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The role of gut hormones and the hypothalamus in appetite 
regulation
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Abstract.  The World Health Organisation has estimated that by 2015 approximately 2.3 billion adults will be overweight 
and more than 700 million obese.  Obesity is associated with an increased risk of diabetes, cardiovascular events, stroke 
and cancer.  The hypothalamus is a crucial region for integrating signals from central and peripheral pathways and plays a 
major role in appetite regulation.  In addition, there are reciprocal connections with the brainstem and higher cortical 
centres.  In the arcuate nucleus of the hypothalamus, there are two major neuronal populations which stimulate or inhibit 
food intake and influence energy homeostasis.  Within the brainstem, the dorsal vagal complex plays a role in the 
interpretation and relaying of peripheral signals.  Gut hormones act peripherally to modulate digestion and absorption of 
nutrients.  However, they also act as neurotransmitters within the central nervous system to control food intake.  Peptide 
YY, pancreatic polypeptide, glucagon-like peptide-1 and oxyntomodulin suppress appetite, whilst ghrelin increases appetite 
through afferent vagal fibres to the caudal brainstem or directly to the hypothalamus.  A better understanding of the role of 
these gut hormones may offer the opportunity to develop successful treatments for obesity.  Here we review the current 
understanding of the role of gut hormones and the hypothalamus on food intake and body weight control.  
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Obesity has become an important worldwide health 
issue, with a rapidly increasing prevalence.  In the 
UK, one quarter of adults are obese and one third of 
all adults are predicted to be obese by 2012 [1].  The 
World Health Organisation has estimated that by 2015 
approximately 2.3 billion adults worldwide will be 
overweight and more than 700 million obese [2].  In 
Japan self-reported prevalence of obesity has remained 
consistently low over the last 30 years.  However 
obesity is now increasing in middle-aged adults and 
partly associated with a western-style change in diet 
[3].  There is now clear evidence showing a link be-
tween obesity and increased risk of diabetes, cardio-
vascular events, stroke, cancer [4-6], obstructive sleep 
apnoea [7] as well as neurodegenerative diseases such 
as Parkinson’s disease [8] and Alzheimer’s disease [9].  

Obesity is due to a state in which energy intake ex-
ceeds energy expenditure over a prolonged period.  In 
normal subjects, body weight is tightly regulated de-
spite day-to-day variations in food intake and energy 
expenditure.  However, because this system evolved 
to conserve energy it is biased towards the preserva-
tion of energy [10].  Signals relaying information such 
as the nutritional and energy status of the body, con-
verge within the central nervous system (CNS).  In 
humans it is also of note that psychological and emo-
tional factors can drive food intake in excess of actual 
need.  Furthermore, current modern lifestyles include 
easily available palatable foods and reduced levels of 
physical exercise.  In rare cases, there are also muta-
tions within genes encoding known appetite regulating 
hormones, resulting in obesity [11, 12]. 

Although current pharmacological and behavioural 
treatments for obesity result in initial weight loss, the 
effect is transient and followed by weight regain [13].  
This reflects the complex systems involved in appetite 
regulation to avoid large fluctuations in body weight.  
In contrast, gastric bypass surgery is an established 
and effective treatment for obesity and results in sus-
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knock-out mice exhibit hyperphagia and obesity [23].  
Similarly, in humans MC4R mutations account for 
approximately 6% of severe early-onset obesity and 
more than 70 different mutations have been associated 
with obesity [24].  Loos et al. [25] found that common 
variants near the MC4R gene influenced fat mass, 
weight and obesity risk.

In contrast to the established role of MC4R on food 
intake, the role of MC3R on appetite control is still 
unclear.  MC3R-deficient mice show increased fat 
mass and reduced lean body mass [26], but selective 
MC3R agonists have no effect on feeding [27].  

Neuronal expression of CART in the ARC co-loca-
lises with POMC and animal studies have demonstrat-
ed that intracerebroventricular (ICV) administration of 
CART inhibits feeding, whereas injection of CART an-
tiserum ICV increases food intake [28].  Interestingly, 
CART injected directly into the PVN or ARC of fasted 
rats causes an increase in food intake at 1-4 hours [29], 
suggesting that CART has alternative effects on food 
intake depending on the site of administration.  

NPY/AgRP neurons have extensive projections 
within the hypothalamus, including the PVN, DMN 
and LHA.  ICV injection of NPY stimulates food in-
take in rats [30] and repeated daily injections of NPY 
result in chronic hyperphagia and increased weight 
gain [31].  The orexigenic effect of NPY is mediated 
by stimulation of hypothalamic Y1R and Y5R in addi-
tion to local inhibition of POMC neurons in the ARC 
[32].  In addition, AgRP acts as a selective antagonist 
at MC3R and MC4R in the PVN [33].  There is also 
evidence that NPY/AgRP and POMC/CART neurons 
are influenced by circulating leptin, insulin, glucose, 
amino acids and fatty acids [34].  

In addition to receiving NPY/AgRP and POMC/
CART projections from the ARC, the PVN also con-
tains the anorectic thyrotropin-releasing hormone and 
corticotrophin-releasing hormone.  Destruction of the 
PVN causes hyperphagia and obesity [35]. 

Other nuclei within the hypothalamus are also impli-
cated in the control of food intake.  The LHA contains 
the orexigenic hormones, melanin-concentrating hor-
mone and orexin, and the DMN receives NPY/AgRP 
projections from the ARC [36].  In the VMN, brain-de-
rived neurotrophic factor (BDNF) is highly expressed 
and suppresses food intake through MC4R signalling 
[37].  Selective deletion of BDNF results in obesity 
[38].  Figure 1 shows the key neuronal populations in-
volved in appetite regulation and the converging of pe-

tained weight loss [14].  However this treatment is 
limited due to significant complication rates.  Although 
the mechanism of long-term weight loss following bar-
iatric surgery is yet to be determined, several gut hor-
mones have been implicated.  For example, a decrease 
in circulating ghrelin and an increase in peptide YY 
(PYY) and glucagon-like peptide-1 (GLP-1) levels 
have been found following bypass surgery [15-17].  

Thus the ability to replicate the gut hormone profile 
associated with gastric bypass surgery, using pharma-
cological interventions could offer a promising treat-
ment for obesity [18, 19].  We describe the current un-
derstanding of systems involved in appetite regulation 
within the CNS and gut and illustrate their complexity 
and potential as therapeutic targets for obesity. 

Hypothalamic control of feeding

The hypothalamus plays a major role in the control 
of appetite.  Based on early lesioning experiments in 
the hypothalamus, it was believed that the lateral hy-
pothalamic area (LHA) was the ‘hunger centre’ and 
ventromedial hypothalamic nucleus (VMN) acted as a 
‘satiety centre’ [20].  However, it has now been dem-
onstrated that many more hypothalamic nuclei and 
neuronal circuits are intricately involved in appetite 
regulation, interacting with the brainstem and higher 
cortical centres.  In addition to peripheral signals re-
laying via the brainstem and vagus nerve, some au-
thors have suggested the presence of an incomplete 
blood-brain barrier (BBB) at the median eminence of 
the hypothalamus and area postrema of the brainstem, 
allowing peripheral circulating factors direct access to 
the CNS [21].  

Within the arcuate nucleus (ARC) of the hypothala-
mus, there are two neuronal populations with opposing 
effects on food intake: neurons which co-express neu-
ropeptide Y (NPY) and agouti related peptide (AgRP) 
stimulate food intake, whereas neurons co-expressing 
pro-opiomelanocortin (POMC) and cocaine- and am-
phetamine-regulated transcript (CART) suppress feed-
ing.  Both populations project to the paraventricular 
nucleus (PVN), although the ARC also communicates 
with other hypothalamic nuclei such as the dorsome-
dial nucleus (DMN), LHA and VMN.  

Within POMC neurons, α-melanocyte-stimulating 
hormone (α-MSH) is produced and this binds to 
melanocortin-4 (MC4R) receptors in the PVN to sup-
press food intake [22].  Consistent with this, MC4R 
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ripheral and central signals within the hypothalamus. 

Brainstem

Within the brainstem, the dorsal vagal complex 
(DVC) is crucial in the interpretation and relaying of 
peripheral signals such as vagal afferents from the gut 
to the hypothalamus [39].  The DVC consists of the 
dorsal motor nucleus of vagus (DVN), area postrema 
(AP), and the nucleus of the tractus solitarius (NTS).  
Vagal afferents from the gut convey information such 
as gastric distension, gut hormone levels and fatty ac-
ids.  Transection of all gut sensory vagal fibres results 
in increased meal size and meal duration [40, 41]. 

Within the brainstem, vagal afferent neurons have 
been shown to express a variety of receptors includ-
ing cholecystokinin (CCK) 1R and CCK2R (at which 

both CCK and gastrin act) [42], Ob-R [43], Y2R [44], 
GLP-1 [45] and GLP-2R [46], growth hormone secre-
tagogue receptor (GHS)-R1 at which ghrelin acts [47] 
and the orexin receptor, OX-R1 [48].  

The expression of leptin and insulin receptors, and 
of glucose sensing mechanisms in the brainstem is 
similar to that seen in the hypothalamus [49].  There 
are also neuronal populations known to regulate ap-
petite, such as POMC neurons which exist within the 
NTS.  These demonstrate signal transducer and activa-
tor of transcription 3 (STAT-3) activation in response 
to leptin administration [50].  Furthermore, admin-
istration of leptin into the dorsal vagal complex sup-
presses food intake [49].  

Therefore, signals from the periphery have pivotal 
roles in transmitting information via afferent vagal fi-
bres to the caudal brainstem or directly to the hypotha-

Fig. 1.
Appetite regulation is controlled by complex neuronal pathways which have reciprocal connections between the hypothalamus, brain-
stem and higher cortical areas. Peripheral signals conveying information can act via neural pathways via the brainstem and hypotha-
lamus directly. Alternatively, due to the presence of an incomplete blood-brain barrier at the median eminence and area postrema, gut 
hormones and adiposity signals can act via the bloodstream to influence signalling of known appetite controlling pathways such as 
NPY/AgRP and POMC/CART neurons within the arcuate nucleus. Signals from higher cortical centres are integrated with peripheral 
signals within hypothalamic nuclei.
CNS, central nervous system; ARC, arcuate nucleus; NPY/AgRP, neuropeptide Y and agouti related peptide; POMC/CART, pro-opi-
omelanocortin and cocaine- and amphetamine-regulated transcript; PVN, paraventricular nucleus; LHA, lateral hypothalamic area; 
DMN, dorsomedial nucleus; VMN, ventromedial hypothalamic nucleus; ME, median eminence; DVC, dorsal vagal complex; DVN, 
the dorsal motor nucleus of vagus; NTS, the nucleus of the tractus solitarius; AP, area postrema; GI tract, gastrointestinal tract; TRH, 
thyrotropin-releasing hormone; CRH, corticotrophin-releasing hormone; MCH, melanin-concentrating hormone; BDNF, brain-derived 
neurotrophic factor; GLP-1, glucagon-like peptide-1; CCK, cholecystokinin; PP, pancreatic polypeptide; PYY, peptide YY; OXM, 
oxyntomodulin; BBB, blood-brain barrier.
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Anticipation of a meal and the presence of food in the 
stomach and the small intestine stimulate secretion 
of many of these hormones from the gut through me-
chanical and chemical stimuli.  These signals are in-
volved in the initiation of food intake as well as ter-
mination of meals.  The satiating effect caused by 
distension of the stomach forms the basis of gastric 
balloon use in humans as a treatment for obesity [55, 
56], although long term data of maintenance of weight 
loss using this method has been disappointing [57]. 

Gut hormones

Peptide tyrosine tyrosine (PYY)
PYY was first isolated as a 36-amino acid peptide 

from porcine upper small intestine [58] and is a mem-
ber of the PP-fold family.  This family also includes 
NPY and pancreatic polypeptide (PP).  PP-fold pep-
tides act via G protein-coupled receptors: Y1, Y2, Y4, 
Y5 and Y6 [59].  Two circulating forms of PYY are 
released by L cells in the distal gut: PYY (1-36) and 
PYY (3-36).  PYY (3-36), the major circulating form, 
is produced by cleavage of the N-terminal Tyrosine-
Proline residues from PYY (1-36) by the enzyme di-
peptidyl-peptidase IV (DPPIV) [60].  PYY (3-36) 
binds with highest affinity to the hypothalamic Y2R 

lamus to modify appetite.  Table 1 lists several periph-
eral appetite-related signals and their roles.  

Reward system

The corticolimbic pathways are thought to be re-
sponsible for reward-associated feeding behaviour.  
Endocannabinoid and opioid receptors are largely dis-
tributed within the CNS and play a major role in in-
creased feeding related to reward [51].  The adminis-
tration of a μ-opioid receptor agonist into the nucleus 
accumbens preferentially stimulates intake of high fat 
diet when both fat and carbohydrate diets are present-
ed simultaneously [52].  The endocannabinoid recep-
tor antagonist, rimonabant, was until recently used as 
a treatment for obesity.  However, unacceptable psy-
chiatric side-effects resulted in withdrawal of the drug.  
Interestingly, leptin has been shown to reduce endo-
cannabinoid levels in the hypothalamus [53].  

Gastrointestinal tract

The gastrointestinal (GI) tract is referred to as the 
largest endocrine organ in the body.  More than 30 
gut hormone genes are expressed and more than 100 
bioactive peptides are produced in the GI tract [54].  

Table 1. Summary of the main gut hormones and adiposity signals that influence food intake and body weight.

Feeding Receptor Major secretion site Other actions

Gut hormones

PYY (3-36) ↓ Y2 L cells in gut Delays gastric emptying 

PP ↓ Y4, Y5 PP cells in pancreas

GLP-1 ↓ GLP-1 L cells in gut Incretin, decreases blood glucose, delays gastric emptying, 
neurotrophic effect

GLP-2 - GLP-2 L cells in gut Intestinal trophic effect

OXM ↓ GLP-1 L cells in gut

Glucagon ↓ GCGR Pancreatic αcells Increases blood glucose levels and insulin secretion

CCK ↓ CCK 1, 2 I cell of small intestine Gall bladder contraction, relaxation of sphincter of Oddi, pancreatic 
enzyme secretion

Ghrelin ↑ GHS stomach Growth hormone secretion

Amylin ↓ AMY1-3 pancreatic βcells Decreases blood glucose levels

Adiposity signals

Insulin ↓ Insulin pancreatic βcells Decreases blood glucose levels, stimulates glycogen synthesis

Leptin ↓ Leptin (Ob-R) adipocyte Regulation of energy metabolism

PYY, peptide YY; PP, pancreatic polypeptide; GLP-1, glucagon-like peptide-1; GLP-2, glucagon-like peptide-2; OXM, oxyntomodulin; 
CCK, cholecystokinin; GCGR, glucagon receptor.
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Pancreatic polypeptide (PP)
PP is secreted from PP cells in the pancreatic islets 

of Langerhans and is thought to reduce food intake di-
rectly through the Y4R in the brainstem and hypotha-
lamus.  It may also act via the vagus nerve to reduce 
food intake since the anorectic effects of PP are abol-
ished by vagotomy in rodents [76].  Y4R expression 
is found in the AP, NTS, DVN, ARC and PVN [77].  
An autoradiography study also identified saturable PP 
binding sites at the interpenduncular nucleus, AP, NTS 
and DVN [78], suggesting the major site of action of 
PP is the brainstem.  In a similar manner to PYY, PP 
demonstrates differential effects on food intake de-
pending on the route of administration.  When given 
peripherally, PP acts as an anorectic hormone, whereas 
CNS administration stimulates food intake [30].  This 
may be due to a difference in receptor distribution or 
activation sites, although the exact mechanism is not 
yet clear.  

Circulating PP concentrations rise after a meal in 
proportion to the calorific load.  Although differenc-
es in circulating levels of PP between lean and obese 
people have been conflicting [79, 80], some studies 
have demonstrated significantly lower levels in obese 
subjects [81, 82].  In mice, acute and chronic periph-
eral administration of PP reduces food intake [76, 83].  
In leptin-deficient ob/ob mice, repeated intraperitoneal 
injection of PP decreases body weight gain and amel-
iorates insulin resistance and hyperlipidaemia [76].  
Furthermore, transgenic mice which overexpress PP 
are lean and demonstrate a reduction in food intake 
[84].  In normal-weight human subjects, intravenous 
infusion of PP results in a 25% reduction in 24-hour 
food intake [85].  Although PP could be a potential 
target in the search for anti-obesity drugs, it is rapidly 
degraded in the circulation and therefore the develop-
ment of Y4 agonists may prove more successful. 

Glucagon-like peptide-1
GLP-1, GLP-2, oxyntomodulin (OXM) and gluca-

gon are proglucagon derived peptides.  Proglucagon 
is expressed in the pancreas, L-cells of the small in-
testine and in the NTS of the brainstem [86, 87].  
Glucagon is produced in the pancreas, whereas OXM, 
GLP-1 and GLP-2 are the major products in the brain 
and intestine [88]. 

GLP-1 is co-secreted with PYY from L cells in the 
intestine and has a potent incretin effect by stimu-
lating insulin secretion in a glucose-dependent man-

causing a reduction in food intake [61].  It also binds to 
other Y receptors, although with much lower affinity. 

Circulating PYY concentrations are low in the fast-
ed state and rapidly increase following a meal, peak-
ing at 1-2 hours and remaining elevated for several 
hours [62].  Ingestion of fat results in greater release 
of PYY than observed with ingestion of carbohy-
drate or protein meals with a similar caloric content 
[62].  Peripheral PYY administration causes a de-
crease in food intake and body weight gain in rats [63].  
Similarly, in both lean and obese humans, PYY infu-
sion reduces appetite and food intake [63, 64].  

In addition to PYY’s anorectic effect on food in-
take, it also increases energy expenditure [65] and de-
lays gastric emptying in mice [66].  Although studies 
of circulating levels of PYY in obese and lean peo-
ple have been conflicting [67, 68], some investigators 
have found that in obese subjects, circulating PYY 
levels are low [64, 69].  In contrast, PYY levels in pa-
tients with anorexia nervosa are reported to be high 
[70].  Obese people also have a blunted rise in PYY 
after a meal, possibly resulting in impaired satiety and 
hence greater food intake [71].  

The anorectic effects of PYY (3-36) may act di-
rectly via an incomplete blood-brain barrier (BBB) in 
the median eminence of the hypothalamus, via vagal-
brainstem-hypothalamic pathways, or both.  Peripheral 
administration of PYY (3-36) increases c-fos expres-
sion (a marker of neuronal activation) in the ARC and 
direct injection of PYY (3-36) into the ARC inhibits 
food intake [63].  This effect is most likely mediated 
through the Y2R since the anorectic effect of peripher-
al PYY (3-36) administration is abolished in Y2R-null 
mice and intra-arcuate injection of a Y2R selective ag-
onist also reduces food intake [63].  Furthermore, it 
appears that the anorectic effect of peripheral adminis-
tration of PYY (3-36) in rats is in part due to vagal af-
ferent signalling since the effect is abolished following 
bilateral subdiaphragmatic vagotomy and brainstem-
hypothalamic pathway transectioning [44, 72].  

In contrast to peripheral and intra-arcuate PYY 
(3-36) administration, when given into the third ven-
tricle of the brain [73] or directly into the PVN [74], 
PYY (3-36) demonstrates an increase in food intake.  
This may be due to the effects of NPY on Y1R and 
Y5R, stimulation of which appear to cause an increase 
in food intake [75].  Therefore, PYY appears to have 
differing effects on food intake depending on the site 
of administration. 
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intake and increases energy expenditure in both ro-
dents and humans [109-111].  OXM has relatively low 
affinity for the GLP-1R, binding approximately 50 
fold less strongly than GLP-1.  However the anorec-
tic effect can be blocked by the GLP-1R antagonist 
exendin (9-39) [112] and is abolished in GLP-1R null 
mice [113], suggesting that OXM mediates its effects 
via the GLP-1R.  Alternatively, there may be an as yet 
unidentified receptor through which OXM mediates 
an anorectic effect.  Certainly, several actions of OXM 
appear to be independent of the GLP-1R [110, 114, 
115].  For example, the cardiovascular effects of OXM 
are preserved in GLP-1R knock out mice [114].  Like 
GLP-1, OXM is inactivated by DPPIV and OXM ana-
logues which are resistant to DPPIV degradation are 
being developed as potential obesity treatments [116]. 

Glucagon
Glucagon is produced by the α cells of the pancre-

atic islets.  In contrast to GLP-1 and insulin, hypogly-
caemia causes an increase in glucagon secretion re-
sulting in hepatic glycogenolysis.  Administration of 
intraperitoneal and subcutaneous glucagon in rats re-
duces food intake and meal size in addition to reduc-
ing body weight gain [117, 118].  Recently beneficial 
effects of a glucagon and GLP-1 co-agonist on obesity 
in rodents have been demonstrated [119, 120]. 

Ghrelin
Ghrelin is the only known orexigenic gut hormone.  

It was initially identified as an endogenous ligand for 
GHS-R in rat stomach.  However the GHS-R is also 
expressed in the hypothalamic ARC [121] and levels 
of circulating ghrelin have been noted to increase be-
fore meals and fall rapidly after eating [122].  Both 
CNS and peripheral administration of ghrelin increas-
es food intake and body weight with a reduction in fat 
utilisation in rodents [123, 124].  Fasting plasma levels 
of ghrelin are high in patients with anorexia nervosa 
[125] and in subjects with diet-induced weight loss [15], 
whilst obese subjects demonstrate lower fasting ghrelin 
levels and postprandial ghrelin suppression [126]. 

Peripheral administration of ghrelin increases c-fos 
expression in ARC NPY/AgRP neurons [127] and ab-
lation of AgRP and NPY neurons completely abolish-
es the orexigenic effect of ghrelin [128].  When giv-
en centrally, ghrelin causes c-fos activation in several 
key appetite nuclei including the PVN and DMN.  In 
addition, c-fos activity is increased in the brainstem, 

ner.  In addition, GLP-1 possesses trophic effects on 
pancreatic β cells [89].  DPPIV degradation and re-
nal clearance rapidly inactivate and remove GLP-1 
from plasma circulation [90, 91], resulting in a half-
life of 1-2 minutes [92].  GLP-1 has two biologically 
active forms, GLP-1 (7-37) and GLP-1 (7-36) amide, 
the latter being the major circulating form in humans 
[93].  GLP-1 exerts its effect at the GLP-1R to stimu-
late adenylyl cyclase activity and cAMP production 
[94].  GLP-1R expression is widely distributed par-
ticularly in the brain, GI tract and pancreas [94, 95].  
Circulating GLP-1 levels rise after a meal and fall in 
the fasted state.  Recent evidence also suggests that 
levels rise in anticipation of a meal [96].  GLP-1 re-
duces food intake, suppresses glucagon secretion and 
delays gastric emptying [97].  Intravenous infusion of 
GLP-1 results in a dose-dependent reduction in food 
intake in both normal weight and obese subjects [98] 
although obese subjects have a blunted postprandial 
GLP-1 response compared to lean subjects [94]. 

Exendin-4, a naturally occurring peptide from the 
saliva of the Gila monster lizard, is a DPPIV-resistant 
GLP-1R agonist [99].  It has been licenced for the 
treatment of type 2 diabetes and has been shown to re-
duce food intake and body weight, and improve gly-
caemic control [100].  A once daily subcutaneous 
GLP-1 preparation, liraglutide, has been developed 
and demonstrates greater improvements in glycaemic 
control than exenatide given twice a day [101]. 

Glucagon-like peptide-2
Like GLP-1, GLP-2 is released from enteroendo-

crine cells in a nutrient-dependent manner.  GLP-2 has 
been shown to have no effect on food intake in acute 
or chronic studies in both rodents and humans [102, 
103].  However, GLP-2 has an intestinal trophic effect 
[104, 105] and chronic subcutaneous administration 
of GLP-2 stimulates crypt cell proliferation.  As such, 
GLP-2 analogues have been developed for use in pa-
tients with inflammatory bowel disease [106].  In ad-
dition, some studies have demonstrated a reduction in 
gastric emptying in humans by GLP-2, although the 
effect is not as potent as GLP-1 [107].  

Oxyntomodulin
OXM is another product of the proglucagon gene 

and is released from L-cells of the intestine in re-
sponse to ingested food and in proportion to caloric 
intake [108].  Administration of OXM reduces food 
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regulation of energy balance.  Insulin is synthesized 
in the β cells of the pancreas and secreted rapidly af-
ter a meal [142].  Circulating insulin crosses the BBB 
in a dose-dependent manner by a saturable receptor-
mediated mechanism [143] and acts at the ARC where 
insulin receptors are highly expressed [144].  ICV 
administration of insulin results in a dose depend-
ent suppression of food intake and body weight gain 
in baboons and rodents [145, 146].  Administration 
of antisense oligodeoxynucleotides targeting the in-
sulin receptor precursor protein in the ARC results 
in hyperphagia and increased fat mass in rats [147].  
Furthermore, central administration of insulin sup-
presses the fasting-induced increase in NPY mRNA 
levels [148] and increases POMC mRNA expression 
[149].  

Leptin
The obese gene coding for leptin was isolated in 

1994 [150].  Leptin is secreted by adipocytes with cir-
culating levels proportional to fat mass [151].  Leptin 
is secreted in a diurnal and pulsatile pattern, with a 
peak at night [152].  Shifting meal time by 6.5 hours 
results in a 5-7 hour shift in leptin rhythm, indicat-
ing that the pattern of leptin secretion is dependent on 
daytime feeding rather than the endogenous circadian 
clock [153].  However, circulating leptin levels do not 
seem to change acutely following food intake [154].  

Leptin is transported across the BBB by a satura-
ble system [155] and exerts its anorectic effect via 
the ARC.  In the ARC, both NPY/AgRP and POMC/
CART neurons express leptin receptors [156].  Leptin 
inhibits NPY/AgRP neurons and activates POMC/
CART neurons [22, 157] resulting in reduced food 
intake [22] and increased energy expenditure [158].  
Among the three types of leptin receptors, the Ob-Rb 
receptor, which is highly expressed in the hypothala-
mus [159], is thought to be the main receptor involved 
in appetite regulation.  db/db mice, caused by a muta-
tion in the Ob-Rb receptor, have an obese phenotype 
[160, 161].  In addition, leptin-deficient ob/ob mice 
exhibit hyperphagia and obesity and this can be re-
versed by leptin treatment [162].  In obese children 
with congenital leptin deficiency, subcutaneous admin-
istration of recombinant leptin reduces fat mass, hy-
perinsulinaemia and hyperlipidaemia [163].  However, 
obesity in humans is often associated with high leptin 
levels and failure to respond to exogenous leptin.  This 
leptin resistance may be attributable to reduced leptin 

particularly in the NTS and AP [129].  The GHS-R is 
expressed in the vagus nerve and blockade of gastric 
afferent vagal nerve in rats abolishes ghrelin-induced 
feeding and prevents the ghrelin-induced rise in c-fos 
expression in the ARC [47], suggesting a role for this 
pathway in mediating some of the orexigenic actions 
of ghrelin. 

Cholecystokinin
CCK was the first gut hormone shown to modu-

late food intake [130].  CCK is secreted postprandial-
ly from the I cell of the small intestine into the circu-
lation with a plasma half-life of a few minutes [131].  
CCK levels rise rapidly reaching a peak within 15 min-
utes after a meal [131].  It is also reported to reduce 
food intake in humans and rodents [131, 132].  There 
are two CCK receptor subtypes: CCK1 and CCK2, 
both receptors being widely distributed in the brain in-
cluding the brainstem and hypothalamus [133].  The 
anorectic action appears to be mostly mediated through 
CCK1R on vagal afferents [134, 135].  Although inter-
mittent CCK infusion to rats at the onset of each meal 
reduces meal size, it is compensated for by an increase 
in meal frequency [136].  Furthermore, continuous 
intraperitoneal infusion of CCK using osmotic min-
ipumps failed to suppress food intake at any time point 
over a two week period [137].   

 
Amylin

Amylin is stored and released together with insulin 
in response to food intake.  Circulating levels of amy-
lin are higher in obese than lean subjects [138, 139].  
Administration of amylin reduces food intake and 
body weight [140] and has been shown to improve 
glycaemic control and cause weight loss in patients 
with type 2 diabetes [141].  The anorectic action of 
amylin seems to be associated with the serotonin-, his-
tamine- and dopaminergic system in the brain as well 
as inhibition of NPY release [138].  

Peripheral adiposity signals

Adiposity signals are involved in the long-term reg-
ulation of energy balance, while gut peptides modulate 
food intake on a meal-by-meal basis.  

Insulin
Circulating levels of insulin and leptin are propor-

tional to adipose tissue and involved in the long-term 
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or through vagal afferents to the brainstem.  To tack-
le and solve the current obesity pandemic, develop-
ment of effective pharmacological treatment is urgent-
ly needed.  Further understanding of the pathogenesis 
of obesity and the role of these gut hormones in appe-
tite regulation is essential.  Elucidating the mechanism 
by which gut hormones contribute to long-term lasting 
weight loss after gastric bypass surgery could provide 
a real opportunity to develop successful treatments for 
obese patients.  

receptor signal transduction [164] or an impaired abil-
ity of the BBB to transport leptin [165]. 

Conclusion

Obesity is the result of an imbalance between ener-
gy intake and expenditure.  Control of food intake and 
metabolism is maintained by complex pathways and 
neuronal circuits which themselves receive peripheral 
signals such as gut hormones.  These can act directly 
at the hypothalamus or brainstem via the circulation 
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