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Species-Difference of Cyclooxygenase-2 in the Hippocampus of Rodents
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ABSTRACT. Cyclooxygenase (COX) generates free radicals and it is important in inflammatory response. In this study, we observed the
immunoreactivity in mice (ICR and C57BL/6 strain), rats and gerbils. In these animals, COX-2 immunoreactivity was mainly detected
in pyramidal cells of the hippocampal CA2/3 region and in granule cells of the dentate gyrus. COX-2 immunoreactivity in the CA2/3
region was the highest in ICR mice, while in gerbils COX-2 immunoreactivity was the lowest; COX-2 immunoreactivity in the dentate
gyrus was the highest in rats and the lowest in gerbils. The protein levels of COX-2 were similar to the immunohistochemical data.
COX-2 mRNA transcript was the highest in the gerbil and the lowest in the rat. In brief, COX-2 protein, not mRNA, in the hippocampus

is generally higher in mice (ICR and C57BL/6 strain) than rats and gerbils.
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Cyclooxygenase (COX) converts membrane-derived
arachidonic acid to prostaglandins and generates free radi-
cals [16]. Two distinct isoforms of COX have been charac-
terized, a constitute form, COX-1 and a mitogen-inducible
form, COX-2 [21]. It is now believed that COX-2 is of pri-
mary importance in inflammatory response [2, 20].

It has been reported that basal levels of COX-2 expres-
sion are observed in neurons in the hippocampus as well as
in the neocortex [6, 19], although its function has not been
reported. In physiological conditions, N-methyl-D-aspar-
tate synaptic activity rapidly induces COX-2 expression [1,
4, 5]. There are many reports that the expression of COX-2
is increased by traumatic brain injury, ischemia or kainate-
induced neuronal damage [9, 13, 15]. The COX-2 overex-
pression potentiates excitotoxicity [7, 14]. In addition, these
increases of neuronal injury by COX-2 overexpresssion are
reversed by selective COX-2 antagonist [22].

Although a number of reports have focused on COX-2-
immunoreactive neurons in the hippocampus in various
brain injuries, comparative studies on COX-2 immunoreac-
tivity in physiologically normal conditions have not been
conducted in the hippocampus of rodents. Therefore, in the
present study, the authors investigated the differences of
COX-2 immunoreactivity, its protein and mRNA levels in
the hippocampus of the mouse, rat and gerbil to show the
differences of COX-2 among these rodents.
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MATERIALS AND METHODS

Experimental animals: Male ICR, C57BL/6 mice, Spra-
gue-Dawley (SD) rats and Mongolian gerbils (Meriones
unguiculatus) were obtained from the Experimental Animal
Center, Hallym University, Chuncheon, South Korea. All
animals were used at 3 months of age and were housed in a
conventional state under adequate temperature (23°C) and
humidity (60%) control with a 12-hr light/12-hr dark cycle,
and free access to food and water. The procedures for han-
dling and caring for the animals adhered to the guidelines
that are in compliance with the current international laws
and policies (NIH Guide for the Care and Use of Laboratory
Animals, NIH Publication No. 85-23, 1985, revised 1996),
and they were approved by the Institutional Animal Care
and Use Committee (IACUC) at Hallym’s Medical Center.
All of the experiments were conducted to minimize the
number of the animals used and the suffering caused by the
procedures used in the present study.

Immunohistochemistry for COX-2: For COX-2 immuno-
histochemistry, seven animals in each group were anesthe-
tized with intraperitoneal injection of chloral hydrate (50
mg/kg) and perfused transcardially with 0.1 M phosphate-
buffered saline (PBS, pH 7.4) followed by 4% paraformal-
dehyde in 0.1 M phosphate-buffer (PB, pH 7.4). The brains
were removed and postfixed in the same fixative for 6 hr.
The brain tissues were cryoprotected by infiltration with
30% sucrose overnight. Thereafter frozen tissues were seri-
ally sectioned on a cryostat (Leica, Wetzlar, Germany) into
30-um coronal sections, and they were then collected into
six-well plates containing PBS.

Immunohistochemistry was performed under the same
conditions in mice, rats and gerbils in order to examine
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whether the degree of immunohistochemical staining was
accurate. The sections were sequentially treated with 0.3%
hydrogen peroxide (H,O,) in PBS for 30 min and 10% nor-
mal goat serum in 0.05 M PBS for 30 min. They were then
incubated with diluted rabbit anti-COX-2 antibody (1:200,
Cat.# 160106 and 160126, Cayman, Ann Arbor, MI,
U.S.A.) overnight at room temperature and subsequently
exposed to biotinylated goat anti-rabbit IgG and streptavidin
peroxidase complex (diluted 1:200, Vector, Burlingame,
CA, U.S.A.). They were then visualized with reaction to
3,3’-diaminobenzidine tetrachloride (Sigma, St. Louis, MO,
U.S.A)) in 0.1 M Tris-HCI buffer (pH 7.2) and mounted on
gelatin-coated slides. The sections were mounted in Canada
Balsam (Kanto, Tokyo, Japan) following dehydration.

A negative control test was carried out using pre-immune
serum instead of primary antibody in order to establish the
specificity of the immunostaining. The negative control
resulted in the absence of immunoreactivity in all structures.

Western blot analysis for COX-2: To confirm differences
in COX-2 levels in the hippocampus of mice, rats and ger-
bils, five animals in each group were sacrificed and used for
western blot analysis. After sacrificing them and removing
the brain, the hippocampus was then dissected with a surgi-
cal blade. The tissues were homogenized in 50 mM PBS
(pH 7.4) containing ethylene glycol bis (2-aminoethyl
Ether)-N,N,N,,N, tetraacetic acid (EGTA, pH 8.0), 0.2%
nonidet P-40, 10 mM ethylendiamine tetraacetic acid
(EDTA, pH 8.0), 15 mM sodium pyrophosphate, 100 mM
[-glycerophosphate, 50 mM NaF, 150 mM NaCl, 2 mM
sodium orthovanadate, 1 mM phenylmethylsulfonyl fluo-
ride (PMSF) and 1 mM dithiothreitol (DTT). After centrif-
ugation, the protein level was determined in the
supernatants using a Micro BCA protein assay kit with
bovine serum albumin as the standard (Pierce Chemical,
Rockford, IL, U.S.A.). Aliquots containing 50 ug of total
protein were boiled in loading buffer containing 150 mM
Tris (pH 6.8), 3 mM DTT, 6% SDS, 0.3% bromophenol
blue and 30% glycerol. The aliquots were then loaded onto
a 5% polyacrylamide gel. After electrophoresis, the gels
were transferred to nitrocellulose transfer membranes (Pall
Crop, East Hills, NY, U.S.A.). To reduce background stain-
ing, the membranes were incubated with 5% non-fat dry
milk in PBS containing 0.1% Tween 20 for 45 min, fol-
lowed by incubation with rabbit anti-COX-2 antiserum
(1:500), peroxidase-conjugated rabbit anti-goat IgG
(Sigma) and an ECL kit (Pierce Chemical).

RNA analysis for COX-2: To confirm differences in
COX-2 mRNA levels in the hippocampus of mice, rats and
gerbils, five animals in each group were sacrificed and used
for quantitative real-time polymerase chain reaction (QRT-
PCR) analysis. Total RNA was extracted from hippocam-
pus by using Pure Link™ RNA mini kit (Invitrogen Co.,
CA, U.S.A)) according to the manufacturer’s instruction.
RNA was quantified using NanoVue spectrophotometer
(GE healthcare Co., NJ, U.S.A.). First-strand cDNA was
synthesized using the AccuPower RT Premix (Bioneer Co.,
Daejeon, Korea) according to the manufacturer’s instruc-

tions. This was designed to convert 1 ug of total RNA into
20 g of first strand cDNA using oligo dT20 primer. Quan-
titative real time PCR reactions were performed using
SYBR Green dye for COX-2 in ABI StepOne Real Time
PCR instrument (Applied Biosystems Co., Cheshire, U.K.).
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was
used as the endogenous reference control for all transcripts.
The sequences of probes, forward and reverse primers
(Bioneer Co.) were as follows.

COX-2 mice

Forward: 5°-AGA AGG AAA TGG CTG CAG AA-3’

Reverse: 5’-GCT CGG CTT CCA GTA TTG AG-3’

COX-2 rat

Forward: 5°-GCA CAAATATGATGT TCG CATTC-3’

Reverse: 5°-CAG GTC CTC GCT TCT GAT CTG-3’

COX-2 gerbil

Forward: 5’-GCC GTC GAG TTG AAA GCC CTC TAC

A-3’

Reverse: 5’-CCC CGA AGA TGG CGT CTG GAC-3’

GAPDH mouse

Forward: 5°’-GAC GGC CGC ATC TTC TTG T-3’

Reverse: 5’-CAC ACC GAC CTT CAC CAT TTT-3’

GAPDH rat

Forward: 5°’-GCA AGA GAG AGG CCC TCA G-3°

Reverse: 5°-TGT GAG GGA GAT GCT CAG TG-3’

GAPDH gerbil

Forward: 5°-AAC GGC ACA GTC AAG GCT GAG

AAC G-3°

Reverse: 5’-CAA CAT ACT CGG CACCGG CAT CG-3°

Data analysis: All measurements were performed in
order to ensure objectivity in blind conditions, by 2 observ-
ers for each experiment, carrying out the measures of exper-
imental samples under the same conditions.

In order to quantitatively analyze COX-2 immunoreactiv-
ity, the corresponding areas of the hippocampus were mea-
sured from 25 sections per animal. Images of all COX-2-
immunoreactive structures were taken from 3 layers (strata
oriens, pyramidale and radiatum in the hippocampus proper;
molecular, granule cell and polymorphic layers in the den-
tate gyrus) through an AxioM1 light microscope (Carl
Zeiss, Gottingen, Germany) equipped with a digital camera
(Axiocam, Carl Zeiss) connected to a PC monitor. Video
images were digitized into an array of 512 x 512 pixels cor-
responding to a tissue area of 140 x 140 gm (40 x primary
magnification). Each pixel resolution was 256 gray levels.
The density of all COX-2-immunoreactive structures was
evaluated on the basis of a optical density (OD), which was
obtained after the transformation of the mean gray level
using the formula: OD = log (256/mean gray level). The
OD of background was taken from areas adjacent to the
measured area. After the background density was sub-
tracted, a ratio of the optical density of image file was cali-
brated as % (relative optical density) using Adobe
Photoshop version 8.0 and then analyzed using NIH Image
1.59 software.

Statistical analysis: The data were elevated by a one-way
ANOVA SPSS program and comparisons among groups
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were made Duncan’s multiple-range test. Statistical signif-
icance was considered at P<0.05.

RESULTS

COX-2 immunoreactivity: In all the species, COX-2
immunoreactivity was mainly detected in the hippocampal
CAZ2/3 region and dentate gyrus (Fig. 1). In addition, there
were no significant differences between two antibodies used
in this study (data not shown). Generally, COX-2 immu-
noreactivity was high in the CA2/3 region, and intermediate
in the dentate gyrus, and low in the CA1 region (Figs. 1, 2
and 3). COX-2 immunoreactivity in all subregions was sim-
ilar between ICR and C57BL/6 mice, but COX-2 immu-
noreactivity was low in C57BL/6 mice compared to that in
the ICR mice (Figs. 1, 2 and 3).

In the CA1 region, COX-2 immunoreactivity was mainly
detected in pyramidal cells of the stratum pyramidale: The
COX-2 immunoreactivity was the highest in the mouse and
the lowest in the gerbil (Figs. 2A-2D and 3).

COX-2 immunoreactivity in the CA2/3 region was also
detected in pyramidal cells of the stratum pyramidale (Fig.
2E-2H). Strong COX-2 immunoreactivity was detected in
many pyramidal cells in the ICR and C57BL/6 mice, show-
ing that the immunoreactivity in the CA2/3 region was the
highest among all the species; COX-2 immunoreactivity in
the rat and gerbil was lower than that in the mice, showing

ICR mouse

Fig. 1.
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that the immunoreactivity in the rat was slightly higher than
that in the gerbil (Fig. 3).

In the dentate gyrus, many cells in the granule cell layer
and some cells in the polymorphic layer showed COX-2
immunoreactivity (Fig. 2I-2L). The COX-2 immunoreac-
tivity was the highest in the rat and the lowest in the gerbil
(Fig. 3). In the rat, COX-2-immunoreactive processes are
found in the molecular layer (Fig. 2K).

COX-2 protein levels: Western blot findings in the hip-
pocampus of mice, rats and gerbils coincided with immuno-
histochemical changes (Fig. 4). COX-2 protein level in the
hippocampal homogenates was the highest in the mice and
lowest in the gerbil.

COX-2 mRNA levels: qRT-PCR in the hippocampus of
mice, rats and gerbils was contradictory to immunohis-
tochemical changes (Fig. 5). COX-2 mRNA level in the
hippocampal homogenates was the highest in the gerbil and
the lowest in the rat.

DISCUSSION

In this study, we observed the COX-2 immunoreactivity
and protein levels in the hippocampus in mice, rats and ger-
bils. COX-2 immunoreactivity was mainly detected in
pyramidal cells of the CA2/3 region and in granule cell of
the dentate gyrus in all the animals. This result is supported
by previous studies that endogenous COX-2 expression is

CS57BIL/6: mouse

-

Immunohistochemistry for COX-2 in the hippocampus of ICR (A), C57BL/6 mice (B), rats (C) and gerbils

(D). COX-2 immunoreactivity is mainly detected in the hippocampal CA3 region of all species. However, the COX-2
immunoreactivity is significantly difference among the species. Bar=800 um.
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Fig. 2.

Immunohistochemistry for COX-2 in the CA1 region (A-D), CA2/3 region (E-H) and dentate gyrus (I-L) in ICR (A, E and I),
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C57BL/6 (B, F and J) mice, rats (C, G and K) and gerbils (D, H and L). Weak COX-2 immunoreactivity is detected in the stratum pyra-
midale of the CA1 region in ICR (A) and C57BL/6 (B) mice. In the CA2/3 region, COX-2 immunoreactivity is found in the stratum
pyramidale (SP) in all the species, showing the highest immunoreactivity in ICR (E) and C57BL/6 (F) mice. In the dentate gyrus, COX-
2 immunoreactivity is mainly detected in the granule cell layer (GCL), showing the highest immunoreactivity in rats (K). ML, molecu-
lar layer; PL, polymorphic layer; SO, stratum oriens; SR, stratum radiatm. Bar=100 zm.

mainly detected in the hippocampal CA3 region of the rat
[8, 11, 18]. However, Lee et al. did not detect COX-2
immunoreactive neurons in the hippocampal CA3 region of
normal C57BL/6 mice [10]. However, Ristori et al. showed
that COX-2 immunoreactivity was observed in all pyrami-
dal cells including the CA3 region [17]. This discrepancy
may be associated with the antibody they used.

In this study, we observed that the COX-2 immunoreac-
tivity and protein levels were the highest in the mouse hip-
pocampus and the lowest in the gerbil hippocampus. The
differences of COX-2 basal levels in the CA3 region may be
associated with the vulnerability of hippocampal CA3 neu-
rons. It has been reported that neuronal COX-2 transgenic
mice are more susceptible to kainic acid excitotoxicity [7].
This result is supported by previous studies that the extent of
neuronal damage in gerbils induced by kainic acid was
minor when compared with that of the rat [3, 12]. In addi-

tion, differential expression patterns for caspases and tran-
scription factor c-fos were recently described in the rat and
gerbil, following systemic administration of kainic acid [3]:
similar distribution pattern of caspase and c-fos was
observed in kainic acid treated gerbils and rats although
minimized in gerbils.

Unlike immunohistochemistry and western blot study,
COX-2 mRNA in the hippocampal homogenates was the
highest in the gerbil, but the owest in the rat. Discrepancies
between the mRNA and protein expression for COX-2 sug-
gest broad alterations of post-transcriptional processes
among these rodents.

In conclusion, COX-2 was differentially expressed in the
hippocampal CA3 region and dentate gyrus in mice, rats and
gerbils. These differences among the species may be asso-
ciated with degree of vulnerability of hippocampal neurons,
especially, CA3 pyramidal neurons.
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Fig. 3. Relative optical density as % of COX-2 immunoreactivity
in the hippocampus in mice (ICR and C57BL/6 strain), rats and
gerbils (n=7 per group; * P<0.05, significantly different from the
ICR mouse, ® P<0.05, significantly different from the C57BL/6
mouse, ¢ P<0.05, significantly different from the rat. The bars
indicate the means = SEM.
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Fig.4. Western blot analysis of COX-2 in the hippocampus
derived from mice (ICR and C57BL/6 strain), rats and gerbils.
The relative optical density as % of immunoblot band is also
represented (n=5 per group; * P<0.05, significantly different
from the ICR mouse, ® P<0.05, significantly different from the
C57BL/6 mouse, ¢ P<0.05, significantly different from the rat).
The bars indicate the means * SE.
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Fig. 5. Quantitative RT-PCR analysis of COX-2 in the hippoc-

ampus derived from mice (ICR and C57BL/6 strain), rats and
gerbils (n=5 per group; * P<0.05, significantly different from
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bil). The bars indicate the means + SE.
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