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ABSTRACT: A specimen of Greenland halibut Reinhardtius hippoglossoides (Walbaum, 1792)
caught on the west coast of Greenland (Qasigiannguit) was found to possess serious pathological
changes in the body musculature. A series of cartilaginous cylindrical structures organized sym-
metrically at the position of the proximal pterygiophores had changed the musculature and pro-
duced irreversible distortions (cavities and holes) in the fillet of the processed fish, leaving it with
no value for the industry. Histopathological investigation showed that these structures consisted
of hypertrophic cartilage containing numerous myxospore-producing plasmodia. Morphometric
and molecular analyses of the parasites showed that both spore morphology and tDNA sequences
complied with characteristics of the genus Myxobolus, but no full affiliation with a known species
could be found. The parasite is a previously undescribed species, and the name Myxobolus groen-

landicus n. sp. is assigned to this new myxobolid.
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INTRODUCTION

Greenland halibut Reinhardtius hippoglossoides
(Walbaum, 1792) is an economically important fish
species with an Arctic distribution from Greenland
waters through the Northwest, North, and Northeast
Atlantic to the Barents Sea and may be found in the
North Pacific as well (Whitehead et al. 1986). It
occurs at water depths of 200 to 2000 m and is caught
using long lines by the local population of Green-
land. Several parasitological investigations on this
host species have been performed, mainly in order to
elucidate distribution of sub-stocks. Lists of proto-
zoan and metazoan parasites recovered from this
host have been presented by Margolis & Arthur
(1979), Scott & Bray (1989), Arthur & Albert (1993,
1994), and Boje et al. (1997), and several myxozoan
species have been recorded. None of these have
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been associated with overt pathological conditions of
the fish. Recorded species such as Ceratomyxa dre-
panopsettae, C. ramosa, and Myxidium incurvatum
occupy mainly the gall bladder, and Myxoproteus
reinhardtii, Ortholinea divergens, and Schulmania
quadriolobata use the urinary bladder as their micro-
habitat in this host species (Arthur & Albert 1994).

During July 2010, a Greenland halibut was caught
by alocal fisherman in Disko Bay on the west coast of
Greenland and was subsequently slaughtered, gut-
ted, and partly processed on shore at Qasigiannguit.
An unusual occurrence of circular hard structures in
the fillets was noticed and the fish was therefore
brought into the laboratory and frozen for later diag-
nostic work by the use of morphometric and molecu-
lar techniques. This investigation showed the pres-
ence of a previously undescribed myxozoan in the
affected fish tissue.
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MATERIALS AND METHODS
Fish

One specimen of Greenland halibut Reinhardtius
hippoglossoides (Walbaum, 1792) was caught on
long lines with hooks by a local fisherman and
brought ashore for processing. Fish body length
(snout to tail fin margin) was 55 cm and the fish body
weight (gutted) was 1.7 kg.

Catch location

The fish was caught at Disko Bay on the west
coast of Greenland at Qasigiannguit (Christianshab)
(70°N, 52°W).

Macroscopic inspection

The staff at the local processing unit noted series of
symmetrically arranged cylindrical hard structures
and holes in the fillet, and it was therefore removed,
freeze-stored, and air-transported frozen to the Uni-
versity of Copenhagen, where it was defrosted and
subjected to further investigation.

Wet preparation of spores

Whitish plasmodia (macroscopically visible) were
removed by a sterile scalpel from the cylindrical car-
tilage structures, located in muscle tissue, and
smeared onto a microscope slide with sterile tap
water and cover-slipped for light-microscopy studies.
Spores were studied and photographed at 1000x
magnification under a Leica DMLB microscope. The
slides were then dried, ethanol-preserved, stained
with Giemsa, and finally embedded in DePeX lipo-
philic mounting medium (Gurr®, BDH Laboratory
Supplies).

Histology

Parts of the cartilaginous cylindrical structures
were fixed in neutral 4 % formalin for 1 mo (4°C) and
processed for histology by dehydration, paraffin
embedding, sectioning (4 pm), and mounting on
microscope slides. Following de-paraffinization, sec-
tions were stained with Mayer's hematoxylin or
Giemsa and then embedded with the media Aqua-

mount and DePeX (Gurr®), respectively. Sections
were studied and photographed at 40 to 1000x mag-
nification under a Leica DMLB microscope.

Molecular analysis

Plasmodia were removed from the cylindrical car-
tilaginous structures and genomic DNA was purified
from approximately 25 mg tissue using a QIAmp®
DNA Mini Kit (Qiagen) with the protocol for 'DNA
purification from tissues' according to the manufac-
turer's instructions. Two overlapping PCR amplicons
covering the 18S rDNA to 28S rDNA of myxospore-
ans were produced using PCR amplification. Se-
quences of Primer Set 1 were forward primer
MyxospecF (TTC TGC CCT ATC AAC TWG TTG;
Fiala 2006) and reverse primer NLR1694 (TCT YAG
GAY CGA CTN AC; Van der Auwera et al. 1994).
Primer Set 2 was forward primer NLF1050 (AAT
CGA ACC ATC TAG TAG CTG G; Bartosova et al.
2009) and reverse primer NLR3113 (GTC TAA ACC
CAG CTC ACG TTC CCT; Van der Auwera et al.
1994). The PCRs were done in 60 pl reactions using
6 pl of genomic DNA, 1 mM of dNTPs, 1.5 mM
MgCl,, and 1 unit of Biotag™ DNA Polymerase
(Bioline) in NH, reaction buffer. In order to achieve
higher specificity in the PCR, a touchdown proce-
dure was applied: pre-denaturation at 95°C for
5 min; 15 cycles of denaturation at 95°C for 30 s,
annealing at various temperatures for 30 s (see
below), elongation at 72°C for 3 min; 30 cycles of
denaturation at 95°C for 30 s, annealing at 50°C for
30 s, elongation at 72°C for 3 min; and finally, post-
elongation at 72°C for 5 min. The annealing for the
touchdown regime was 2 cycles at 57°C, 2 cycles at
55°C, 2 cycles at 54°C, 3 cycles at 53°C, 3 cycles at
52°C, and 3 cycles at 51°C, with 15 cycles in all.
Aliquots of 5 pl of the products were analyzed using
electrophoresis on 1.5% agarose and visualized
using ethidium bromide staining. PCR products
were purified using an Illustra GFX PCR DNA and
Gel Purification Kit (GE Healthcare) according to
the manufacturer's instructions. Sequencing of the
overlapping PCR products were performed using
primer walking at Macrogen. The internal tran-
scribed spacer 2 (ITS2) of the rDNA region was
identified by using the web-based annotation tool
ITS2 Database (http://its2.bioapps.biozentrum.uni-
wuerzburg.de) (Eddy 1998, Keller et al. 2009). This
tool searches for the end of the 5.8S RNA gene (5.8S
rDNA) and the start of the 28S RNA gene (28S
rDNA).
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Phylogenetic analysis

A phylogenetic analysis was performed on a selec-
tion of 18S rDNA sequences that comprised the new
sequence and additional sequences from members of
the 'Myxobolus clade’ (Fiala 2006), including similar,
more recent sequences identified using a basic local
alignment search tool (BLAST) (Altschul et al. 1997).
This selection also contained 2 sequences of myxo-
zoans that are taxonomically distinct from but geneti-
cally closely related to Myxobolus spp. (Ortholinea
orientalis and Myxobilatus gasterostei). Sphaerospora
oncorhynchi and Myxidium lieberkuehni functioned
as outgroups. We tried to include only sequences that
were longer than or almost as long as the new se-
quence (1643 bp) in order to obtain a more robust
alignment. Sequences (54 in total) were aligned using
Clustal X v. 2.0 (Larkin et al. 2007), and a few obvi-
ously misaligned positions were edited manually.
Very variable regions of the alignment were located
and removed using Gblocks software (Castresana
2000), with parameters set for a less stringent tDNA
alignment (minimum number of sequences for a
flanking position: 28; minimum length of a block: 5;
allow gaps in half positions), leaving 1444 positions in
the final alignment (including inserted gaps). A
Bayesian phylogenetic tree was constructed with Mr-
Bayes v. 3.2 (Huelsenbeck & Ronquist 2001) using a
generalized time-reversible (GTR) substitution model
with gamma-distributed rate variation across sites
(GTR +I+1), as suggested as the best-fit model in Mr-
Modeltest v. 2.3 (Nylander 2004). Four simultaneous
Monte-Carlo Markov chains were run from random
trees for a total of 1000000 generations in 2 parallel
runs. A tree was sampled every 100 generations, and
a total of 2500 trees were discarded as ‘burn-in’ upon
checking for stationarity by examining the log-likeli-
hood curves over generations. A consensus tree (50 %
majority rule) was constructed from the post-burn-in
trees, and posterior probabilities were calculated in
MrBayes. Clades in the resulting phylogenetic tree
were labeled using the system employed in a recent
analysis (U-taynapun et al. 2011).

RESULTS
Gross pathology
No abnormalities were observed when the fish was
inspected from the skin side, but when screening the

fillets, a total of 36 abnormal and enlarged cylindrical
cartilage structures were found distributed symmet-

rically in linear rows (Fig. 1A) located at the position
of the proximal pterygiophores (1 to 2 cm from the fin
base), which support the fin rays (both dorsally and
ventrally). The cylinders (Fig. 1B), with a height of
0.5 to 1.0 cm and a diameter of 1.1 to 1.3 cm, were
cartilaginous, with a central depression or cavity. The
cylinder wall contained numerous white plasmodia
(Fig. 1C). The cylinders had replaced the body mus-
culature and were found loosely attached in the
frozen fillet, where they could easily be removed.

| b

Fig. 1. Myxobolus groenlandicus n. sp. infecting Rein-
hardtius hippoglossoides. Gross pathology. (A) Distribution
of cylindrical cartilage structures along the fillet. (B) Cylin-
drical cartilaginous structures penetrating the muscular tis-
sue. (C) Whitish sporogonic plasmodia in cartilaginous
cylindrical structures in muscle tissue. Scale bars = 50 mm
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When the cylinders were removed, distortions (cavi-
ties) were observed in the body musculature (fillet).

Histopathology

The most prominent cartilage cylinders were sec-
tioned. They consisted of enlarged cartilage tissue
with severe hypertrophy of chondrocytes. Within
each cylinder, numerous sporogenic plasmodia were
observed (Fig. 2A,B) in cavities. Some plasmodia
were partly branched (Fig. 2C,D). Freshly prepared
smears from thawed tissue contained numerous
spores (Fig. 3).

Spore morphology

Fresh spores (recovered from frozen material)
matched the diagnostic features of the genus Myxo-
bolus structure (Lom & Arthur 1989, Lom & Dykova
1992, Eiras et al. 2005).

Myxobolus groenlandicus n. sp. (Figs. 3 & 4)
Diagnosis

Plasmodia were polysporous, round to branched,
with a diameter of 1.0 to 1.5 mm. Spores were round
in frontal view, with a length of 10.31 + 0.74 pm
(mean +SD; range: 8.5 to 11.0 pm), width of 10.11 +
0.70 pm (range: 9.1 to 11.2 pm) (n = 32), and thick-
ness of 6.21 + 0.77 pm (range: 4.9 to 7.1 pm) (n = 29).
In the lateral view they were oval to lemon-shaped,
and in the apical view, lemon-shaped. Polar capsules
were pyriform, with a length of 4.37 + 0.44 pm
(range: 4.0 to 5.1 pm) and width of 2.53 + 0.64 pm
(range: 2.1 to 4.1 pm) (n = 15); the polar filament
showed 5 to 6 coils, and the extruded polar filament
length was 24.92 + 1.98 pm (range: 21.0 to 29.1 pm)
(n = 13). An intercapsular appendix was absent.

-
>

Fig. 2. Myxobolus groenlandicus n. sp. infecting Rein-
hardtius hippoglossoides. Histopathology. (A) Sporogonic
plasmodium located in infection focus in hypertrophic carti-
lage. A 4 pm paraffin-embedded section of infected tissue.
Haematoxylin-stained. (B) Spores produced in plasmodia in
hypertrophic cartilage. Paraffin-embedded and sectioned
tissue. Hematoxylin-stained. (C) Branched plasmodium in
hypertrophic cartilage. Paraffin-embedded and sectioned
tissue. Giemsa-stained. (D) Multiple infection foci in hyper-
trophic cartilage. Paraffin-embedded and sectioned tissue.
Giemsa-stained. Scale bars = 100 pm
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Fig. 3. Myxobolus groenlandicus n. sp. Wet mounts of spores

(defrosted). (A) Frontal view. Polar capsules with everted

polar filaments. (B) Apical view showing lemon shape. (C)

Lateral and frontal views. (D) Lateral view showing everted
polar filaments. Scale bars = 10 pm

Fig. 4. Myxobolus groenlandicus n. sp. Line drawing. Scale
bar =5 pm

Taxonomic summary

Type host: Greenland halibut Reinhardtius hip-
poglossoides (Walbaum, 1792).

Type locality: Disko Bay on the west coast of Green-
land at Qasigiannguit (Christianshéb) (70° N, 52° W).

Site of infection: Cartilage structures located in fish
muscle in series, 1 to 2 cm from fin base.

Prevalence: Probably low; only one fish found
infected among hundreds landed.

Type specimens at Zoological Museum of Co-
penhagen, Denmark: Holotype ZMUC-Myx-5 and
paratypes ZMUC-Myx-6 and ZMUC-Myx-7 were
prepared from haematoxylin-stained histological
sections (4 pm) of paraffin-embedded (Aquamount,
Gurr, BDH Laboratory Supplies) infected cartilage.
Paratype ZMUC-Myx-8 was prepared from a slide
smear of fresh spore, preserved in 96 % ethanol,
Giemsa-stained, and embedded in DePeX mounting
medium. Molecular analysis (see below): GenBank
(accession number: JF694785).

Etymology: The species was named in honour of
the diverse marine environment in Greenland.

Molecular analysis

The PCR product obtained with the first primer
set was 3667 bp long and covered most of the 18S
rDNA; the complete ITS1, 5.8S rDNA, and ITS2; and
the 5’ end of the 28S rDNA. The product obtained
with the second set of primers was a bit more than
2200 bp long, of which 2196 bp was sequenced.
This product contained only part of the 28S rDNA.
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In all, 5258 bp was achieved. The entire sequence
has been submitted to GenBank (accession number:
JF694785). The organisation of the sequence was
1643 bp of the 3’ end of the 18S rDNA; 160 bp ITS1
rDNA from nucleotides 1644 to 1803; 150 bp-long
5.8S rDNA from nucleotides 1804 to 1953; a very
short 116 bp-long ITS2 rDNA from nucleotides 1954
to 2069; and finally, 3189 bp of the 5' end of the 28S
rDNA from nucleotides 2070 to 5258. An ambiguous
nucleotide Y at Site 983 was confirmed by sequenc-
ing of several independent PCR products. When
performing a BLAST search, no sequence covering
both the 18S rDNA and 28S rDNA was revealed. A
BLAST search of the 18S rDNA alone resulted in
highest identity to Myxobolus albi (89.6 %). Taxo-
nomic sampling for myxozoan 28S rDNA sequences
is scarce when compared with 18S rDNA sequences.
However, the overall similarities with other myxo-
zoan species showed values of 44.81% (M. cere-
bralis), 45.93% (Henneguya salminicola), and
43.42% (H. zschokkei). The ITS1 rDNA and ITS2
rDNA region sequences did not match any other
sequences in GenBank.

Phylogenetic analysis

Most Myxobolus spp. clustered into 3 well-sup-
ported clades (Clades A, B, and C), plus a minor
clade, which is herein referred to as Clade D (Fig. 5).
Several other myxozoans also clustered into Clades
A, C, and D, such as Henneguya spp., Thelohanellus
spp., Sphaerospora molnari, and others. The new
sequence clustered with M. albi in a long-branched
clade with high support, and these 2 species bran-
ched together with M. cerebralis, M. acanthogobii,
and H. salminicola (Fig. 5), albeit with negligible
support. Ortholinea orientalis and M. gasterostei for-
med a clade that branched basally to the Myxobolum
clade, and the most basal Myxobolus clade was
Clade B, comprising M. arcticus, M. neurobius, and
M. insidiosus.

Remarks

The type host Greenland halibut is an entirely
marine fish species. No Myxobolus species have
been recorded in this host before. The relationship to
other cartilage-infecting myxozoans is unclear, and
the infection site in the host differs from other known
cartilage-inhabiting myxozoans in the boreal and
Arctic region.

DISCUSSION

Based on morphometric comparisons (Eiras et al.
2005) and analyses of available sequences in Gen-
Bank, it can be concluded that the myxozoan recov-
ered from the Greenland halibut cartilage is affili-
ated with other species within the genus Myxobolus.
More than 800 species within the genus Myxobolus
have been described to date (Eiras et al. 2005, Mol-
nar et al. 2011), and a number of these match the
spore morphology of the Greenland halibut myxo-
zoan of the present study. However, the 18S rDNA
sequence we found differed substantially from
other species of Myxobolus. No morphologically
related myxozoans have previously been reported
from Greenland halibut, and the parasite isolated in
the present study therefore appears to be a pre-
viously undescribed species, which we have named
M. groenlandicus n. sp. Phylogenetic analysis
showed that M. albi is the nearest known relative to
M. groenlandicus n. sp. The overall topology of the
phylogenetic analysis (Fig. 5) corresponds well with
recent analyses of the Myxobolus clade (Griffin &
Goodwin 2011, Karlsbakk & Kgie 2011, U-taynapun
et al. 2011), and Clades A, B, and D can also be rec-
ognized in a phylogeny of the entire Myxosporea
(Fiala 2006). Myxobolus is not monophyletic and this
fact has already been well documented (Fiala 2006).
The long-branched position of M. groenlandicus n.
sp./M. albi shown here is congruent with a previous
study on the phylogenetic position of M. albi (Picon-
Camacho et al. 2009). In that study, the position of
M. albi was basal to what corresponds to Clade A,
whereas the present study suggests that M. groen-
landicus n. sp./M. albi may belong to a sister clade of
Clades A, C, and D. However, a large number of
myxozoan 18S rDNA sequences are available today,
and relative positions of clades are dependent on the
number and lengths of sequences included in the
analysis. In the future, more and longer sequences of
species closely related to M. groenlandicus n. sp. and
M. albi may help resolve the exact phylogenetic posi-
tion of these 2 species. The ambiguous nucleotide at
Site 983 may be due to the fact that the ribosomal
genes exist as multiple gene arrays and is the result
of differences in these paralogous copies rather than
of differences between alleles (Whipps et al. 2004,
Whipps & Kent 2006).

The name Mpyxobolus groenlandicus n. sp. was
assigned to this new myxobolid. This is the first
record of a myxozoan having a severe impact on the
musculature and hence the product quality of Green-
land halibut. It was shown that the distorting abnor-
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Fig. 5. Phylogenetic tree of the Myxobolus clade based on Bayesian inference of a 1444 bp-long alignment comprising 54
myxozoan 18S rDNA sequences. M. groenlandicus n. sp. is shown in bold. Numbers next to nodes are posterior probabilities;
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taxon name. Clades A to C are labeled according to U-taynapun et al. (2011)
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mal structures had their basis in infected cartilage
structures located in 2 rows under the fin rays of the
host. It could not be confirmed that the abnormalities
were hypertrophic pterygiophores, but this would
explain the symmetric and linear organization of the
disturbances. Several myxozoan species invade car- L[
tilage structures and elicit hypertrophy or prolifera-
tion of inflammatory cells in the affected tissue (Lom
& Dykova 1992, Feist & Longshaw 2006). Recently, []
M. albi infecting gill cartilage structures of goby was
described by Picon-Camacho et al. (2009). M. groen-
landicus n. sp. also shows a preference for cartilagi-
nous tissues, and the closest resemblance when per-
forming a BLAST search on the 18S rDNA is in fact
M. albi (Picon-Camacho et al. (2009). However, as
shown by those authors, cartilage invaders do not
seem to make up a taxonomic or phylogenetic entity.
Several distantly related myxozoans may have
evolved this trait by convergence. Thus, this morpho-
logical and molecular resemblance does not allow O
conclusions concerning pathogenicity in cartilagi-
nous tissue and phylogeny. 0
The life cycle of the parasite is unresolved. Recent
studies on the life cycle of marine myxozoans, such U
as Ellipsomyxa gobii from the common goby (Koie
et al. 2004), Ceratomyxa auerbachi from herring
(Koie et al. 2008), Gadimyxa atlantica from gadids
(Keoie et al. 2007), and E. mugilis (Rangel et al.
2009), have demonstrated that polychaetes serve as
intermediate hosts. Even though Myxobolus groen-
landicus n. sp. is a marine species, it belongs phylo- [
genetically to the Myxobolus clade that mainly com-
prises freshwater species (Fiala 2006). Since marine
members of this clade are rare, it will be interesting 0
to obtain and analyze sequences of more marine
Mpyxobolus species. Many marine myxozoans de-
pend on polychaetes as alternate hosts, excluding
the malacosporean myxozoans that use bryozoans
as alternate hosts (Holzer et al. 2007). However, it is
interesting to note that, even though M. groenlandi-
cus n. sp. is a marine species, it belongs phyloge- [
netically to the freshwater myxozoan clade (Fiala
2006), and based on phylogenetic evidence, one
might assume that M. groenlandicus n. sp. uses a
marine oligochaete as an alternate host. As this is [J
unresolved, future studies should investigate the life
cycle of M. groenlandicus n. sp. Further, studies
should be implemented in order to establish precise
and accurate prevalences and intensities of infection
in Greenland halibut.
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