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INTRODUCTION

Several scuticociliate species belonging to the genera
Uronema, Miamiensis and Philasterides, previously
regarded as free-living environmental scavengers, are
being recognized as serious opportunistic pathogens in
marine fish (Thompson & Moewus 1964, Cheung et al.
1980, Yoshinaga & Nakazoe 1993, Dyková & Figueras

1994, Dragesco et al. 1995, Gill & Callinan 1997, Mun-
day et al. 1997, Sterud et al. 2000, Iglesias et al. 2001).
These ciliates are histophagous and characterized by
their potential for systemic invasion and destroying
fish tissues, leading to significant mortalities in cul-
tured fish. In Korea, scuticociliatosis is a serious prob-
lem in cultured olive flounder Paralichthys olivaceus,
and the causative agent has been identified, looking at
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ABSTRACT: To discover the effects of nitric oxide (NO) and peroxynitrite on Uronema marinum
(a ciliate responsible for systemic scuticociliatosis in cultured olive flounder Paralichthys olivaceus),
the dose-dependent inhibitory effect of NO donors, S-nitroso-N-acetylpenicillamine (SNAP) and
3-morpholinosydnonimine (SIN-1) on the proliferation and survival of U. marinum was investigated.
The inhibitory effects of exogenous superoxide dismutase (SOD) and catalase on the toxicity of SIN-
1 were also investigated. After 24 h of incubation in the presence of 0.2 mM SNAP, the number of cil-
iates was not statistically different from that of the controls, whereas incubation in the presence of
0.5 mM SNAP reduced the number of parasites significantly to 59.1% of controls. Concentrations of
SNAP higher than 0.5 mM resulted in greater reductions in the number of ciliates, but levels of gen-
erated NO far exceeded physiological ranges. The number of viable ciliates incubated for 24 h with
0.2 mM SIN-1 was reduced significantly to 25.0%, and all ciliates were killed by incubation in con-
centrations above 0.5 mM SIN-1. Although SOD decreased the toxic effect of SIN-1 on U. marinum,
protection was not complete and did not improve after increasing the SOD concentration from 50 to
400 U ml–1. Addition of catalase ranging from 500 to 10 000 U ml–1 completely protected U. marinum
from SIN-1 toxicity. Ciliates exposed to catalase alone or catalase plus SIN-1 showed significantly
higher and dose-dependent proliferation rates compared to controls. Addition of haemoglobin,
ranging from 0.5 to 2.0 mg ml–1, also protected U. marinum from SIN-1 toxicity, and increased the
proliferation rate dose-dependently. In conclusion, resistance of U. marinum to oxidative and nitra-
tive stress may allow this pathogen to withstand the NO- and oxygen-radical-dependent killing
mechanisms of phagocytic cells.
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morphological characteristics, as Uronema marinum
(Jee et al. 2001). Systemic infection by scuticociliates in
fish induced inflammatory cellular infiltration, consist-
ing of macrophages, lymphocytes and granulocytes at
the site of infection (Munday et al. 1997, Sterud et al.
2000, Iglesias et al. 2001) or no inflammatory responses
(Cheung et al. 1980). Survival and establishment of
systemic infections of scuticociliates suggests that they
have a high degree of sustained resistance to, or
subversion of, host immunity.

In mammals, there is abundant evidence that micro-
bial and parasitic pathogens stimulate nitric oxide (NO)
synthesis by inducible nitric oxide synthase (iNOS) in
macrophages, and this constitutes an important arm of
host defense (Clark & Rockett 1996, Nathan & Shiloh
2000). Recently, it has been demonstrated that fish
leucocytes can also produce NO by activation of
iNOS. iNOS activity has been detected in channel
catfish leucocytes following experimental challenge
with Edwardsiella ictaluri (Schoor & Plumb 1994),
and a goldfish macrophage cell line incubated with
lipopolysaccharide (LPS) or supernatants from stimu-
lated leucocytes has been shown to produce NO (Neu-
mann et al. 1995). Campos-Perez et al. (2000) reported
iNOS gene expression from various tissues of rainbow
trout after challenge with Renibacterium salmoni-
narum. In carp, an iNOS cDNA was cloned, and its
expression was studied in response to LPS and Trypano-
plasma borreli challenges (Saeij et al. 2000). Saeij et
al. (2002) reported that infection of T. borreli
in carp activated NO production from phagocytes,
but Trypanosoma carassii did not induce NO produc-
tion in vivo, and inhibited LPS-induced NO production
in vitro.

Along with NO generation, activated macrophages
also produce superoxide. The reaction of NO with
superoxide is extremely rapid (Huie & Padmaja 1993)
and results in the generation of peroxynitrite, which
is a potent chemical oxidant in its protonated form
(Koppenol et al. 1992, Nathan 1992, Bogdan et al.
2000). In mammals, coactivation of the respiratory
burst and NO synthesis in macrophages or granulo-
cytes could result in peroxynitrite formation (Ischi-
ropoulos et al. 1992, Carreras et al. 1994). Since fish
phagocytes have functional similarities to mammalian
phagocytes, they are assumed to produce peroxynitrite,
although this remains to be proven.

Studies on mammalian parasites have demonstrated
that parasites have different susceptibility to NO or
peroxynitrite. Intracellular parasites such as Leishma-
nia (Liew et al. 1990) and extracellular parasites such
as Entamoeba histolytica (Jarillo-Luna et al. 2002) or
Giardia lamblia (Eckmann et al. 2000) can be killed
or controlled by NO. However, Trypanosoma cruzi
(Denicola et al. 1993) and Brugia malayi (Thomas et

al. 1997) have been shown to be more susceptible to
peroxynitrite than NO.

The effects of NO and peroxynitrite against scutico-
ciliates have apparently not yet been investigated.
Several proposed mechanisms concerning the cyto-
toxic action of NO have been advanced based on the
use of various NO donor compounds. Among them,
3-morpholinosydnonimine (SIN-1) releases both NO
and superoxide radicals in aqueous solutions, resulting
in the formation of peroxynitrite, whereas S-nitroso-N-
acetylpenicillamine (SNAP) releases only NO (Feelisch
1991, Hogg et al. 1992, Holm et al. 1998). Therefore, in
the present study, the dose-dependent inhibitory effect
of NO donors, SNAP and SIN-1 on the proliferation
and survival of Uronema marinum was investigated.
The inhibitory effects of exogenous superoxide dismu-
tase (SOD) and catalase (CAT) on the toxic effects of
SIN-1 were also investigated.

MATERIALS AND METHODS

Isolation and culture of Uronema marinum. U. mar-
inum were isolated asceptically from the brain of
infected olive flounders Paralichthys olivaceus inocu-
lated into minimum essential medium (MEM, Sigma
Chemical) containing 10% foetal calf serum (Sigma)
and then incubated at 20°C. The ciliates from logarith-
mic phase of growth were subcultured by inoculating
ca. 1 × 105 cells into 200 ml of the medium.

Effect of NO donors on the Uronema marinum via-
bility and proliferation. Mid-log-phase cultures of the
ciliates grown in the culture medium were washed and
adjusted to a density of approximately 1 × 104 cells ml–1

of MEM. The ciliates were inoculated into wells of
flat-bottomed 96-well microplates at a density of 1 ×
102 cells per well. The cytotoxic effect of SNAP (Sigma)
and SIN-1 (Sigma) was determined by incubating the
same number of ciliates for 24 h in the presence of a
range of concentrations (0.2, 0.5, 1.0, 2.0 and 5.0 mM
final concentration) of SNAP, SIN-1 or N-acetylpeni-
cillamine (NAP, Sigma). Viable ciliates in each well of
the plates were counted using a haemocytometer. All
assays were performed in triplicate and cytotoxicity
was expressed as the percentage of total number of
ciliates in a treated well, divided by the number of
ciliates in the control (MEM alone) well at 24 h post
incubation.

Measurement of nitrite. Determination of the stable
oxidation product nitrite (measured with Greiss
reagent: 1% aminobenzenesulfonamide, 0.1% naph-
thylethylene diamine dihydrochloride in 2.5% phos-
phoric acid; Sigma) was used as an indicator of nitric
oxide production. A triplicate aliquot of culture medium
(MEM) containing 0, 0.2, 0.5, 1.0, 2.0 or 5.0 mM of each
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NO donor was incubated, while shaking, with an equal
volume of Greiss reagent for 10 min at room tem-
perature, and the absorbance was determined at
540 nm. Nitrite concentrations were determined via a
standard curve established with 1 to 200 µM sodium
nitrite prepared in MEM reacted with Greiss reagent
under the same conditions.

Effect of SOD, CAT and haemoglobin on SIN-1 tox-
icity. The ciliates were exposed to SOD (50, 100,
200 and 400 U ml–1 final concentration; Sigma), CAT
(500, 1000, 5000 and 10 000 U ml–1 final concentration;
Sigma), SOD+CAT (25+250, 50+500, 100+2500 and
200+5000 U ml–1 final concentration), and haemoglo-
bin (0.01 to 2.0 mg ml–1 final concentration; Sigma) in
the presence or absence of 1 mM SIN-1, for 24 h. The
number of ciliates was determined as described above.

Statistical analysis. Data were compared and ana-
lyzed by Student’s t-test, and p-values less than 0.01
were considered significant.

RESULTS

Cytotoxic effect of SNAP and SIN-1 on Uronema
marinum

Incubation of 0.2 and 0.5 mM SNAP for 24 h in the
culture medium generated 120.92 ± 0.37 and 208.58 ±
1.19 µM (mean ± SD) nitrite, respectively. After 24 h of
incubation in the presence of 0.2 mM SNAP, the
number of ciliates was not statistically different from
that of controls, whereas incubation in the presence
of 0.5 mM SNAP reduced the parasite number signifi-
cantly (p < 0.01) to 59.1% that of controls (Fig. 1). Con-

centrations of SNAP higher than 0.5 mM resulted in
greater reductions in the number of ciliates, but the
levels of NO generated far exceeded physiological
ranges. The control compound NAP (0.2 to 5.0 mM) did
not generate detectable levels of nitrite, and did not
significantly influence the number of viable ciliates.

Incubation of 0.2 and 0.5 mM SIN-1 for 24 h in the
culture medium generated 66.77 ± 1.00 and 150.78 ±
3.24 µM (mean ± SD) nitrite, respectively. The number
of viable ciliates incubated for 24 h with 0.2 mM SIN-1
was reduced significantly to 25.0%, and all ciliates
were killed by incubation in concentrations above
0.5 mM SIN-1 (Fig. 1).

Inhibitory effect of SOD, CAT and haemoglobin on
SIN-1 toxicity

Although SOD decreased the toxicity of SIN-1 on
Uronema marinum, protection was not complete and
was not improved by increasing the SOD concentra-
tion from 50 to 400 U ml–1 (Fig. 2). Addition of CAT
ranging from 500 to 10 000 U ml–1 completely protected
U. marinum from SIN-1 toxicity. Ciliates exposed to
CAT alone or CAT plus SIN-1 showed significantly
higher and dose-dependent proliferation rates com-
pared to the control. The combination of SOD and CAT
was completely protective, but the proliferation rates
of ciliates were lower than equal corresponding doses
of CAT only (Fig. 3). Addition of haemoglobin, ranging
from 0.5 to 2.0 mg ml–1, also protected U. marinum
from SIN-1 toxicity, and increased proliferation rate
dose-dependently (data not shown).
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Fig. 1. Uronema marinum. Percentage of individuals exposed
to various concentrations of N-acetylpenicillamine (NAP),
S-nitroso-N-acetylpenicillamine (SNAP) and 3-morpholino-
sydnonimine (SIN-1) in minimum essential medium (MEM)
for 24 h. Ciliates were counted by a haemocytometer, and
data are expressed as means ± SD of triplicate assays.

*p < 0.01, versus ciliates cultured in MEM alone (control)
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Fig. 2. Uronema marinum. Percentage of individuals exposed
to various concentrations of superoxide dismutase (SOD) in
minimum essential medium (MEM) for 24 h in the presence
and absence of 1 mM 3-morpholinosydnonimine (SIN-1). Cili-
ates exposed to 1 mM SIN-1 alone died completely. Ciliates
were counted by a haemocytometer, and data are expressed
as means ± SD of triplicate assays. *p < 0.01, versus ciliates 

cultured in MEM alone (control)
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DISCUSSION

The results of the present study suggest that per-
oxynitrite is more potently toxic to Uronema marinum
than NO. Although 0.5 mM SNAP showed toxicity to
the ciliates, the level of NO generated was still higher
than physiological ranges. NO produced by activated
phagocytes expressing iNOS has been shown to func-
tion as a cytotoxic or cytostatic molecule and to inhibit
the growth of pathogenic protozoa in mammals (Lin &
Chadee 1992, Oswald et al. 1994, Romao et al. 1999,
Jarillo-Luna et al. 2002) and fish (Saeij et al. 2000,
2002, Scharsack et al. 2003a,b). It has been reported
that exogenous NO released from the NO donors kill
Trypanosoma cruzi (Vespa et al. 1994, Petray et al.
1995, Gobert et al. 1998) and Plasmodium falciparum
(Rockett et al. 1991, Balmer et al. 2000) in a dose- and
time-dependent fashion. As a whole, the NO-mediated
inactivation of cysteine proteinases, which are critical
for virulence or replication of many parasites, may rep-
resent an intriguing mechanism of antiparasitic host
defence (Clark & Rockett 1996, Colasanti et al. 2002).
NO released by NO donors has been reported to
inhibit cruzipain, the major cysteine proteinase from T.
cruzi epimastigotes (Venturini et al. 2000), falcipain,
the cruzipain-homologous cysteine proteinase from
Plasmodium falciparum trophozoites (Venturini et al.
1998), and cysteine proteinase from Leishmania infan-
tum (Salvati et al. 2001), via S-nitrosylation. However,
in our previous study (Lee et al. 2003), the main excre-
tory proteinase of U. marinum was not cysteine pro-

teinase but metalloproteinase (Lee et al. 2003). More-
over, it has been reported that NO can up-regulate
metalloproteinase activity (Murrell et al. 1995). It has
been proposed that peroxynitrite is responsible for a
significant portion of macrophage-derived cytotoxicity
through a direct reaction of peroxynitrite with critical
cellular components (Koppenol et al. 1992). Peroxyni-
trite produces potent cytotoxic actions against various
microbes through disintegration and chemical modifi-
cation of various biomolecules, such as membrane
lipids (Radi et al. 1991, Rubbo et al. 1994), nucleic acids
(Salgo et al. 1995), and proteins, including the nitration
of tyrosine residues in proteins (Beckman 1996, Gow et
al. 1996), which block tyrosine phosphorylation, a key
event in signal transduction cascades.

In the present study, as little as 50 U ml–1 of SOD
partially protected Uronema marinum against SIN-1
toxicity, but no greater protection was afforded by an
increase in SOD. In the presence of SIN-1, SOD
decreases peroxynitrite formation by scavenging
superoxide, but results in hydrogen peroxide produc-
tion. However, considering the higher reaction velocity
of peroxynitrite than SOD to superoxide (Huie & Pad-
maja 1993), the toxic effects of hydrogen peroxide in
this experiment would be small. We also observed that
SOD plus CAT protected U. marinum completely
against SIN-1 toxicity. This may be partially due to
scavenging of the hydrogen peroxide formed by SOD.
However CAT alone completely protected against
SIN-1 toxicity, and this effect was proportional to
CAT concentration. The protection exerted by CAT
against SIN-1 toxicity might be due to scavenging of
NO by CAT, which thereby reduced peroxynitrite for-
mation. CAT has a ferriheme active site that readily
binds NO (Murphy & Sies 1991). Haemoglobin, com-
monly used as a NO scavenger, was also protective
against SIN-1 toxicity in the present study. A sig-
nificantly higher number of U. marinum incubated in
the presence of CAT or haemoglobin suggests that
iron-containing proteins induce fast proliferation of
the ciliates.

Our previous in vitro studies demonstrated that the
respiratory burst activity of olive flounder phagocytes
was inhibited by live Uronema marinum (Kwon et al.
2002, 2003), which suggests that superoxide anions, re-
quired for peroxynitrite formation, are reduced. More-
over, the ciliates secreted SOD and CAT into their
culture medium (Kwon et al. 2002, 2003). Resistance of
U. marinum to oxidative and nitrative stress may allow
this pathogen to withstand NO- and oxygen-radical-
dependent killing mechanisms of phagocytic cells.
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Fig. 3. Uronema marinum. Percentage of individuals exposed
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parentheses) in minimum essential medium (MEM) for 24 h in
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pletely. Ciliates were counted by a haemocytometer, and data
are expressed as means ± SD of triplicate assays. All data
were significant (p < 0.01) compared to ciliates cultured in 
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