Jpn. J. Infect. Dis., 68, 221-229, 2015

Original Article

Different Responses in MMP/TIMP Expression of U937 and HepG2 Cells to

Dengue Virus Infection

Pannatas Seanpong!, Chanya Srisaowakarn!, Anothai Thammaporn!,
Vijittra Leardkamolkarn®3, and Supeecha Kumkate!*

!Department of Biology,; *Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400; and
3Center for Emerging and Neglected Infectious Diseases, Mahidol University, Nakorn Pathom 73170, Thailand

SUMMARY: Disease severities following dengue virus (DV) infection are the result of increased vascu-
lar permeability leading to hypovolemic shock. Matrix metalloproteinases (MMPs) are believed to play
a key role in promoting such severities. A previous study reported that supernatants of DV-infected den-
dritic cells (DCs), which contained high levels of MMP-2 and MMP-9, induced vascular leakage in a
mouse model. In the present study, we investigated whether hepatocytes (HepG2) and monocytes
(U937) could be additional sources of MMPs during DV infection. HepG2 and U937 cells were exposed
to DV serotype 2 strain 16681. The secretion of MMP-2 and MMP-9 was detected using gelatin
zymography. We found that DV infection in the HepGz2 cells promoted MMP-2 production while that
in the U937 cells promoted MMP-9 production. Semi-quantitative RT-PCR results also confirmed that
DYV infection in the HepG2 cells up-regulated the expression of MMP-2 mRNA, whereas that in the
U937 cells enhanced the expression of MMP-9 mRNA. We monitored the expression of endogenous
TIMP-1 and TIMP-2. DV infection induced TIMP-1 expression in the U937 cells. However, lower ex-
pression of TIMP-2 was observed in the infected HepG?2 cells. We believed that following DV infection,
monocytes and hepatocytes can act as MMP-9 and MMP-2 producers, respectively. Their responses

could be attributed to the disturbance of TIMP expression by DV in different cell types.

INTRODUCTION

Infection with dengue virus (DV), a mosquito-borne
flavivirus, causes dengue fever, which is a major public
health problem in several tropical and subtropical coun-
tries. Rapid transmission of 4 serotypes of DV (DV
serotypes 1-4) is typically facilitated via Aedes mosquito
vectors abundant in densely populated urban areas. It
has been estimated that 50 million infected cases are
reported each year (1). Clinical manifestations follow-
ing DV infection may develop as an acute, indistinguish-
ably febrile (DF) illness with limited bleeding (2). In
severe patients, leucopenia develops together with an
abrupt reduction in platelets and plasma leakage, lead-
ing to dengue hemorrhagic fever (DHF) (3,4). Lethal
dengue shock syndrome (DSS) occurs if there is in-
creased capillary permeability resulting in extensive
bleeding (3). Although the clinical parameters of the
progression of dengue fever to greater severity forms
(DHF and DSS) have been documented, physiological
mechanisms underlining the development of DHF and
DSS remain largely elusive.

Matrix metalloproteinases (MMPs), a family of more
than 24 proteolytic enzymes, exhibit a number of phys-
iological functions during both normal health condi-
tions and several pathological circumstances (5). The
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role of MMPs in promoting disease severity has increas-
ingly been documented in certain flaviviral infections.
Recent studies showed that the cerebrospinal fluid and
sera of Japanese encephalitis virus (JEV) patients con-
tained higher levels of MMP-2 and MMP-9 than those
of healthy individuals (6). MMP-9 expression was found
to be induced in macrophages (7), which greatly con-
tributed to the neuro-inflammatory process and severe
encephalitic conditions. Elevated levels of MMP-1,
MMP-3, and MMP-9 have been previously reported in
West Nile virus (WNV)-infected mice (8).

For DV infection, MMPs, together with inflammato-
ry cytokines such as IL-1, IL-6, and TNF«, are believed
to markedly contribute to the progression of a severe
pathology (9,10). Clinical investigation of DV infection
revealed a substantial increase in MMP-9 in the plasma
of DV patients with severe DF conditions (11). In addi-
tion, peripheral blood cells from patients who devel-
oped DHF showed greater expression of MMP-9 than
those with milder, DF stage (12). Tissue damage leading
to malfunction of major organs, particularly the liver
and endothelium, has been evident in cases of DHF and
DSS (1,9,13,14). With regard to the endothelium, it has
been previously found that after DV infection, human
microvascular endothelial cells stimulate the overpro-
duction of MMP-2 and MMP-9, causing the disruption
of vascular endothelium (VE)-cadherin cell-cell adhe-
sion while further enhancing endothelial permeability
(15). In addition, a number of immune competent cells,
including dendritic cells (DCs), monocytes, macro-
phages, and B cells have been reported to be targeted by
DV (9). DV induced the overproduction of MMP-9 and
MMP-2 by immature DCs. Administration of super-
natants from DV-infected DCs disrupted the expression



of platelet endothelial cell adhesion molecule-1 (PEC-
AM-1) and VE-cadherin cell adhesion molecules, lead-
ing to increased vascular permeability in a mouse model
(16). However, little is known about how other cellular
constituents of the major visceral organs (especially the
liver), and other antigen-presenting cells (monocytes)
could contribute as MMP sources during DV infection.

In the present study, we used HepG2 and U937 cells
representing hepatocytes and monocytes, respectively,
to investigate their role as additional MMP producers in
response to DV infection. We also examined the expres-
sion of endogenous inhibitors of MMPs, known as
TIMPs, particularly TIMP-1 and TIMP-2, to clarify
whether DV interferes with the balance of MMPs/
TIMPs, which could potentially be the cause of vascular
leakage and progression of severe DHF.

MATERIALS AND METHODS

Virus and cell lines: The DV serotype 2 strain 16681,
the prototype Southeast Asian strain (17), was propa-
gated in LLC-MK?2 cells. Only up to the 4th passage of
DV was used in the experiments. Viral titer was deter-
mined by a plaque-forming assay, as described previ-
ously (16). Human monocytic cells (U937) and hepatic
cells (HepG2) were purchased from CLS Cell Lines
Service (Eppelheim, Germany). The U937 cells were
cultured in RPMI11640 (Hyclone Laboratories, Logan,
UT, USA) supplemented with 10% heat-inactivated
FBS (GE Healthcare, Fairfield, CA, USA), 200 U/ml
penicillin and 100 ug/ml streptomycin (Life Techno-
logies Corp, Grand Island, NY, USA). The HepG2 cells
were grown in MEM (Hyclone Laboratories) with
similar supplements. Cell lines were maintained at 37°C
in a 5% CO, incubator.

In vitro infection: The U937 cells were placed in
24-well culture plates at 2 X 109 cells/well. Following
24-h incubation, they were exposed to DV suspended
in a serum-free medium (at MOI = 0.05) at 37°C for
90 min, with a shaking interval every 30 min. The in-
fected U937 cells were washed twice with PBS. RPMI
containing 5% FBS was then added to each well. An
aliquot of the HepG2 cells (2 X 109 cells) were seeded
and cultured in MEM for 48 h at 37°C prior to being
infected with DV (at MOI = 0.05) at 37°C for 90 min in
a manner similar to that for the U937 cells. The unin-
fected cells (mock infection) were exposed to DV-free
media only and were used as controls. For determina-
tion of MMP activities and expression of TIMPs, cul-
ture supernatants were harvested at 0 and 72 h following
infection.

Western blot analysis: The U937 and HepG2 cells
were washed twice with PBS, homogenized in cold lysis
buffer [Tris-HCIl, pH 7.5 containing 150 mM NacCl,
1mM EDTA, 2mM DTT, 2mM PMSF (Sigma-
Aldrich, St. Louis, MD, USA) and 1% Triton X-100
(Bio-Rad, Hercules, CA, USA)] and centrifuged at
10,000 g for 15 min. Protein concentrations were deter-
mined using the Bradford protein assay (Bio-Rad).
Equal amounts of protein were loaded onto a 10% SDS-
PAGE gel and were electrophoretically separated (Mini-
Protean Tetra cell™, Bio-Rad). Proteins were electrob-
lotted onto nitrocellulose membranes (Hybond-ECL™
[GE Healthcare]) using Mini Trans-Blot™ cell equip-
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ment (Bio-Rad) and subsequently blocked with 5%
skimmed milk. Membranes were then incubated with
mouse anti-human TIMP-1 monoclonal antibody (clone
102D1; Chemicon International, Billerica, MA, USA)
or mouse anti-TIMP-2 (clone 3A4; Abcam, Cambridge,
UK) antibody at 4°C overnight. Following washing,
blots were incubated with horseradish peroxidase-
conjugated goat anti-mouse antibody (Jackson
ImmunoResearch Laboratories, West Grove, PA, USA)
at a dilution of 1:1,000 for 1 h at room temperature.
After washing, bands were visualized by adding TMB
membrane peroxidase substrate (KPL Laboratories,
Gaithersburg, MA, USA).

Gelatin zymography: Gelatinolytic activities of
MMP-2 and MMP-9 in cell culture supernatants were
assessed by gelatin zymography. In brief, 30 ug protein
was mixed with nonreducing Laemmli sample buffer be-
fore being electrophoresed in 10% acrylamide gel con-
taining 1 mg/ml gelatin in the presence of SDS. After
electrophoresis, the gels were washed three times with
50 mM Tris-HCl (pH 7.5) containing 2.5% Triton
X-100, 5 mM CacCl,, and 1 uM ZnCl, and were subse-
quently incubated overnight in the same buffer contain-
ing 1% Triton X-100. Gelatinase activity was visualized
by staining the gels with 0.5% Coomassie blue prepared
in 30% methanol/10% acetic acid and de-staining with
2% acetic acid.

Semi-quantitative RT-PCR: Total RNA from the
U937 and HepG2 cells was extracted using TRIzol®
reagent (Invitrogen Corp, Carlsbad, CA, USA). First-
strand cDNA were synthesized from 1 ug total RNA
using RevertAid™ M-MuLV reverse transcriptase
(Thermo Scientific, Pittsburg, PA, USA). One-sixth of
a portion of cDNA was amplified using TagDNA poly-
merase (Thermo Scientific) according to the manufac-
turer’s instruction, and GAPDH gene expression was
examined as an internal control. PCR was performed
using a Mastercycler® personal thermocycle (Eppendor-
f, Hamburg, Germany) under the following conditions:
initial pre-denaturation at 94°C for 1 min; 40 cycles of
denaturation at 94°C for 1 min, annealing at 64°C (DV,
TIMP-1), 56°C (MMP-9, GAPDH), and 55°C
(MMP-2, TIMP-2) for 2 min; and extension at 72°C
for 1 min. The PCR products were separated on 1%
agarose gel and visualized by ethidium bromide stain-
ing. Band intensities on the gels were determined by
Scion Image analysis (Scion Corporation, MD, USA).
The primers used in RT-PCR are listed in Table 1.

Statistical analysis: Comparison of MMPs and ex-
pression of their inhibitors between the mock infection
and DV infection groups were determined statistically
by independent Student’s #-test (SPSS Statistics, IL,
USA). The difference was considered significant when
P < 0.05. Arithmetic means of three replicates £ SD
are shown. Data shown are representative of at least
three independent experiments.

RESULTS

DV infection induced MMP-9 expression in U937
cells and MMP-2 expression in HepG2 cells: Semi-quan-
titative RT-PCR was used to determine mRNA expres-
sion of MMP-2 and MMP-9 in U937 and HepG?2 cells.
We found that both U937 (Fig. 1A) and HepG?2 cells
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Table 1. Nucleotide sequences of the primers used for RT-PCR

mRNA Sense primer Antisense primer
DV envelope 5'-AAGGTGAGATGAAGCTGTAGTCTC-3' 5'-CATTCCATTTTCTGGCGTTCT-3’
MMP-2 5'-GTGTTCTTTGCAGGGAATGAAT-3’ 5'-ACGACGGCATCCAGGTTATC-3’
MMP-9 5'-GAAGATGCTGCTGTTCAGCG-3’ 5"-ACTTGGTCCACCTGGTTCAA-3’
TIMP-1 5'-GGTACCATGGCCCCCTTTGAGCCCCT-3’ 5"-AAGTTTCACAAGCAATGAGTGCCACTCTG-3'
TIMP-2 5'-CGACATTTATGGCAACCCTATCA-3’ 5"-GCCGTGTAGATAAACTCTATATCC-3’
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Fig. 1. Expression of MMP-9 and MMP-2 in U937 and HepG2 cells. RT-PCR analysis of MMP-2, MMP-9 and DV
envelope gene transcription in U937 (A) and HepG2 (B) cells, in mock and infected cells at 0 and 72 h post-infec-
tion. Relative expression of MMP-2 mRNA (C) and MMP-9 mRNA (D) to GAPDH mRNA in U937 and HepG2
cells at 72 h post-infection in mock (dark grey) and DV-infected cells (light grey). Bars show means = SD of at
least three replicates, representatives for three experiments. Statistically significant differences compared with the

mock. **, P < 0.01; ***, P < 0.001.

(Fig. 1B) constitutively expressed MMP-2 and MMP-9.
However, by 72 h following exposure to DV, HepG2
cells markedly up-regulated the expression of MMP-2
(Fig. 1C) but not that of MMP-9 (Fig. 1D). Expression
of MMP-9 was found to be induced in U937 cells fol-
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lowing infection of DV at 72 h (Fig. 1D), compared
with that in mock control cells. However, DV infection
did not alter the expression of MMP-2 in U937 cells
(Fig. 1C). We also confirmed the presence of DV by
monitoring the expression of an envelope gene in the in-



fected U937 and HepG2 cells (Fig. 1). By 24 h, we were
able to detect a DV gene within both cell lines. Appar-
ently, increased expression of an envelope gene in the
U937 cells, which might indirectly reflect DV replicative
capacity, was recorded as infection time passed to 72 h.
However, in the infected HepG?2 cells, those levels were
comparable between 24 and 72 h (Fig. 2).

Following DV infection, U937 and HepG2 cells en-
hanced production of secreted MMP-9 and MMP-2, re-
spectively: Gelatin zymography was performed to exa-
mine the gelatinolytic activities of MMP-2 and MMP-9
in cell culture supernatants. We were able to detect solu-
ble MMP-2 (72 kDa) and MMP-9 (92 kDa) in the unin-
fected U937 and HepG2 cells (Fig. 3A, B). We identi-
fied increase in the levels of MMPs in supernatants as
the culture time increased. However, greater amounts of
soluble MMP-9 from the infected U937 cells were ob-
served as brighter bands during zymography, compared

A. U937 cells
24 h 72 h

with uninfected cells (Fig. 3A, D). However, the pro-
duction of MMP-2 was comparable between the DV-
infected and uninfected U937 cells (Fig. 3A, C). In
addition, DV infection substantially induced MMP-2
secretion in the HepG2 cells (Fig. 3B, C). However,
soluble MMP-9 levels were not different between the
infected and control HepG?2 cells, which was similar to
what we observed with mRNA levels (Fig. 3B, D).
Differential expression of TIMP-1 and TIMP-2 in
U937 cells and HepG2 cells in response to DV infection:
The expression and function of MMPs are regulated by
different TIMPs. Therefore, we investigated whether
overexpression of MMP-9 and MMP-2 in DV-infected
U937 and HepG2 cells might result from aberrant ex-
pression of endogenous TIMPs. We studied the expres-
sion of TIMP-1 and TIMP-2, which have extensively
been reported to preferentially control MMP-9 and
MMP-2, respectively. In the U937 cells, DV infection
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Fig. 2. Semi-quantitative RT-PCR analysis of DV envelope gene in the infected U937 (A) and HepG2 (B) cells at 24
and 72 h post-infection. Relative expression of DV envelope to GAPDH mRNA in U937 (C) and HepG2 (D) cells
at 24 h (light grey) and 72 h (dark grey) post-infection. Bars show means = SD of at least three replicates,
representatives for two experiments. Statistically significant differences compared between two time points.

HE P < 0.001.
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Fig. 3. Gelatinolytic activities of MMP-9 (gelatinase B, 92 kDa) and MMP-2 (gelatinase A, 72 kDa) in culture super-
natants of U937 and HepG2 cells. Gelatin zymographic analysis of secreted MMP-9 and MMP-2 in U937 (A) and
HepG?2 (B) cells in mock and infected cells at 0 and 72 h post-infection. Band intensity of MMP-9 (C) and MMP-2
(D) from the infected cells and mock controls at 72 h post-infection. Bars are means = SD of at least three repli-
cates, representatives for three independent experiments. Statistically significant differences compared with the

mock. **, P < 0.01.

induced the expression of TIMP-1 mRNA by 72h,
while the expression of TIMP-2 was unaffected (Fig.
4A). Soluble amounts of TIMP-1 in supernatants at 0 h
were below detectable levels, but enhanced levels of
TIMP-1 protein were observed only in the infected U937
cells (Fig. 5A). TIMP-2 expression was recorded as ear-
ly as 0 h, but we could not detect the apparent change in
TIMP-2 expression following DV infection in the U937
cells (Fig. 5A). The HepG2 cells constitutively expressed
both TIMP-1 and TIMP-2 at transcriptional levels (Fig.
4B). In the presence of DV, the HepG2 cells retained
their expression of TIMP-1 but down-regulated that of
TIMP-2. Similar to the results from RT-PCR, using
Western blot analysis, we found decreased levels of
TIMP-2 expression in the infected HepG2 cells, but no
obvious difference in soluble TIMP-1 levels between the
infected and control cells (Fig. 5B).
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DISCUSSION

In the present study, we showed that hepatocytes can
act as a cellular source of MMP-2 following the ex-
posure of DV. As a cancerous cell line, HepG2 cells,
originating from hepatocellular carcinoma cells, were
reported to constitutively release active MMP-2 and
MMP-9 (18). However, this cell line has been widely
used to investigate a number of DV interactions with
host cells and to assess the intracellular signaling caused
by DV infection such as cell entry, viral replication and
apoptosis induction (19).

The liver has well been identified as a DV target organ
because DV antigens have been discovered in hepato-
cytes of lethal cases (20). Hepatic encephalopathy with
massive bleeding and increased liver enzyme levels have
often been reported in severe DHF and DSS (1,9,21).
However, the detailed mechanisms underlining the
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Fig. 4. Expression of TIMP-1 and TIMP-2 in U937 and HepG2 cells. RT-PCR analysis of TIMP-1 and TIMP-2 in
U937 (A) and HepG2 (B) cells. Relative expression of TIMP-1 mRNA (C) and TIMP-2 mRNA (D) to GAPDH
mRNA in U937 and HepG2 cells at 72 h post infection in mock (dark grey) and DV-infected cells (light grey). Bars
show means + SD at least three replicates representatives for three independent experiments. Statistically signifi-
cant differences compared with the mock. **, P < 0.01; ***, P < 0.001.

hepatic injury observed in several cases leading to liver
failure have never been clarified. Immunohistochemical
analysis of hepatic lesions from DHF patients revealed
the enhanced production of pro-inflammatory media-
tors, including IL-6, IL-12, IL-18 and iNOS, in the por-
tal tract and hepatic acinus (22). Such a microenviron-
ment is believed to promote apoptosis in DV-infected
hepatocytes, which have been reported through endo-
plasmic reticulum stress, and caspase activation as well
as alteration of the mitochondrial transmembrane
potential (23). In addition, signaling via the extracellu-
lar signal-regulated kinase 1/2 (ERK1/2) cascade has
been recently reported as a key mechanism stimulating
hepatic apoptosis in a mouse model. Use of an ERK
inhibitor, revealed marked reduction in caspase genes
leading to abrogated DV-induced liver injury (24). The
overproduction of MMP-2 in the HepG2 cells observed
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in this study might result from the activation of ERK
signaling, similar to that shown in hepatitis C infection
(25). However, interaction of specific DV proteins and
cellular signaling pathways triggering MMP expression
is currently under investigation to clarify this point.

In the infected HepG2 cells, we found considerable
up-regulation of MMP-2 expression at the transcription
level, as evidenced by RT-PCR, which correlated well
with greater activities of secreted MMP-2 analyzed by
gelatin zymography. In addition, TIMP-2 mRNA ex-
pression and soluble TIMP-2 levels were down-regulat-
ed in the HepG2 cells following DV infection. The
transformation mechanism of proMMP-2 to active
MMP-2 requires an optimal concentration of soluble
TIMP-2 and membrane type 1(MT1)-MMP. It has been
previously described that to generate active MMP-2,
proMMP-2 molecules must bind a receptor complex
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Fig. 5. Production of TIMP-1 (28 kDa) and TIMP-2 (24 kDa) in culture supernatants of U937 and HepG2 cells.
Western blot analysis of soluble TIMP-1 and TIMP-2 in U937 (A) and HepG2 (B) cells in mock and infected cells
at 0 and 72 h post-infection. Band intensity of TIMP-1 (C) and TIMP-2 (D) from the infected cells and mock con-
trol at 72 h post-infection. Bars are means = SD of three replicates, representatives for three independent experi-
ments. Statistically significant differences compared with the mock. *, P < 0.05; ***, P < 0.001.

formed by TIMP-2 and MT1-MMP on the cell surface
(26). Only a low concentration of TIMP-2 that interacts
with MT1-MMP is allowed for appropriate cleavage of
proMMP-2 by adjacent free MT1-MMP, releasing fully
active MMP-2 (27,28). Alternatively, another mechan-
ism is that homodimerization of MT1-MMP results in
the activation of proMMP-2 to MMP-2, in which no
TIMP-2 is needed (29). In our study, overexpression of
MMP-2 and down-regulation of TIMP-2 in the HepG2
cells might have resulted from an altered TIMP-2/MT1-
MMP regulation in MMP-2 activation triggered by DV
infection. The persistence of reduced TIMP-2 levels
may facilitate increased MMP-2 synthesis in hepatocyte
responses to DV.

Monocytes are antigen-presenting cells that play a
crucial role in mediating inflammatory responses. They
can travel through lymphatic and vascular systems and
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differentiate to macrophages in peripheral tissues.
Monocytes are a prime target of DV infection (30). They
allow DV to not only get entry but also facilitate its
replication (31). The human monocytic U937 cell line
has been extensively employed to examine DV infectivi-
ty (30,32). This in vitro study revealed that DV-infected
monocytic cells are capable of producing MMP-9. Fol-
lowing infection with DV, the monocytes substantially
elevated the expression of MMP-9 but not that of
MMP-2. Similar to what we observed in DV infection,
monocytes act as a cellular source of MMP-9 during
responses to a number of infectious pathogens including
Mycobacterium tuberculosis (33), human cytomegalo-
virus (34) and Porphyromonas gingivalis (35). Increased
MMP-9 expression is required by inflammatory mono-
cytes to translocate themselves to peripheral tissues
(35,36).



TIMP-1 is known to be an inhibitor of MMP-9 (37).
The stoichiometric balance of 1:1 between MMP-9:
TIMP-1 is crucially maintained under normal physio-
logic conditions (38). Enhanced TIMP-1 production
during pathologic circumstances has been hypothesized
as causing counterbalance in the overproduction of
functional MMP-9 (37). Although significant increase
in MMP-9 and TIMP-1 production have been previous-
ly recorded in malarial (39) and bacterial infections (40),
a strict balance of MMP-9/TIMP-1 is easily disturbed
leading to the MMP-9 overexpression. The alteration in
MMP-9 and TIMP-1 levels could possibly represent our
DV-infected U937 cells since we could detect a remarka-
ble increase in TIMP-1 and MMP-9. Imbalance of
MMP-9/TIMP-1 could therefore have a plausible role
in monocytes against DV infection.

To our knowledge, this study provides new evidence
that in response to DV infection, hepatocytes and
monocytes can act as cellular MMP producers, particu-
larly MMP-2 and MMP-9, respectively. Their function
could result in the aberrant expression of TIMP-2 and
TIMP-1, which might interfere with the delicate balance
between MMPs/TIMPs in a number of different DV-
susceptible cells. Our findings also suggest that there is a
feasible role for hepatocytes and monocytes in facilitat-
ing the progression of disease toward more severe
hemorrhagic fever.
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