
Data Science Journal, Volume 4, 31 December 2005 171

INTELLIGENT RESOURCE DISCOVERY USING ONTOLOGY-
BASED RESOURCE PROFILES

J. Steven Hughes (1*), Dan Crichton (1), Sean Kelly (1), Chris A. Mattmann (1), Jerry Crichton (1), Thuy
Tran (1)

(1)Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California, 91109 USA
Email:steve.hughes@jpl.nasa.gov, dan.crichton@jpl.nasa.gov, sean.kelly@jpl.nasa.gov,
gerald.crichton@jpl.nasa.gov, thuy.tran@jpl.nasa.gov, chris.mattmann@jpl.nasa.gov

ABSTRACT

Successful resource discovery across heterogeneous repositories is highly dependent on the semantic and
syntactic homogeneity of the associated resource descriptions in each repository. Ideally, consistent
resource descriptions are easily extracted from each repository, expressed using standard syntactic and
semantic structures, and managed and accessed within a distributed, flexible, and scalable software
framework. In practice however, seldom do all three of these elements exist. To help address this situation,
the Object Oriented Data Technology (OODT) project at the Jet Propulsion Laboratory has developed an
extensible, standards-based resource description scheme that provides the necessary description and
management facilities for the discovery of resources across heterogeneous repositories. The OODT
resource description scheme can be used across scientific domains to describe any resource. It uses a small
set of generally accepted, broadly-scoped descriptors while also providing a mechanism for the inclusion
of domain-specific descriptors. In addition, the OODT scheme can be used to capture hierarchical,
relational and recursive relationships between resources. In this paper we expand on prior work and
describe an intelligent resource discovery framework that consists of separate software and data
architectures focusing on the standard resource description scheme. We illustrate intelligent resource
discovery using a case study that provides efficient search across distributed repositories using common
interfaces and a hierarchy of resource descriptions derived from a complex, domain-specific ontology.

Keywords: Resource Discovery, Ontology, OODT, Semantic, Framework, Architecture

1 INTRODUCTION

The Object Oriented Data Technology (OODT) project was funded in 1998 by NASA’s Office of Space
Science (OSS). Its task was to develop a national software framework for sharing data across
heterogeneous, distributed data repositories. The resulting framework today consists of separate but
complementary data and software architectures that enable the sharing of data and computational resources
across multiple science and engineering disciplines (e.g., planetary science, cancer research, and earth
science).

The software architecture provides reusable software components with homogeneous interfaces, allows
new components to be easily integrated into the framework, and provides a mechanism to wrap (Sneed,
1997) legacy data system components with minimal impact. The complementary data architecture is
domain-dependent, yet flexible: it can be instantiated in a single domain or even across multiple, different
domains. Its effectiveness is primarily dependent on the maturity of the data model provided for the target
environment. The framework also supports location independence in that the user describes what she
wants, not how or where to get it. The framework can also be scaled to meet increases in the number of
interconnected repositories.

As part of the data architecture, the design and development of a standards-based resource description
scheme has enabled intelligent resource discovery across distributed heterogeneous repositories in support
of the resource sharing task described above. In this paper we expand on prior work (Crichton, Downing,
Hughes, Kincaid, & Srivistava, 2001, Crichton, Hughes, Kelly, & Hyon, 2000, Crichton, Hughes, Kelly,
& Ramirez, 2002, Crichton, Hughes, & Kelly, 2003) and describe a architecturally compliant resource

Data Science Journal, Volume 4, 31 December 2005 172

discovery framework that consists of separate software and data components. We illustrate intelligent
resource discovery across distributed repositories using a case study implementation that provides efficient
search across distributed repositories using common interfaces and a hierarchy of resource descriptions
derived from a complex, domain specific ontology. The rest of this paper is organized as follows. Section 2
presents background information and a survey of related work regarding resource description schemes, and
software frameworks to support resource discovery and sharing. Section 3 describes the OODT resource
description scheme’s data architecture. Section 4 summarizes the supporting software architecture of the
resource description framework. Section 5 provides an example case study using the resource description
framework. Section 6 rounds out the paper.

2 BACKGROUND AND RELATED WORK

The intelligent resource discovery framework described in this paper is based on a foundation of related
projects along with our own existing work in two key areas: (1) resource description schemes and (2)
software frameworks that support resource discovery. In this section, we first expound on the related
projects constructing resource description schemes and compare and contrast their foci and emphases to
those of our own work. We follow by briefly summarizing some related software frameworks that support
resource discovery.

Decker, Tangmunarunkit, & Kesselman (2003) define the resource matching problem for grid applications.
The resource matching problem involves a user (or agent) selecting an appropriate set of resources that
meet the requirements of an application that must execute in a grid environment. Decker et al. identified the
inflexibility and ambiguity in current “flat” resource description schemes (e.g., selecting an operating
system resource that is “UNIX compatible” when the resource descriptions only store flat named attributes,
such as OS=Solaris, or OS=Linux). They propose a Horn and F logic based ontology resource matching
approach (and accompanying resource description scheme) that separates the resource providers and the
application requirements for a grid application. Furthermore, Decker et al. developed three initial resource
description ontologies for their approach. The Resource ontology describes resources and their capabilities.
The Resource Request ontology describes an application’s request characteristics for a particular resource.
The Policy ontology captures authorization and access privileges for resources based on user roles and
authentication. Our work differs on several fronts from Decker et al.’s. First, our resource description
scheme is grounded in query-based discovery and description of resources, as opposed to matching
resources to a given job or application’s requirements. In our framework, the requirements for a resource
are provided via a DIS-style keyword query (which we describe further in Section 4.3), instead of a Horn or
F logic based conjunction. Additionally, we have adapted and reused existing international metadata
standards for resource description using Dublin Core (Dublin Core Metadata Initiative, 1999), and for data
element description the ISO/IEC 11179 specifications (ISO/IEC-11179, 1999). Decker et al. have
developed their own approach for description and have provided a brief example for identifying the
appropriate (set of) high performance compute resources on which to execute a sample job.

The Resource Description Framework (Lassila & Swick, 1999), or RDF, is a W3C Recommendation for
describing resources for use in a myriad of processes. RDF is meant to be used in activities such as
resource discovery, intelligent software agents, cataloging, and the semantic web. The RDF data model
entails three main elements. Resources are anything that can be described by an RDF statement. Properties
are named metadata elements for a particular resource. Properties also define their valid values, the types of
resources they can describe, and any relationships they share with other properties. Statements consist of:
(1) a particular resource, (2) a named property for that resource and (3) the property’s value. The OODT
resource description framework shares several goals with RDF. Both RDF and the OODT resource
description framework are meant to be overly general, and applicable to many domains. Additionally, both
frameworks are XML-based notations. However, our work and RDF also differ significantly. The OODT
resource description framework is quite flexible: it prescribes a standards-based data model for resources;
however, it also allows the user to define domain specific data elements (called profile elements). RDF on
the other hand is meant to be overly generic, and does not prescribe any standard set of data elements for
resources: users can define whichever data elements they like. Furthermore, instead of RDF statements, the

Data Science Journal, Volume 4, 31 December 2005 173

OODT framework relies on ISO-11179 to define relationships, valid values, and resource types between
metadata elements.

There are several other resource description frameworks. Singh, Bharathi, Chrevenak, Deelman,
Kesselman, Manohar, et al. (2003) describe the Globus Metadata Catalog Service (MCS) component for
data-intensive environments. The MCS resource description framework classifies resources into 5
categories: User metadata, Virtual Organization (VO) metadata, Domain-Specific metadata, Domain-
Independent metadata, and Physical metadata. User metadata stores information about user resources, such
as their roles and permissions. Virtual Organization metadata captures information about shared datasets,
users, and privileges. Domain-specific metadata is stored and created by application communities to
describe their resources. Domain-Independent metadata are general, broad-scope descriptors (such as those
provided by Dublin Core) that describe resources independent of domain (e.g., Creator, Author, Logical
Name and the like). Physical metadata stores information about physical resources, such as file systems,
tape drives, and mass storage systems. The IEEE Learning Object Metadata (LOM) draft standard (IEEE-
LTSC, 2005) is focused on describing “learning object” resources. Learning objects are defined to be
digital entities that can be used during technology-supported learning. IEEE LOM defines a base schema,
and a set of vocabularies to describe learning resources. The schema includes elements such as Creator,
Language, Coverage and Structure. The IEEE LOM document also provides a mapping to the related data
elements of the Dublin Core standard. Pouchard, Cinquini & Strand (2003) describe the Earth System Grid
(ESG) ontology and its associated resource description model. ESG resources are categorized into six broad
classes: Pedigree, Scientific Use, Datasets, Services, Access, and Other. The resource description
framework offered by Pouchard et al. is not overly general, and intended to be of use in the earth science
domain. A related earth science resource description framework is the Semantic Web for Earth and
Environmental Terminology (SWEET) taxonomy, developed by Raskin, Pan & Mattmann (2004). The goal
of the SWEET taxonomy is to enable semantic web and agent technologies to discover earth science
resources, and to provide more meaningful queries and results when users search for earth science
resources. SWEET is developed in OWL and RDF, and has been tested and evaluated within a sample
prototype query interface.

Several software frameworks are built with the intention to facilitate resource discovery. We highlight and
discuss a representative cross-section of them below.

The Globus Toolkit (Chervenak, Deelman, Foster, Guy, Hoschek, Iamnitchi, et al., 2002, Foster,
Kesselman, Nick & Tuecke, 2002, Kesselman, Foster & Tuecke, 2001, Singh, Bharathi, Chrevenak,
Deelman, Kesselman, Manohar, et al., 2003) is the de facto standard technology for grid computing. It
subsumes a web-service middleware substrate (Apache AXIS) that provides basic middleware capabilities
such as programming language abstraction, data marshalling and unmarshalling, and message delivery. The
Globus toolkit deals with the general problem of managing, locating, and distributing resources. In grid
environments enabled by Globus, resources are any one of the following: (1) computational resources,
which include computer cycles, experiment test beds, and instruments, and (2) data resources, which
include files, mass storage systems, databases, and replicas. Our work on the OODT framework and the
Globus toolkit are closely related. Both projects provide complementary mechanisms (data models) for
resource description and discovery, and both projects provide core middleware services which enable
resources to be shared and discovered in the domain of grid computing.

Sangpachatanaruk & Znati (2005) describe the Personalized Web Architecture (PWA), which is a way for
each user to create a Personalized Web (PW) of interest, allowing resource discovery, location and
description of only those resources in which the user is interested in. The enabling technology of the PW is
a semlet, a semantic agent built on top of an ontology-based overlay-network, using P2P communication
technologies. In the PW, a user describes what she is interested in, and then it is the semlet’s responsibility
to discover what resources are available, how to get to them, and how to present them back to the user.
Additionally, the semlet has the responsibility of advertising its user’s own resources, so that other semlets
can discover the resources. For resource discovery, the semlet uses a WordNet (Beckwidth, Fellbaum,
Gross, Miller, Miller, Tengi, 1990) based ontology tree (or WOT) to match user filters (using a similarity
metric) against available resources. Similar to our work, resources are described using profiles, which are
created on a per-user basis.

Data Science Journal, Volume 4, 31 December 2005 174

The Web Services Resource Framework (WS-RF) specification (Czajkowski, Ferguson, Foster, Frey,
Graham, Sedukhin, et al., 2004) is a work-in-progress and is being developed as the next generation
mechanism for resource description in web-service enabled environments, such as grid-computing. The
main motivation behind WS-RF was the lack of the ability to manage stateful resources in the earlier
incarnations of the web services specification. WS-RF adds the ability to declare, destroy, construct and
manage stateful resources, and associate them with a web service. Resources are described using XSD
schema, and are then associated with a web service through its PortType specification.

DSpace (Smith, Bass, McClellan, Tansley, Barton, Branschofsky, et al., 2003) jointly developed by MIT
Libraries and Hewlett-Packard, is a distributed digital repository system that captures, stores, indexes,
preserves, and redistributes the research material of a university in digital formats. The system is freely
available as an open source system that can be customized and extended, and is built on top of other open-
source tools, such as Apache Web server, the Tomcat Servlet engine, and the PostgreSQL relational
database system. DSpace resources include anything an organization would like to manage in a digital
library: papers, reports, standards documents, meeting minutes, and so on. Akin to our framework,
resources in DSpace are described using the Dublin Core metadata. DSpace also supports transmission of
its resource metadata using the METS standard (Library of Congress, 2005).

The iGrid information service (Aloisio, Cafaro, Epicoco, Fiore, Lezzi, Mirto, et, al., 2005) is a Grid-
Security-Infrastructure (GSI) enabled software framework for publishing and discovering resources in a
grid environment. iGrid resources are described using the relational model. Resource discovery is
supported and relies on the availability of metadata including CPU, Memory, File Systems and Network
Interfaces for particular compute resources iGrid supports publication of resource descriptions in a grid
environment and allows subscription and notification, which the authors find to perform better than the
typical pull-based model of discovering resource information, adopted in the Globus Metadata Catalog
Service.

3 DATA ARCHITECTURE

Architecture is a term applied to both the process and the outcome of thinking out and specifying the
overall structure, logical components, and the logical interrelationships of a computer system. We define
data architecture to be the application of this concept to the data components involved in a computer
system.

A key assumption in the development of a data architecture is that the data components to some degree
model a specific problem domain. For example, in the space science domain, an image collected by a
spacecraft instrument is modeled as a 2-dimensional structure of lines and line samples. The elements of
this structure are data numbers that were collected within a context defined by the states of the instrument
and spacecraft at the time the image was collected. In our work to capture data architecture, we have
surveyed a representative set of approaches and decided to use ontologies. Our choice of ontologies is
motivated and described below and throughout the paper using illustrative examples.

An ontology is a set of concepts—such as things, events, and relations—that are specified in some way in
order to create an agreed-upon vocabulary for exchanging information within a domain. Historically there
are many methodologies for defining and collecting various aspects of domain concepts into a domain
model (for a survey, see Hull & King (1987)). For example the Entity-Relationship (E-R) model is a widely
accepted data modeling technique that focuses on the definition of domain entities and their relationships. It
defines an entity as something that exists either in concept or in actuality. Entities are defined using
properties (often called attributes) and relationships that relate two or more entities. Subsequently an E-R
model is typically used to implement a database application using a specific record level model such as the
Relational Model. Other methodologies involve the creation of taxonomies and controlled vocabularies.
For this discussion we assert that domain ontologies subsume the domain modeling information collected
by any of these methodologies and specifically that which is necessary for intelligent resource discovery.
As such it becomes an appropriate choice of methodology for capturing a data architecture.

Data Science Journal, Volume 4, 31 December 2005 175

As examples, the image, instrument, and spacecraft mentioned earlier are all considered entities in the
space science domain. The image entity is defined using attributes that describe its logical structure, namely
the 2-D structure of lines and line samples. Its relationship to the instrument and spacecraft entities help
describe the context within which the image was collected. In addition, the instrument attributes
filter_name and exposure_duration can be associated with the image through inference and the
“instrument produces image” relationship. In a space science ontology, image, instrument, and
spacecraft would each be defined as a
class, and lines and line samples would
be defined as properties of the image
class. A level of intelligence is
exhibited through the inference that the
instrument class properties filter_name
and exposure_duration can be
associated with image.

3.1 Data Dictionary

A data dictionary (or controlled
vocabulary) is a collection of terms and
their definitions and is a basic
component of a data architecture. It is a
mechanism for defining entity attributes
(also called data elements). Examples
of data elements include filter_name
and exposure_duration mentioned
previously. Data elements also often
carry additional semantic information,
such as value type and permissible
values. For example, the attribute
exposure_duration is a data element in
the planetary science data dictionary
and is defined as the period of time over
which data is collected by an
instrument. It takes on a floating point
value and is measured in units of
milliseconds.

Special attributes, also called meta-
attributes, are needed to collect data
element definitional information. As
part of our work on the OODT resource
description framework, we have chosen
the ISO/IEC 11179 standard (ISO/IEC-
11179, 1999) to provide a base set of
attributes to define domain specific data
elements. As an international standard it
also provides a basis for data element definition and classification that supports global data dictionary
interoperability. The specification classifies the base set of attributes into four categories namely
identifying, definitional, representational, and administrative as briefly summarized in
Table 1.

The identifying category is used for the identification of a data element. For example, exposure_duration
would be the value of the attribute “name”. The definitional category is used to describe the semantic
aspects of a data element and consists of a textual description that communicates knowledge about the data

Table 1. ISO/IEC 11179 Attributes

ValueAttribute

Identifying Attributes

Single or multi word designation assigned to a data element.Name

A language independent unique identifier of a data element within a Registration
Authority.

Identifier

Identification of an issue of a data element specification in a series of evolving data
element specifications within a Registration Authority.

Version

Any organisation authorized to register data elements.Registration Authority

Single word or multi word designation that differs from the given name, but represents
the same data element concept.

Synonymous name

A designation or description of the application environment or discipline in which a
name and/or synonymous name is applied or originates from.

Context

Statement that expresses the essential nature of a data element and permits its
differentiation from all other data elements.

Definition

Relational Attributes

A reference to (a) class(es) of a scheme for the arrangement or division of objects into
groups based on characteristics which the objects have in common, e.g. origin,
composition, structure, application, function etc.

Classification scheme

One or more significant words used for retrieval of data elements.Keyword

A reference between the data element and any related data.Related data reference

An expression that characterizes the relationship between the data element and
related data.

Type of relationship

Remarks on the data element.Comments

The organization or unit within an organization that has submitted the data element for
addition, change or cancellation/withdrawal in the data element dictionary.

Submitting organization

A designation of the position in the registration life-cycle of a data element.Registration status

The organization or unit within an organization that is responsible for the contents of
the mandatory attributes by which the data element is specified.

Responsible organization

Administrative
Attributes

The set of representations of permissible instances of the data element, according to
the representation form, layout, datatype and maximum and minimum size specified in
the corresponding attributes. The set can be specified by name, by reference to a
source, by enumeration of the representation of the instances or by rules for
generating the instances.

Permissible data element
values

The layout of characters in data element values expressed by a character string
representation.

Layout of representation

The minimum number of storage units (of the corresponding datatype) to represent the
data element value.

Minimum size of data
element values

The maximum number of storage units (of the corresponding datatype) to represent
the data element value.

Maximum size of data
element values

A set of distinct values for representing the data element value. Datatype of data element
values

Name or description of the form of representation for the data element, e.g.
'quantitative value', 'code', 'text', 'icon'.

Form of representation

Type of symbol, character or other designation used to represent a data element.Representation category

Representational
Attributes

ValueAttribute

Identifying Attributes

Single or multi word designation assigned to a data element.Name

A language independent unique identifier of a data element within a Registration
Authority.

Identifier

Identification of an issue of a data element specification in a series of evolving data
element specifications within a Registration Authority.

Version

Any organisation authorized to register data elements.Registration Authority

Single word or multi word designation that differs from the given name, but represents
the same data element concept.

Synonymous name

A designation or description of the application environment or discipline in which a
name and/or synonymous name is applied or originates from.

Context

Statement that expresses the essential nature of a data element and permits its
differentiation from all other data elements.

Definition

Relational Attributes

A reference to (a) class(es) of a scheme for the arrangement or division of objects into
groups based on characteristics which the objects have in common, e.g. origin,
composition, structure, application, function etc.

Classification scheme

One or more significant words used for retrieval of data elements.Keyword

A reference between the data element and any related data.Related data reference

An expression that characterizes the relationship between the data element and
related data.

Type of relationship

Remarks on the data element.Comments

The organization or unit within an organization that has submitted the data element for
addition, change or cancellation/withdrawal in the data element dictionary.

Submitting organization

A designation of the position in the registration life-cycle of a data element.Registration status

The organization or unit within an organization that is responsible for the contents of
the mandatory attributes by which the data element is specified.

Responsible organization

Administrative
Attributes

The set of representations of permissible instances of the data element, according to
the representation form, layout, datatype and maximum and minimum size specified in
the corresponding attributes. The set can be specified by name, by reference to a
source, by enumeration of the representation of the instances or by rules for
generating the instances.

Permissible data element
values

The layout of characters in data element values expressed by a character string
representation.

Layout of representation

The minimum number of storage units (of the corresponding datatype) to represent the
data element value.

Minimum size of data
element values

The maximum number of storage units (of the corresponding datatype) to represent
the data element value.

Maximum size of data
element values

A set of distinct values for representing the data element value. Datatype of data element
values

Name or description of the form of representation for the data element, e.g.
'quantitative value', 'code', 'text', 'icon'.

Form of representation

Type of symbol, character or other designation used to represent a data element.Representation category

Representational
Attributes

Data Science Journal, Volume 4, 31 December 2005 176

element that typically is not captured by any of the basic attributes. The relational category describes
associations among data elements and/or associations between data elements and classification schemes,
data element concepts, objects, or entities. For example relating exposure_duration to an instrument entity
provides critical information about how exposure_duration is to be interpreted. The representational
category describes representational aspects of data element such the list of permissible data values and their
type. For example, exposure_duration would be typed as floating point. Finally the administrative category
provides management and control information.

Data Science Journal, Volume 4, 31 December 2005 177

3.2 Common Data Elements

With the advent of the web and the resulting explosion of electronic resources available for online access,
there was a compelling need for a set of standard attributes for describing electronic resources. The Dublin
Core (DC) (Dublin Core Metadata Initiative, 1999) initiative addressed this issue and developed the 15 data
elements briefly summarized in Table 2. (It should be noted that the DC data elements were defined using
the ISO/IEC 11179 framework.)

The DC attributes are by definition very general in scope and when used as search constraints do not
always produce precise results. They were developed as common attributes to describe Internet electronic
resources across all possible domains and this generality limits their ability to partition the search space
into easily managed subsets. For example a search for electronic resources that have format = “image/jpeg”
will typically result in a large number of images from many repositories. The solution to this problem as
suggested by the DC Subject attribute is the addition of concepts from the specific domain. This of course
presupposes the existence of a domain model.

3.3 Domain Data Models and Complexity

A domain data model is developed to meet the requirements of one or more applications. For example, in a
planetary science archive application, instrument and spacecraft models would be relatively general in
order to span the set of instrument and spacecraft instances. However, models for image data products
would proliferate since as the focus of the archive, the image models would require very specific image
attributes and relationships.

Table 2 Dublin Core Elements

Data Science Journal, Volume 4, 31 December 2005 178

Assuming this situation exists, the implementation of a search capability using traditional cataloging
technology would conceptually require the design of a catalog for each image type. For example, the search
for specific images from among the approximately 49,000 images of the planet Mars from NASA’s Viking
mission is easily accomplished by designing a catalog for the Viking image model and loading 49,000
records. However Mars missions such as Mars Global Surveyor, Mars Odyssey, and the Mars Exploration
Rover missions are providing thousands more images that should also be available as search results. Since
each of these missions has a different image model, separate image catalogs could be implemented but with
increasing management complexity. Alternately a single catalog that spans all images results in a database
that is sparsely populated. The solution to this problem requires the design of a single image model that is
sufficient for describing all image types. In the following we will describe a general resource description
and then present a software architecture suitable for implementing an efficient search capability using the
resource description.

3.4 General Resource Description – Resource Profile

In our work on the OODT resource description framework, an electronic resource is described by a
resource profile, an XML document that uses both domain specific attributes and the Dublin Core
attributes to concisely describe a resource. The domain specific attributes are obtained from a domain
specific ontology and provide the specificity required to meet the resolution requirements for search results.
In this context, intelligence is exhibited by inferring additional attributes from modeled relationships. In
contrast the Dublin Core (DC) elements provide common resource attributes such as Title and Format, the
values of which are often derived from domain specific attributes.

A profile has three sections: the profile attributes, the resource attributes, and domain specific attributes
(called profile elements). Profile attributes simply describe the profile using information such as identifier,
type, and status. The identifier attribute is typically implementation dependent and could be an Object

Figure 1. Profile Schema - DTD

Data Science Journal, Volume 4, 31 December 2005 179

Identifier (OID), Universal Resource Identifier (URI), or a sequence number. The type attribute (see the
profType element in Figure 2) is typically set to the value ‘profile’ but the value ‘data dictionary’ can be
used to indicate that the profile is being used to capture data element information.

Resource attributes generically describe the profiled resource using the Dublin Core (DC) attribute set. All
DC attributes are allowed but only Identifier is required. As part of the work on the OODT framework,
three additional resource attributes have been added to identify the following: (1) the resource's local
domain (which we call resContext), (2) the resource’s classification (which we call resClass) , and (3) the
resource’s location (which we call resLocation). The valid values assigned to the DC attributes are
typically derived from selected domain specific attributes. For example, the DC attribute Title, a “label” for
the resource, could take on values from a domain attribute providing a resource label of some type.

The profile element section encodes domain specific attributes associated with the resource. This set of
attributes includes the resource attributes specifically identified in the model as belonging to the resource as
well as attributes that can be inferred from modeled relationships. For example, the image attribute lines
and the instrument attribute filter name would both be included in an image profile. Each attribute is
encoded into the profile with at least the name and value of the domain attribute. Other meta-attributes such
as unit are allowed but optional. A profile to describe a planetary science image is illustrated in Figure 2.
The profile element section encodes the inferred attributes instrument_id, filter_name, and
exposure_duration for a precise characterization of the image. For referential purposes, the XML DTD for

Figure 2. Data Product Profile - Example

Data Science Journal, Volume 4, 31 December 2005 180

the profile is provided in Figure 1. An XML Schema and XML/RDFS have also been developed, although
we have elided these from the paper was they would be mostly redundant given in the DTD in Figure 1.

4 SOFTWARE ARCHITECTURE

The Object Oriented Data Technology (OODT) software framework that supports the OODT resource
description framework described above consists of a set of distributed, cooperating software components.
The major components of the OODT framework implement a metadata (profile) and data (product) model
reified in the form of the Profile and Product server components. In addition, a Query Service component
directs queries by traversing a network of connected profile and product servers, providing the veneer of a
peer-to-peer network. The distributed services allow for the location and description of resources (profile
queries) and retrieval of resources (product queries). Given that the focus of this paper is the resource
discovery framework, we briefly sketch the capabilities and architecture of the OODT software
components. A more detailed description of the software framework is provided in Crichton, Downing, et
al., (2001), Crichton, Hughes, et al., (2000), Crichton, Hughes, et al., (2002), and Crichton, Hughes, et al.,
(2003).

4.1 Distributed Framework - Communications
OODT is a distributed system, wherein components may be dispersed geographically across a standard
TCP/IP network, such as the Internet. Connectivity between components is provided by a standards based
distributed systems implementation such as Java Remote Method Invocation (RMI) or the Internet Inter-
ORB Protocol (IIOP) for CORBA-based communication. Latest developments include HTTP-based access.

The OODT software components support plug-ins that extend their base implementations by performing
the work of querying both the metadata catalogs and the data repositories themselves. In this way, the
OODT software is a framework in that application programmers extend and implement prescribed software
objects and interfaces that directly integrate into the framework. This is in contrast to other software
implementation efforts that may not specify ubiquitous interfaces. More work necessarily falls upon the
users of the framework to support the prescriptive interfaces.

OODT's software framework defines three major components:

• Profile Servers that serve scientific metadata and can tell whether a particular resource can provide
an answer to a query.

• Product Servers that serve data products in a system-independent format.

• Query Servers that accept profile and product queries and traverse the network of profile and

product servers, collecting results. It is possible to access the query service through direct interface
with the distributed computing interfaces (such as RMI and CORBA invocations), or through an
HTTP interface.

As described earlier, profiles are metadata descriptions of resources; that is, they “profile” a resource by
describing its inception and composition using the common data elements of the OODT resource
description framework. Profile servers enable discovery of resources by providing the ability to search
resource collections. In short, profile servers answer the question, “Where can I go to find out about X?”

A profile server’s primary responsibility is to provide a way to evaluate a query against the server’s set of
profiles. Although users may access a profile server directly via its remote interface, it is far more common
for queries to enter the system through the query server, which directs them transparently to and along
directed graphs of appropriate profile servers (in the case when a profile’s resLocation field points to
another profile server).

Data Science Journal, Volume 4, 31 December 2005 181

Upon receiving a query, the profile server's backend interprets the query passed in a way appropriate to the
implementation. For example, a backend that stores information in a relational database may convert parts
of the query into a database SQL query. For each matching profile, the backend constructs a list of
matching profiles and returns them.

4.2 Product Servers

Product servers exist to provide a way to retrieve specific data products. Product servers accept the same
query structure as profile servers, but instead of returning a list of matching profiles, they return matching
products. Data products in this sense can be individual data granules, datasets, or collections of datasets,
depending on the backend implementation in the product server and the way it handles queries and results.

When constructing a query, the user may indicate preferred MIME types. For example, a user wanting PNG
images may list image/png as the only acceptable MIME type. A user preferring PNG images but willing to
have JPEG images would list image/png, and image/jpeg in that order. A user preferring PNG images but
willing to accept any image type would list image/png, image/*. If the user doesn’t specify a MIME type
when creating the query, the software generates a default list of acceptable MIME types, namely */*,
meaning that any type is acceptable. Sophisticated product servers can convert between data types. One
mechanism for handling interoperability of legacy data systems is to deploy product servers that convert
between file formats that are native to the local data system and the common data formats supported by the
larger data system.

4.3 Query Servers

Query servers manage queries across distributed resources and are the point of entry into an OODT
software framework installation. Query servers contain the algorithms necessary to traverse the network of
profile and product servers, executing queries at appropriate servers and gathering results. In this manner
query servers can simplify the interaction with the user, who is freed from the knowledge of accessing the
remote interfaces of profile servers and product servers. Users instead call upon a query server for all
profile and product interaction. The implementation of search algorithms for a query server is flexible
allowing a broad range of possibilities including using a simplistic algorithm in the query server while
implementing a more complex algorithm in the client application for testing. This is the case for this paper
and the domain search algorithm is explained in section 5.1.

The OODT software framework supports several different interfaces to the query service to ensure that it is
cross platform and supports cross language interoperability. This includes not only interfaces for
programming languages such as Java, but interfaces using the web standard HTTP.

OODT queries (NASA Jet Propulsion Laboratory, 2005) are transported in an XML structure that provides
pertinent system information, a results buffer, and the query expression in a parsed form (prefix notation).
Since the parsed form of the query is transported, different query expression languages can be used as long
as the parsed results can be expressed in the query structure. The currently implemented language, the
Distributed Inventory System (DIS) expression language, is parameter/value based and allows the relational
operators, logical connectors, and the grouping of expression using parentheses. The DIS query expression
language meets the profile server requirement of being able to match on any attribute in the resource
profile. Some simple example query expressions are shown in Figure 3.

 IDENTIFIER=GO-J/JSA-SSI-2-REDR-V1.0:10I0012
 TARGET_NAME=IO AND EXPOSURE_DURATION > 60.0
 TARGET_NAME=IO AND NOT FILTER_NAME=RED
 DATA_SET_ID=ODY-M-THM-2-IREDR-V1.0 AND CENTER_LONGITUDE > 359.25
 DATA_SET_ID=MGN-V-RDRS-5-DIM-V1.0 AND IMAGE_ID=FO43S181

Figure 3. Example DIS Query Expressions

Data Science Journal, Volume 4, 31 December 2005 182

The OODT software framework components are illustrated in Figure 4.

5 CASE STUDY – NASA’S PLANETARY DATA SYSTEM

The Planetary Data System (PDS) is the official science data archive for NASA’s planetary science
community. As such, it contains tens of terabytes of data collected from over thirty years of solar system
exploration and is growing exponentially. At its inception in the late 1980’s, the PDS developed a data
model that guides the capture of the information necessary to describe the data and ensure that the data
remain scientifically useful for future scientists. Collected and validated using the data model, this
information and the science data was submitted to peer review and then distributed to funded scientists in
the planetary science community on CD and DVD media. The data model and much of the content of the
catalog has recently been imported into an ontology tool1 to provide easier management, better
documentation, and to support the development of semantic web applications.

The combination of several factors including the advent of the Internet, requests to support correlative
search across instruments, and huge increases in the volume of data returned from missions necessitated the
development of an online system that supports search and retrieval of data products from across the

1 Protégé, http://protege.stanford.edu

Discovery
Query

UserUser

Product

Catalog

Profile Server

Product

Catalog

Profile Server Product Server

Data
Repository

Product Server

Data
Repository

Applications

Query Server

Webserver (QueryServlet)
Java API

HTTP

Retrieval
Query

Packaged
Products

Product
Descriptions

User Queries
And Results

Product

Catalog

Profile Server

Product

Catalog

Profile Server

Product
Catalog

Profile Server

Product
Catalog

Profile Server
Product Server

Data
Repository

Product Server

Data
Repository

Product Server

Data
Repository

Product Server

Data
Repository

Figure 4. Software Framework Component Architecture

Data Science Journal, Volume 4, 31 December 2005 183

distributed heterogeneous data repositories of the PDS. In October of 2002, the PDS released the first
version of its online distribution system to support the 2001 Mars Odyssey mission. Using the OODT
framework and product servers at each distributed data repository, data products were available to planetary
scientists as soon as they were released from the mission. Since then the distribution system has been
augmented to include the majority of all data products in the PDS archive. The current system provides a
two level search capability, first at the data set level (collections of data products) and then a data product
search. Development is now focused on a single level search of data products across the archive using a
hierarchical configuration of OODT profile servers.

The key to the success of the PDS search capability is the fact that each data product in the archive can be
associated with identification, descriptive, and contextual information obtained either directly from class
attributes or inferred through relationships. This information whether it is detailed information packaged
with the data product or more general information maintained in a common repository is extracted and
represented in a single data product profile.

Data Science Journal, Volume 4, 31 December 2005 184

5.1 Search Algorithm
The global product search capability is designed to have a single point-of-entry interface and a search scope
that encompasses the entire geographically distributed PDS archive and its thousands of product types and
millions of data products. To implement this search, a hierarchical configuration of profile servers and
resource profiles has been implemented. At the leaf nodes of the hierarchy, each data product is represented
by a single resource profile. For example, Figure 5 above illustrated a portion of a profile for a Galileo,
Solid State Imaging System (SSI) image product where the domain attributes, target_name, filter_name,
and exposure_duration have been encoded into the profile elements section. The resource attributes
Identifier and Title have been set to the value of the concatenated domain attributes data_set_id and
image_id, and the profile Identifier has been set to a unique object id, generated by the system.

Figure 5. Data Set Profile Example

Data Science Journal, Volume 4, 31 December 2005 185

Aggregating the data product profiles of a single product type produces a product type profile. This product
type profile describes the collection of products using the same set of attributes but with aggregated
attribute values. In general attributes with discrete values such as target_name result in value lists. Numeric
attributes such as exposure_duration result in value ranges. Performing this aggregation for each product
type in the archive produces the second level of the hierarchy. For brevity we assume that each data set
only contains one data product making the product type profiles equivalent to the data set profiles. For the
PDS this results in several thousand data sets or level two profiles. Figure 5 illustrates a portion of the
Galileo image data set profile. This data set contains the imaging data product mentioned above.

Data set profiles are in turn aggregated to create the root profile. The root profile describes all data sets and
so also describes the entire archive. The root profile as a single, all inclusive description of the archive is
suitable as the starting point for searches initiated from a single-point of entry user interface. The root

Figure 6. Root Profile Example

Data Science Journal, Volume 4, 31 December 2005 186

profile in Figure 6 contains the values for target_name and instrument_id, the result of aggregating the
attribute values in the data set profiles, after aggregating the attribute values in the data product profiles.

Each resource profile includes a resource location that provides a link to the resource. A resource location
in a data product profile will provide a URI for a data product, such as a URL to a data product server that
will retrieve the product when invoked. A resource location for a data set profile provides a link to the
profile server that serves the associated data product profiles. Similarly all higher level aggregated profiles
provide links to profile servers that serve their associated lower level profiles. For the initial PDS
prototype, the root profile and all data set profiles are served by a single profile server. All product level
profiles are served by a two or three product level profile servers. These were configured based on a set of
performance and maintenance requirements (the description of which is outside the scope of this paper).

The hierarchy of profiles is served by a combination of root and leaf profile servers (described earlier in
this section). For example, a search application initially queries the profile server containing the root profile
and builds a query interface using the attributes and their values in the root profile as query constraint
choices. After the user has selected his query constraints, the location of the data set profile server provided
in the root profile is used to query for all data set profiles matching the query constraints. The search
application aggregates the matching data set profiles and builds a second query interface using the
aggregated attributes and attribute values as query constraint choices. The cycle continues down the
hierarchy of profile servers until product profiles are displayed to the user. The user is able to read the
product description and subsequently accesses the data product through the location provided in the data
product profile.

As a PDS example, the root profile contains “Galileo” as a value of the attribute Mission_Name. The
selection of “Galileo” in the root interface would match on all Galileo data set profiles in the data set
profile server. The second user interface produced by the search application would include the Galileo
image attribute Filter_Name and its permissible values, including RED. A subsequent selection of RED for
Filter_Name and a request to return all profiles would return all Galileo imaging data product profiles that
were taken through the RED filter.

6 CONCLUSION

The Object Oriented Data Technology (OODT) task has developed a standard resource description scheme
that can be used across domains to describe any resource. It uses a small set of generally accepted, broad
scope descriptors while also providing a mechanism for the inclusion of domain specific descriptors. The
use of this resource description scheme in an OODT software framework of profile and product servers
provides a powerful, flexible, and scalable resource discovery capability across distributed resource
repositories. Intelligent resource discovery is provided by the use of domain ontologies, relationship
inference, and semantically homogeneous resource descriptions. In this paper, we described the resource
description scheme in detail, and illustrated its utility on a case study: NASA’s Planetary Data System
(PDS) project. PDS is implementing intelligent resource discovery across its distributed data repositories,
thousands of data product types, and millions of individual data products using the OODT framework and a
hierarchy of resource profiles created from a planetary science ontology and both explicit and inferred
information.

Data Science Journal, Volume 4, 31 December 2005 187

7 REFERENCES

Aloisio, G., Cafaro, M., Epicoco, I., Fiore, S., Lezzi, D., Mirto, M. & Mocavero, S., (2005) Resource and
Service Discovery in the iGrid Information Service. International Conference on Computational Science
and its Applications, Singapore.

Beckwidth, R., Fellbaum, C., Gross, D., Miller, K., Miller, G. A., Tengi, R. (1990) Five Papers on
WordNet. Special Issue of the International Journal of Lexicography, 3(4), 235-312

Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A., Kesselman, C., Kunszt, P.,
Ripeanu, M., Schwartzkopf, B., Stockinger, H., Stockinger, K. & Tierney, B., (2002) Giggle: A
Framework for Constructing Scalable Replica Location Services. IEEE Supercomputing Conference,
Baltimore, MD, USA..

Crichton, D., Downing, G., Hughes, J.S., Kincaid, H. & Srivistava, S., (2001) An Interoperable Data
Architecture for Data Exchange in a Biomedical Research Network. 14th IEEE Symposium on Computer-
Based Medical Systems, Bethesda, MD, USA..

Crichton, D., Hughes, J.S., Kelly, S. & Hyon, J., (2000) Science Search and Retrieval using XML. Second
National Conference on Scientific and Technical Data, Washington, D.C., USA.

Crichton, D., Hughes, S., Kelly, S. & Ramirez, P., (2002) A Component Framework Supporting Peer
Services for Space Data Management. IEEE Aerospace Conference, Big Sky, MT, USA..

Crichton, D.J., Hughes, J.S. & Kelly, S., (2003), Wu, Xiong, & Shekhar, (Eds), A Science Data System
Architecture for Information Retrieval. Clustering and Information Retrieval, Kluwer Academic
Publishers, Norwell, MA, USA. 261-298.

Czajkowski, K., Ferguson, D.F., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling, D., Tuecke, S. &
Vambenepe, W., (2004) The WS-Resource Framework. Retrieved June 11, 2005 from the Globus Alliance
website: http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

Dublin Core Metadata Initiative (1999) DCMI Metadata Terms, Retrieved April 15, 2005 from the Dublin
Core Metadata Initiative website: http://dublincore.org/documents/dcmi-terms/.

Decker, S., Tangmunarunkit, H. & Kesselman, C., (2003) Ontology-based Resource Matching. 2nd
International Semantic Web Conference, Sanibel Island, FL, USA..

Foster, I., Kesselman, C., Nick, J.M. & Tuecke, S., (2003) The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration, Grid Computing, 217-249.

Hull, R. & King, R., (1987) Semantic Database Modeling: Survey, Application and Research Issues. ACM
Computing Surveys, 19 (3), 201-260.

IEEE-LTSC (2005) WG12: Learning Object Metadata (LOM). Retrieved June 15, 2005 from the IEEE -
LTSC website: http://ltsc.ieee.org/wg12/.

ISO/IEC-11179 (1999) Information Technology, Metadata Registries (MDR). Retrieved April 15, 2005
from the ISO/IEC JTC1 SC32 WG2 Development/Maintenance website: http://metadata-
standards.org/11179/.

Kesselman, C., Foster, I. & Tuecke, S., (2001) The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputing Applications, 15 (3). 200-222.

Data Science Journal, Volume 4, 31 December 2005 188

Lassila, O. & Swick, R.R., (1999) Resource description framework (rdf) model and syntax specification,
W3C.

Library of Congress (2005) METS Metadata Encoding and Transmission Standard. Retrieved June 15,
2005 from the Library of Congress website: http://www.loc.gov/standards/mets/.

Miller, G., Beckwith, R., Felbaum, C., Gross, D. & Miller, K., (1990) Five papers on WordNet, Cognitive
Science Laboratory, Princeton University, Princeton, USA.

NASA Jet Propulsion Laboratory (2005) PDS Client v.1.0.0 for the Planetary Data System. Retrieved June
11, 2005 from the NASA Jet Propulsion Laboratory website: http://oodt.jpl.nasa.gov/pds-client/pds-
client.pdf.

Pouchard, L., Cinquini, L. & Strand, G., (2003) The Earth System Grid Discovery and Semantic Web
Technologies. ISWC 2003 Workshop on Semantic Web Technologies for Searching and Retrieving
Scientific Data, Sanibel Island, FL, USA..

Raskin, R., Pan, M.J. & Mattmann, C.A., (2004) Enabling Semantic Interoperability for Earth Science
Data. 4th NASA Earth Science Technology Conference, Palo Alto, CA, USA..

Sangpachatanaruk, C. & Znati, T., (2005) A P2P Overlay Architecture for Personalized Resource
Discovery, Access and Sharing over the Internet. IEEE Consumer Communications and Networking
Conference, Las Vegas, NV, USA..

Singh, G., Bharathi, S., Chrevenak, A., Deelman, E., Kesselman, C., Manohar, M., Patil, S. & Pearlman, L.,
(2003) A Metadata Catalog Service for Data-Intensive Applications. IEEE International Conference on
Supercomputing, Phoenix, AZ, USA..

Smith, M., Bass, M., McClellan, G., Tansley, R., Barton, M., Branschofsky, M., Stuve, D. & Walker, J.H.,
(2003) DSpace: An Open Source Dynamic Digital Repository. D-Lib Magazine, 9 (1).

Sneed, H.M., (1997) The Rationale for Software Wrapping. in International Conference on Software
Maintenance, Bari, Italy.

