concentrations than did the chlorophyte and hapto-
phyte. Within the dinoflagellates, one of the larger spe-
cies (Karlodinium veneficum) had the largest intracel-
lular urea pools, while the smallest (Heterocapsa
triquetra) had the smallest intracellular urea pools.
Also among the dinoflagellates, rates of urease activity,
either per cell or per cell volume, also showed a
decreasing progression from K. veneficum or P. mini-
mum to H. triquetra.

In the dinoflagellates, the intracellular urea concen-
trations were greater than Km, suggesting that in vivo
urease activity rates were near to maximal in those
species. This was not the case for the cryptophyte and
haptophpyte. Km is an intrinsic property of the enzyme
and hypothetically should not vary within a species
grown on different N sources. However, estimates of
Km made during this study (Table 3) were highly
variable even within species, which likely reflects the
sensitivity of calculated Km values to the number and
distribution of urea concentrations assayed above and
below Km. Nevertheless, our values were consistent
with previously reported values for phytoplankton ure-
ase Km, which range from 0.12 to 0.46 mM N (Syrett &
Leftley 1976, Palinska et al. 2000, Fan et al. 2003).

Differences in internal N pools and urease activity
may also reflect a difference in internal regulation by
N substrate between species and species groups. The
latter is most easily explored in those species for which
internal N pools were large, i.e. the dinoflagellates. If a
phytoplankton species has similar Vmax rates when
grown on different N sources, urease may not be regu-
lated by physiological factors (e.g. N source or growth
status) and therefore may be expressed constitutively.
Many bacteria and cyanobacterial ureases are tightly
regulated by the N regulatory system (e.g. control

gene A, ntcA; Flores & Herrero 2005). However, there
is some evidence for regulation in dinoflagellates by N
substrates. Alexandrium fundyense had higher rates of
urease activity in a urea-grown culture, compared to
cultures grown in NH4

+ and NO3
– (Dyhrman & Ander-

son 2003). Urease activity in A. fundyense was also
induced by N-starvation (Dyhrman & Anderson 2003).
In our study, both Prorocentrum minimum and Karlo-
dinium veneficum had higher urease activity rates in
urea and NO3

– grown cultures compared to NH4
+

grown cultures as indicated by the rates of Vmax-cell.
Overall, these 2 dinoflagellates, as well as A.
fundyense previously studied, appear to have reduced
rates of urease activity when grown on NH4

+ compared
to other N sources. Ureases in these species appear to
be repressed by NH4

+, or, alternatively, up-regulated
by urea and/or NO3

–.
Other enzymes that are involved with N acquisition

and assimilation in phytoplankton appear to be regu-
lated by N sources or other physiological factors
(Berges & Mulholland 2008). Nitrate reductase (NR) is
induced by the presence of NO3

–, but repressed by
NH4

+ in diatoms (Berges 1997, Parker & Armbrust
2005) and chlorophytes (Song & Ward 2004), and does
not appear to be repressed by NH4

+ in dinoflagellates
(Berges 1997). There are early indications that varia-
tions in the N-terminus of the NR gene may explain
differences in regulation of NR among diatom species
(Allen et al. 2005). In the green alga Dunaliella
primolecta, glutamine synthetase (GS) activity is inhib-
ited by increasing NH4

+ concentrations in vivo, but not
in vitro (Seguineau et al. 1989).

As for NR and GS, urease activity in phytoplankton
may differ in regulation within or among taxonomic
groups. In a clone of the diatom Thalassiosira weiss-
flogii, urease activity (Vmax) was the same regardless of
growth N source (Peers et al. 2000), but was down-reg-
ulated in another clone when grown on NO3

– (Fan et
al. 2003, Lomas 2004). Another indication that phyto-
plankton ureases are more likely to be regulated than
expressed constitutively is that rates of urease activity
among phytoplankton grown on urea varied consider-
ably, with dinoflagellates and cyanobacteria having a
higher urease activity on a per cell or per cell volume
basis, respectively (Solomon 2006).

The results from past studies and this study suggest
that dinoflagellates may have a more efficient mecha-
nism for developing large intracellular urea pools,
either through surface membrane transport proteins or
via the urea cycle, and are able to retain urea within
the cell in vacuoles, much like for NO3

– in diatoms (e.g.
Eppley & Coatsworth 1968). All dinoflagellate species
studied here had intracellular urea concentrations sim-
ilar to or greater than estimated urease Km. Therefore,
as long as the intracellular urea pool is available to the
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enzyme, urease should operate near Vmax in vivo. The
difference in rates of urease activity among the 5
phytoplankton species, and within the dinoflagellates,
may be because the regulation of urease occurs by a
combination of different physiological factors, not just
the quantity and quality of N in intracellular pools or
growth medium.

Many dinoflagellates are recognized to form harmful
blooms, and there is a growing body of literature that
suggests that these species may proliferate in environ-
ments in which urea is a common N form. The propor-
tion that urea contributes to total N uptake rates is
correlated with the percent of the phytoplankton
assemblage that is composed of dinoflagellates in
some locations, such as in the subtropical waters of
Moreton Bay, Australia (Glibert et al. 2006). Urea
pulses can also be followed by development of toxic
dinoflagellates, which was observed with Alexandrium
catenella in Thau lagoon, southern France (Collos et al.
2007). The reasons why these harmful dinoflagellates
may be better competitors for urea may at least in part
be explained by biochemical differences in regulation
of urease activity between dinoflagellates and other
phytoplankton taxonomic groups.
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