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INTRODUCTION

Prokaryotes constitute the largest fraction of liv-
ing biomass in marine ecosystems and are the
main force driving biogeochemical cycles (Azam et
al. 1983). In the oceanic water column, the majority
of the pro karyotes are free-living, with commonly
less than 5% of total prokaryotic cells associated
with aggregates (Bell & Albright 1982, Unanue et
al. 1992). However, several studies have reported

bacterial abundances associated with various
microhabitats such as par ticles, aggregates, fecal
pellets, and zooplankton exceeding those of free-
living bacteria (Simon et al. 2002, Tang et al.
2010). Also, attached bacteria commonly exhibit
high growth rates and enzymatic activities (Karner
& Herndl 1992, Grossart et al. 2006). The micro-
habitats of these attached bacteria are frequently
characterized by concentrations of organic matter
and inorganic nutrients that are orders of magni-
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tude higher than in the surrounding water (Bo ch -
dansky & Herndl 1992, Alldredge 2000, Grossart &
Tang 2010, Tang et al. 2010). These distinctly dif-
ferent microhabitats may favor biogeochemical
reactions that otherwise would not occur in the
oceanic water column (Grossart & Tang 2010). The
anoxic and hypoxic conditions found in some
pelagic aggregates, animal guts, and fecal pellets
favor anaerobic reactions not occurring in the sur-
rounding oxygenated water (Alldredge & Cohen
1987, Deangelis & Lee 1994, Grossart & Tang
2010, Tang et al. 2011). Furthermore, several stud-
ies have shown that the interactions between
prokaryotes and predators such as protists and
viruses are substantially different in these micro-
habitats as compared to the ambient  seawater
(Caron 1987, Riemann & Grossart 2008, Grossart &
Tang 2010).

Marine copepods provide a complex microhabitat
in marine ecosystems, with their complex body struc-
ture and extensive surface potentially available for
microbial colonization (Tang et al. 2010). Further-
more, copepods contribute to the microbial food web
through the release of biologically available dis-
solved organic matter and nutrients during the diges-
tive processes (Azam et al. 1983, Møller et al. 2003,
Tang 2005, Møller 2007, Tang et al. 2010). In contrast
to detrital particles, copepods can collect organic
compounds and cells through the ingestion of food,
thereby allowing a continuous production and re -
lease of prokaryotes through their fecal pellets (Tang
2005). Moreover, many zooplankton species perform
vertical migration (Kobari & Ikeda 2001). This migra-
tion in stratified waters favors the dispersal and
acquisition of microbes from different water layers
and allows them to cross physical barriers, such as
pycnoclines (Grossart et al. 2010). Several abundant
open-ocean copepods exhibit diel vertical migration
potentially favoring dispersal of copepod-associated
bacteria over the euphotic to mid-mesopelagic layers
(Steinberg et al. 2000, Grossart et al. 2010, Tang et al.
2010).

The aim of this study was to compare the phyloge-
netic composition of the bacterial community associ-
ated with copepods collected in the North Atlantic
Ocean to that of the ambient water using 454 pyrose-
quencing. Specifically, we hypothesized that a vari-
able transient bacterial community is present in the
copepods in addition to a stable resident community.
The transient community reflects the composition of
the ambient water, while the resident community is
specifically adapted to the microenvironmental con-
ditions in the copepods.

MATERIALS AND METHODS

Sampling of ambient water

Water samples were collected during the MEDEA-
I cruise (October 2011) on board RV ‘Pelagia’ at 4 sta-
tions along a latitudinal transect in the North Atlantic
from 24° 40’ N, 34° 56’ W to 30° 27’ N, 24° 32’ W (See
Fig. S1 in the Supplement at www.int-res.com/
articles/suppl/a072p215_supp.pdf).

Seawater samples were collected with a Seabird
conductivity-temperature-depth (CTD) rosette sam-
pler equipped with 18 Niskin bottles (25 l each). To
determine the bacterial community composition of
the ambient seawater, 10 l of water were sampled
from the lower euphotic zone (about 100 m depth)
and from ~750 m depth.

The seawater was filtered through a 0.2 µm GTTP
membrane filter (Millipore) and subsequently, the fil-
ters were stored at −80°C until further processing in
the laboratory. Although these samples include some
particle-attached bacteria, the free-living community
is dominant (Bochdansky et al. 2010). Thus, we refer
to the ambient seawater bacterial community as the
free-living community.

Sampling of zooplankton

Zooplankton were collected at the same stations as
the ambient water using vertical plankton tows
(200 µm mesh size, hoisted at 30 m min−1) from 750 m
to the surface. Water samples were collected at the 2
depth layers (~100, ~750 m) within which the cope-
pods migrate during the diel cycles (Steinberg et al.
2000, Tang et al. 2010), to compare the composition
of the free-living bacterial community with the zoo-
plankton-associated bacterial community obtained
from the integrated net tows.

The content of the cod end of the plankton net was
transferred into a plankton splitter and then concen-
trated over a 70 µm mesh Nitex screen. The zoo-
plankton samples were then transferred into 2 ml
Eppendorf tubes and stored at −80°C until sorting. In
the laboratory, the zooplankton were thawed to room
temperature, transferred to a Petri dish filled with
0.2 µm filtered seawater for sorting of the dominant
copepod taxa (Calanoida: Centropagidae and Clau-
socalanidae; Cyclopoida: Corycaeidae, Oncaeidae,
and Lubbockiidae). To evaluate the gut-associated
bacteria of different copepods, 10 individuals of each
taxon were collected and washed 3 times with Milli-
Q water to remove bacterial cells associated with the
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external surface of the copepods. Subsequently, the
copepods were transferred into sterile Eppendorf
tubes for nucleic acid extraction.

DNA extraction

The DNA of the ambient-water samples was
extracted using an Ultraclean Soil DNA isolation Kit
(MoBIO Laboratories). The DNA from the copepod
samples was extracted using a phenol-chloroform
extraction protocol (Weinbauer et al. 2002), preceded
by a bead-beating step to facilitate lysis of the cope-
pods. To check the quality of the DNA following
extraction, a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies) was used.

Pyrosequencing of the 16S rDNA
bacterial community

The 16S rRNA genes (16S rDNA) of the zooplankton
and ambient-water samples were PCR amplified with
the bacterial primers 341f (5’-CCT ACG GGA GGC
AGC AG-3’) and 907r (5’-CCG TCA ATT CMT TTG
AGT TT-3’) (Muyzer et al. 1998, Grossart et al. 2009).
The PCR amplification of the 16S rRNA gene of the
samples was carried out in a 50 µl reaction volume us-
ing Fermentas Taq polymerase (Thermo Scientific) in
a Mastercycler (Eppendorf) with the following param-
eters: initial denaturation at 94°C for 3 min, followed
by 30 cycles of denaturation at 94°C for 1 min, an -
nealing at 55°C for 1 min, and extension at 72°C for
1 min, with a final extension at 72°C for 7 min. The
PCR products were additionally purified with a PCR
purification kit (5-Prime). The quality of the PCR
product was checked on 2% agarose gel. The 16S
rDNA amplicons were subsequently se quenced in a
Roche 454 GS Junior next generation sequencing
platform based on the Titanium chemistry by IMGM
Laboratories GmbH (Martinsried, Germany). All sam-
ples were barcoded using multiplex identifiers and
sequenced together in 1 run. The resulting se quences
were divided into 4 groups: 2 orders of copepods
(Calanoida and Cyclopoida) and 2 water layers (Deep,
corresponding to ~750 m; and Surface, corresponding
to 100 m; see Table S1 in the Supplement).

Bioinformatic analysis and phylogenetic classification

The bioinformatic analysis of the 16S rDNA se -
quences largely followed the standard operating pro-

cedure pipeline of Mothur software, version 1.31
(Schloss 2009). The 16S rDNA pyrotags were sorted
according to their respective barcode into the differ-
ent samples. The raw sequence reads were filtered,
trimmed, and quality checked, and sequences
smaller than 200 bp were discarded. Subsequently,
the sequences were aligned with the SILVA data-
base, and the pairwise distance matrix was calcu-
lated. The 16S rDNA sequences with a 97% se -
quence similarity were clustered into operational
taxonomic units (OTUs). Taxonomic assignment was
performed using QIIME (Caporaso et al. 2010), and
all unclassified bacteria at the phylum level were dis-
carded. Additionally, MEGAN (Huson et al. 2007)
was used to build the hierarchical phylogenetic tree
of the bacterial community as an alternative to
QIIME for taxonomic identification. The MEGAN
analysis was based on BLAST results (Altschul et
al. 1997) against SILVA and Greengenes databases
(data not shown) following the NCBI taxonomy (Say-
ers et al. 2012). Rarefaction curves, Chao1, ACE rich-
ness, and the Shannon index of diversity were calcu-
lated with Mothur (Schloss 2009).

Pairwise UniFrac distance and principal coordinate
analysis (PCoA) (Lozupone & Knight 2005) were used
to compare the bacterial community composition in
the different samples (implemented in QIIME). The
established phylogenetic tree was built with Mothur
(Schloss 2009), and the Unifrac distance matrix was
calculated with FastUnifrac (Lozupone & Knight
2005). The Unifrac distance matrix was calculated
unweighted using only presence−absence informa-
tion of bacterial OTUs, or weighted and thus taking
the relative proportion of each bacterial OTU to the
total bacterial community into account. A t-test (im -
plemented in Sigma Plot v.11) was used to test for the
statistical difference between samples.

RESULTS

Analysis of the pyrosequencing library

The 454 pyrosequencing analysis was performed to
investigate the differences between the bacterial
community composition associated with 2 orders of
copepods (Cyclopoida and Calanoida) and the bacte-
rioplankton community collected from the 2 bound-
ary depth layers (~750 and 100 m depths) at the same
location as the copepods were collected. In total, we
obtained 65 855 reads for the entire set of samples
with an average length of 450 bp. The trimming of
low-quality reads resulted in 25 101 sequences with
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an average length of 307 bp used for
further analyses (Table S1 in the Sup-
plement). From the total number of
trimmed sequences, 3970 and 12 978
reads were categorized as unique at
the 97% and 100% similarity level,
respectively.

OTU richness in ambient water 
and copepods

The rarefaction analysis showed
different trends for the 2 sets of sam-
ples (Fig. 1). While the rarefaction
curves for the copepod samples
approached a plateau, the rarefaction
curves of the ambient water samples
did not level off (Fig. 1). Hence, the
sequencing effort was sufficient to
sample most members of the bacterial
community associated with the cope-
pods, while it was not sufficient for
the ambient water samples. More-
over, these results indicate a lower diversity in the
copepod-associated bacterial community as com-
pared to the ambient-water community (Table 1).
The Chao richness index estimated, on average,
231 ± 57 (average ± SD) OTUs (ranging from 120−
306, N = 9) for the copepod-associated bacterial com-
munities and 1870 ± 693 OTUs (ranging from 791−
3026, N = 7) for the ambient water (Table 1). Similar
results were obtained with the ACE richness index
(Table 1). Shannon and Simpson diversity indices

were computed for each sample using the 97% simi-
larity threshold. These indices also indicated a higher
diversity in the bacterial community of the ambient
water as compared to the copepod-associated com-
munity (Table 1). Two of the 3 samples of the Cyclo -
poida-associated bacterial community collected at
Stn 4 exhibited significantly lower (t-test, p < 0.01)
diversity than the other copepod samples. These 2
samples of Cyclopoida had the lowest number of
OTUs (t-test, p < 0.01) and the lowest Shannon (t-test,
p = 0.01) and Simpson indices (t-test, p < 0.01) of the
entire dataset (Table 1).

In the ambient water, the bacterial community at
100 m depth exhibited a lower diversity (t-test, p =
0.02), a lower number of OTUs (t-test, p = 0.02) and
lower Shannon (t-test, p < 0.01) and Chao (t-test, p =
0.03) indices than that of the 750 m layer, although
the ACE index was not significantly different be -
tween these depth layers (t-test, p = 0.86; Table 1).

The most abundant bacterial OTU of the ambient
water contributed on average 25% to the total num-
ber of ambient-water OTUs, while the most abun-
dant copepod-associated bacterial OTU contributed
only 18% to the total copepod-associated bacterial
OTUs (see Fig. S2 in the Supplement). Singletons
(OTUs appearing only once in the entire pyrose-
quencing library) accounted for 27% of the total
number of bacterial OTUs of the ambient water, but
only 8% of the copepod-associated OTUs (Fig. S2).
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Fig. 1. Rarefaction curves obtained for the 16S rDNA se-
quences of calanoid and cyclopoid copepod-associated and
ambient-water bacterial communities. Operational taxo-
nomic units (OTUs) were defined at 97% sequence identity

Sample OTUs Chao Ace Shannon Simpson 
observed (1-D)

Calanoida
St.1 196 258 276 4.18 0.97
St.1 151 231 215 3.88 0.95

Cyclopoida
St.2 162 276 275 4.18 0.97
St.2 153 206 206 4.12 0.97
St.3 132 181 170 4.14 0.97
St.3 189 306 346 4.36 0.97
St.4 193 279 341 4.40 0.98
St.4 65 120 210 3.25 0.91
St.4 116 226 386 3.86 0.95

Water samples
Stn 1_750 m 486 2268 3707 5.33 0.98
Stn 1_100 m 358 1740 3755 4.65 0.96
Stn 2_900 m 470 3026 7600 5.30 0.98
Stn 2_100 m 292 1507 3115 4.30 0.94
Stn 3_100 m 258 791 1303 4.15 0.94
Stn 4_750 m 493 2081 4830 5.28 0.98
Stn 4_100 m 346 1683 2716 4.50 0.95

Table 1. Total number of operational taxonomic units (OTUs; cutoff 97% simi-
larity), Chao and Ace species richness, and Shannon and Simpson diversity
 indices obtained from 16S rDNA sequence libraries from ambient-water and 

copepod-associated bacteria
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The bacterial communities of the ambient water
were dominated by a few very abundant OTUs and a
large number of rare OTUs (Fig. S2). In contrast,
members of the copepod-associated bacterial com-
munity were more evenly distributed than those of
the ambient water with a comparatively low number
of rare OTUs (Fig. S2).

Composition of the bacterial community in the
ambient water and in copepods

The phylogenetic analysis of the 25 101 sequences
performed in QIIME using the Greengenes database
revealed a clear clustering into 4 groups of bacterial
communities (ambient water at 100 m and 750 m and
calanoid and cyclopoid copepods; Table 2). Firmi-
cutes contributed 23% and 27%, Ac tino bacteria 22%
and 19%, and Alpha proteobacteria 20% and 11% to
the Calanoida- and Cyclopoida-associated bacteria,
respectively. Betaproteobacteria contributed 1.5%
and 16% to the Calanoida- and Cyclopoida-associ-
ated bacteria, respectively (Fig. 2a). This relatively
high abundance of the Betaproteobacteria in cyclo -
poid copepods was mainly caused by 2 samples col-
lected at Stn 4 where Betaproteobacteria contributed
53% to Cyclopoida-associated bacteria (Fig. 2a).
Generally, the copepod-associated community was
characterized by a relatively high contribution of
chloroplasts, probably derived from ingested phyto-
plankton (7 ± 8%; Fig. 2a).

Although the composition of the bacterial commu-
nity of the ambient water was rather uniform among
the different stations, as was the composition of
the copepod-associated bacterial community, 2 sam-
ples of Cyclopodia-associated bacterial communities
were strikingly different from all other samples
(Fig. 2a), specifically the bacteria associated with the
families Oncaeidae and Lubbockiidae at Stn 4,
although members of the Oncaeidae were also
 collected at other stations. These 2 samples were
composed mainly of Betaproteobacteria (genus Burk-
holderiales, 51%) and Flavobacteria (genus Flavo -
bacteriales, 16%; Fig. 2a,b).

The bacterioplankton community of the 100 m
depth layer mainly consisted of Alphaproteobacteria
(30%), Cyanobacteria (32%; mainly composed of
Syne chococcales, 31%), and Actinobacteria (17%).
The bacterial community of the 750 m layer was
mainly composed of members of Deltaproteobac -
teria (29%), Alphaproteobacteria (20%), Chloroflexi
(10%), SAR406 (10%), and Gammaproteobacteria
(6%; Fig. 2a, Table 2).
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Fig. 2. Relative contribution of the more abundant phylogenetic (a) classes and (b) orders to the total number of 16S rDNA 
sequences obtained from copepod-associated and ambient-water bacterial communities
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To investigate an alternative to the QIIME classifier
and to directly visualize the distribution of individual
bacterial taxa among the 2 copepod orders and the 2
depth layers, the samples were blasted against the
SILVA and Greengenes database (data not shown).
These results were visualized by MEGAN (Huson at
al. 2007) using the BLAST hit-score to assign the tax-
onomy. As indicated in Fig. 3, some bacterial taxa
associated with the 2 copepod orders were not pres-
ent in the water column, including members of Firmi-
cutes, Fusobacteriales, and most of the Betaproteo -
bacteria. At the genus level, bacteria associated with
copepods but absent in the ambient water belonged
to the Actinomycetales, Bifidobacteriales, Bacte roi -
dales, Deinicoccus, Bacillales, Lactobacillales, Clos -
tridiales, Fusobacterium, Leptotrichia, Caulobacter-
aceae, Neisseriaceae, and Pseudomonadales (Fig. 3).

Conversely, a few taxa of the bacteria were specific
to the ambient water. Ambient water-specific bacte-
ria at the genus level belonged to the Acidimicro-
biales, Flammeovirgaceae, Cryomorphaceae, Cysto-
bacterineae, Alteromonas, Coxiella, Pseudospirillum,
Thiothrix, and Mariprofundus (Fig. 3).

Most of the bacterial taxa were present in both the
ambient water and associated with copepods; how-
ever, their contribution to the respective bacterial
community differed among the 2 contrasting environ-
ments (Fig. 3). Although our data were analyzed with
2 different databases (SILVA and Greengenes), the
phylogenetic affiliation of the bacterial 16S rRNA
gene obtained with both databases was comparable.
The results from the BLAST hit-score using the NCBI
taxonomy of the 2 different databases (see Fig. S3 in
the Supplement) were significantly correlated (p <
0.01, r2 = 0.94) with a slope close to unity. The only re-
markable discrepancies between the 2 databases
were detected for Actinomycetales and Rickettsiales,
probably due to the lower number of sequences from
these groups available in the SILVA database as com-
pared to the Greengenes database (Fig. S3). The bac-
terial community composition of the ambient water
and that associated with copepods were significantly
different (Unifrac significance test, p < 0.001, Bonfer-
roni corrected). The PCoA clearly separated ambient-
water and copepod-associated bacterial communities
(Fig. 4), with the first coordinate accounting for 42.6%
and the second for 25.5% of the samples’ variance.
Furthermore, the bacterial communities of the ambient
water clustered according to depth, and the copepod-
associated bacteria according to the copepod order,
but with a higher variability than the ambient-water
bacterial communities (Fig. 4). In particular, the bac-
terial communities of 2 Cyclopoida samples were well

separated from the rest of the communities (Fig. 4)
and had a lower bacterial diversity as compared to
the other Cyclopoida samples (Table 1). These 2
 Cyclopoida-associated bacterial communities were
significantly different from the other Cyclopoida- and
Calanoida-associated communities (p < 0.001 Bonfer-
roni corrected), and correspond to the communities
associated with Oncaeidae and Lubbockiidae col-
lected at Stn 4 as shown in Fig. 2.

The number of OTUs shared between the bacterial
communities of the 2 depth layers and the copepod
 orders is indicated in Fig. 5. The 2 different copepod
orders shared 191 (8.3%) OTUs while the 2 depth lay-
ers (100 m and 750 m) shared only 84 (3.7%) OTUs.
Therefore, the number of shared OTUs was higher
within the copepod-associated than within am bient-
water bacterial communities. Only 33 (1.5%) OTUs
were ubiquitously present, i.e. in all 4 sample cate-
gories. These ubiquitously present OTUs consisted of
the most abundant ambient-water OTUs such as
SAR11, SAR324, Chloroflexi, Desulfo bacterales, Rho -
dobacteraceae, and Synechococcophycideae. Fur-
thermore, the bacterial communities from the ambient
water and Cyclopoida-associated samples harbored a
larger number of unique OTUs (510 [22.5%] OTUs at
100 m depth, 540 [23.9%] OTUs at 750 m depth, 676
[29.9%] OTUs in Cyclopoida) than the community
 associated with Calanoida (241 OTUs, 10.6%).
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DISCUSSION

In this study, we used a 454 high-throughput se -
quencing approach to characterize the bacterial com-
munity associated with 2 orders of copepods and to
compare them to the bacterioplankton community of
the ambient water collected at the same location.
Generally, the bacterial community composition ob -
tained in this study with 454 pyrosequencing differed
from those reported in other marine and freshwater
zooplankton studies using different techniques such
as cloning and sequencing, agar plating, and CARD-
FISH (Sochard et al. 1979, Hansen & Bech 1996, Peter
& Sommaruga 2008, Grossart et al. 2009, Tang et al.
2010, Freese & Schink 2011). These differences are
likely attributable to the different approaches used
to investigate the bacterial community associated
with the zooplankton. Early studies on zooplankton-
 associated bacteria used agar-plating approaches
and consequently underestimated bacterial diversity
(Sochard et al. 1979, Hansen & Bech 1996). However,
the bacterial community associated with copepods
obtained with the pyrosequencing technique was
comparable to a study conducted on freshwater zoo-
plankton-associated bacterial communities using
denaturing gradient gel electrophoresis (DGGE)
combined with sequencing (Grossart et al. 2009,
Tang et al. 2010). In the latter study, the bacterial
community associated with Thermocyclops oitho -
noides (a marine and brackish cyclopoid copepod)
was dominated by Betaproteobacteria, Bacteroi -
detes, and Actinobacteria, followed by Alpha-, and

Gammaproteobacteria and Firmicutes (genus Bacil-
lus) in partial agreement with our finding, consider-
ing the limited resolution of fingerprinting tech-
niques such as DGGE.

The limited amount of data available and the dif -
ferent methods used to determine the zooplankton-
 associated bacterial community composition preclude
a thorough assessment of compositional dif ferences in
bacterial communities between zooplankton species
or different oceanic provinces. However, the available
data indicate considerable interspecific variability in
the composition of the zooplankton-associated bacter-
ial community (Tang et al. 2010). This microbial com-
munity is mainly associated with the exoskeleton and
gut, which provide a favorable environment for bacte-
rial attachment and growth (Nagasawa & Nemoto
1988, Pruzzo et al. 1996, Carman & Dobbs 1997).

Diversity and taxonomic composition of 
copepod-associated bacteria

Previous studies indicated that the bacterial com-
munity associated with the gut of crustacean zoo-
plankton consists of 2 different bacterial communi-
ties: the resident bacteria persistently living in the
gut and hence representing the stable component of
the gut community, and the transient bacteria repre-
senting the variable gut community just passing
through the digestive system of the host (Harris 1993,
Tang et al. 2010). In our study, some bacterial phylo-
types were consistently and abundantly found asso-
ciated with the copepods and absent or only present
in low abundances in the surrounding water (Fig. 3).
However, some taxa of the copepod-associated bac-
teria varied considerably in abundance between the
individual copepod samples, particularly in 2 out of
the 9 copepod samples (Fig. 2, Table 2). These 2
Cyclopoida-associated bacterial communities devi-
ated substantially from the community composition
of the other 7 samples of copepod-associated bacteria
and were characterized by a very low abundance of
chloroplasts (0.5% of total sequences; Fig. 2a). This
may suggest that the gut was empty at the moment
of the extraction of the sample. These pronounced
differences between the rather similar bacterial
 community composition of the 2 Calanoida and 5
Cyclopoida samples, on the one hand, and the 2
Betaproteobacteria-dominated communities in the
other 2 Cyclopoida samples, on the other hand, might
reflect differences between the bacterial community
composition with a filled gut (resident plus transient
bacterial community) and after gut evacuation (resi-
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dent bacteria; Grossart et al. 2009). After gut evacua-
tion, only the resident bacteria adapted to live and
persist in the short gut of the copepods are detectable
(Grossart et al. 2009, Tang et al. 2010). An alternative
explanation for these pronounced differences in the
bacterial community composition between the 2 Cy -
clo poida samples and the other zooplankton samples
might be due to differences in the food sources, phys-
iological state, or environmental conditions to which
the zooplankton were exposed prior to sampling.

Intriguingly, we did not obtain Vibrio spp. se quen -
ces in our copepod samples, in contrast to other stud-
ies that analyzed copepod-associated pathogens in
costal and estuarine environments (Huq et al. 1983,
Heidelberg et al. 2002, Vezzulli et al. 2010). Although
Vibrio spp. play an important role in the mineraliza-
tion of chitin (Huq et al. 1983, Bassler et al. 1991, Hei-
delberg et al. 2002) and account for a significant pro-
portion of the zooplankton-associated microbial
community (Huq et al. 1983, Heidelberg et al. 2002),
their role in the open ocean zooplankton remains
unknown.

Comparison between the copepod-associated and
the ambient-water bacterial communities

Grossart et al. (2009) suggested that the diversity of
bacteria associated with zooplankton is mainly de -
pendent on host−symbiont interactions, food, and the
ambient bacterial community to which the host is
exposed. We compared the copepod-associated bac-
teria to the bacterioplankton to determine the link-
age between the 2 bacterial communities. Despite
the significant differences between the copepod-
associated and the ambient-water bacterial com -
munities (Figs. 2 & 3), the presence of shared OTUs
(Fig. 5) between all the samples (1.5% of the total
OTUs) suggests a limited exchange of bacteria be -
tween the ambient water and the copepods.

The long tail of rare OTUs obtained for the ambient
water in the rank-frequency distribution (Fig. S2)
might provide a seed-bank of OTUs adapted to envi-
ronmental conditions different from those prevailing
in the ambient water (Pedrós-Alió 2006). However,
we were not able to detect OTUs of the resident
copepod-associated bacterial community in the am -
bient water, most likely because of the insufficient
coverage of the ambient-water community (Fig. 1).

Taken together, our findings point toward a dyna -
mic relationship between bacteria, zooplankton, and
the environment where the dispersal of the copepod-
associated transient bacterial community is mainly

related to the ingestion and egestion of the food.
The development of the resident copepod-associated
bac terial community is likely governed by the
 specific microenvironmental conditions in copepods.
The extent to which the transient, and particularly
the resident, copepod-associated bacterial communi-
ties vary in their composition due to the quality of
food sources and periodicity in feeding activity re -
mains to be shown.

CONCLUSION

We found significant differences between bacterial
communities associated with copepods and those of
the ambient water. However, our data suggest a dy-
namic linkage between these 2 communities. This in-
teraction most likely affects the copepod- associated
bacterial activity and diversity. Moreover, the bacterial
diversity associated with zooplankton greatly di-
verged in 2 out of 9 samples, with specific phyloge-
netic groups dominating in these 2 samples, suggest-
ing that the food sources and feeding status of the
zooplankton might influence the bacterial community
composition associated with the guts of copepods.
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