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ABSTRACT: Vaccination is a widely accepted and effective method to prevent most pathogenic
diseases in aquaculture. Various species of tilapia, especially Nile tilapia Oreochromis niloticus,
are farmed worldwide because of their high consumer demand. Recently, the tilapia-breeding
industry has been hampered by outbreaks of Streptococcus agalactiae infection, which cause high
mortality and huge economic losses. Many researchers have attempted to develop effective S.
agalactiae vaccines for tilapia. This review provides a summary of the different kinds of S. agalac-
tiae vaccines for tilapia that have been developed recently. Among the various vaccine types,
inactivated S. agalactiae vaccines showed superior protection efficiency when compared with live
attenuated, recombinant and DNA vaccines. With respect to vaccination method, injecting the
vaccine into tilapia provided the most effective immunoprotection. Freund's incomplete adjuvant
appeared to be suitable for tilapia vaccines. Other factors, such as immunization duration and
number, fish size and challenge dose, also influenced the vaccine efficacy.
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INTRODUCTION

Tilapia ranks as the second most cultivated fish in
the world, after carp (Khan 2014). It is distributed in
more than 135 countries worldwide, and is subject to
high demand in the consumer market. Based on a
survey by the Food and Agriculture Organization
(FAO 2012), 72% of global tilapia production oc-
curred in Asia (particularly in China and Southeast
Asia), 19% in Africa, and 9 % across North and South
America. The most economically important species
for tilapia aquaculture is the Nile tilapia Oreochromis
niloticus, an Egyptian native fish (Mjoun et al. 2010).
Although tilapia aquaculture has developed rapidly,
it also faces great challenges from bacterial diseases
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caused by Streptococcus spp., Vibrio spp. (Shoe-
maker et al. 2011), Aeromonas hydrophila (Ibrahem
et al. 2008), Flavobacterium spp. (Shoemaker &
LaFrentz 2015), Lactococcus garvieae (Anshary et al.
2014), Francisella asiatica (Hsieh et al. 2006), and
Edwardsiella tarda (Thune et al. 1993). Currently,
infections caused by Streptococcus spp., especially S.
agalactiae and S. iniae, are the most common and
cause huge economic losses to the tilapia industry.
Their prevalence and severity depend on multiple
environmental factors, including warm water tem-
peratures (in the summer), increased ammonia lev-
els, and low dissolved oxygen levels (caused by poor
husbandry and high stocking density) (Bromage &
Owens 2002).
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S. iniae is not only a major pathogen in fish (Agnew
& Barnes 2007), but it is also an emerging human pa-
thogen that can cause fulminant soft tissue infection
resulting from the handling of diseased fish (Weinstein
et al. 1997, Fuller et al. 2001). S. agalactiae is more
commonly associated with diseases in human and
bovine hosts. However, fish-pathogenic S. agalactiae
were documented as early as 1966, when a non-
hemolytic Group B Streptococcus was identified as the
cause of 2 epizootics in golden shiners Notemigonus
crysoleucas (Robinson & Meyer 1966). Today, S. aga-
lactiae is more prevalent than S. iniae in tilapia. Epi-
demiological studies in the major tilapia-producing
regions of Asia and Latin America from 2001 to 2009
showed that of the nearly 500 streptococcal isolates
recovered from tilapia, 82% were identified as S.
agalactiae and 18 % were identified as S. iniae (www.
thefishsite.com/articles/812/streptococcosis-in-tilapia-
a-more-complex-problem/). In China, more than 90 %
of the clinical bacterial isolates from infected tilapia
since 2009 have been S. agalactiae (Chen et al.
2012a). To date, S. agalactiae infection in tilapia out-
breaks have been reported in several countries, in-
cluding the USA (Evans et al. 2006), China (Liu et al.
2012), Kuwait (Evans et al. 2002), Israel (Eldar et al.
1994), Thailand (Suanyuk et al. 2008), Honduras (De-
lannoy et al. 2012), and Brazil (Mian et al. 2009), re-
sulting in serious annual economic losses.

Vaccination is a widely accepted and effective
method to control S. agalactiae infection and prevent
mass tilapia mortalities. Here, we summarize the re-
cent developments in S. agalactiae vaccines for
tilapia and discuss how the vaccination methods, ad-
juvants, and other factors influence vaccine efficacy.

TYPES OF STREPTOCOCCUS AGALACTIAE
VACCINES FOR TILAPIA

Since the 1930s, when the first vaccine against S.
agalactiae in humans was developed (Lancefield
1938), an increasing number of reports have de-
scribed safer and more effective vaccines against this
pathogen (Baker & Kasper 1976, 1985, Baker et al.
1988, Paoletti et al. 1994, Baker & Edwards 2003).
With the development of the human S. agalactiae
vaccine, studies and use of S. agalactiae vaccines in
reared tilapia have also advanced greatly in the past
2 decades. These vaccines include the production of
inactivated bacterial cells, live attenuated bacteria,
recombinant vaccines, and DNA vaccines. Table 1
shows a summary of the different types of vaccines
against S. agalactiae for tilapia.

Whole-cell inactivated vaccine

As vaccines were developed in other fishes, tradi-
tional inactivated vaccines were used widely to pro-
vide protection for tilapia from S. agalactiae infec-
tion. During the early days of inactivated vaccine
development, most products contained inactivated
bacteria mixed with their extracellular products (El-
dar et al. 1995, Evans et al. 2004, Pasnik et al. 2005),
because several killed vaccines had been shown to
be efficient against piscine bacterial disease caused
by S. iniae (Eldar et al. 1997) and Enterococcus spp.
(Toranzo et al. 1995). A formalin-killed S. agalactiae
vaccine was tested successfully on tilapia for the first
time in 1995 (Eldar et al. 1995). This formalin-killed
Streptococcus difficile strain, now known as non-
hemolytic, serotype Ib S. agalactiae (Vandamme et
al. 1997), was able to protect tilapia against a chal-
lenge of 100x the median lethal dose (LD;;) when
delivered via intraperitoneal (IP) injection. Since
then, several inactivated vaccines have been used to
control S. agalactiae infection in tilapia (Table 1).
Previous studies showed that whole-cell inactivated
S. agalactiae vaccines could provide protection to
tilapia (weight >20 g), with a relative percent survi-
val (RPS) of 46 to 100 %, when challenged with homo-
logous strains after IP immunization (Evans et al.
2004, Pasnik et al. 2005, Pretto-Giordano et al. 2010,
Chen et al. 2012b). Using a whole-cell killed S.
agalactiae, Merck Animal Health developed a com-
mercial vaccine (AQUAVAC® Strep Sa), which has
been available in Brazil, Indonesia, and Vietnam
since 2011. This product is an inactivated oil-adju-
vanted vaccine that protected 85 % of tilapia (weight
>15 g) for over 30 wk in laboratory tests (www.merck-
animal-health.com/news/2015-03-10.aspx). Based on
pulsed-field gel electrophoresis genotypes, Chen et
al. (2012b) screened 85 candidate strains to identify
the predominant epidemic genotype strains, and
found that using a combination of 2 inactivated
strains resulted in a wider protection scope and
higher RPS values (65.52-100%) compared with
either single strain when challenged by non-self
genotype strains. Based on the above data, vaccines
derived from inactivated S. agalactiae were quite
efficient for tilapia (weight >5 @), resulting in signifi-
cant reductions in mortalities when infected with the
homologous virulent strain. For protection against
homologous S. agalactiae infection in tilapia, the tra-
ditional inactivated vaccine is a reasonable and low
cost choice when applied on a commercial scale.
However, researchers should pay close attention to
the serotype changes of the predominant epidemic
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S. agalactiae strains to guarantee vaccine protection
for the tilapia farm.

Live attenuated vaccines

Live attenuated vaccines are developed by weak-
ening an infectious microbe such that it can still
replicate without causing disease in the host. These
vaccines can induce effective immune responses and
often provide lifelong immunity at low doses. Despite
their advantages, live attenuated vaccines are more
difficult to create for bacteria because of their com-
plexity. Only a few attenuated S. agalactiae vaccines
have been developed. In 2013, a mixture of attenu-
ated S. agalactiae strains were generated by select-
ing their resistance to sparfloxacin, a fluoroquinolone
antibiotic (Pridgeon & Klesius 2013). This polyvalent
vaccine provided 100 % protection to both 3-5 g and
15-20 g tilapia via IP injection (Pridgeon & Klesius
2013), while the traditional formalin-killed S. agalac-
tiae vaccine worked well in 15-20 g tilapia (RPS =
80 %) but poorly in 3-5 g tilapia (RPS = 25%) (Evans
et al. 2004). This kind of mixed attenuated vaccine is
very promising for the fingerling tilapia industry;
such fish are usually 1-2 wk old and weigh 3-5 g
when obtained from the hatchery. In 2015, another
live attenuated vaccine strain was generated via con-
tinuous passage (840 times) in vitro. It also displayed
good protection for 30 g tilapia by IP injection (RPS =
96.88 %), immersion (RPS = 67.22 %), and oral admin-
istration (RPS = 71.81%) at 15 d post-vaccination
(dpv) (Li et al. 2015). Thus, these studies developed
stable and immunogenic attenuated S. agalactiae
strains for tilapia, especially for fingerlings (3-5 g).
Tilapia is among the most frequently consumed
seafood and any live attenuated vaccines used must
be safe for the consumers; therefore, the develop-
ment of a commercial attenuated vaccine for tilapia
against S. agalactiae might be hampered by safety
concerns for human health.

Recombinant vaccines

Vaccination with a whole-cell S. agalactiae vaccine
offers effective protection in tilapia when challenged
with homologous serotype, but is ineffective against
heterologous serotypes. To overcome this serotype
specificity, many studies have used recombinant vac-
cines, which contain the antigens found in most S.
agalactiae isolates and effectively stimulate the
immune system (Heath 2011). In this respect, Eldar et

al. (1995) showed that only a few proteins could act
as protective antigens in both the whole-cell vaccine
and the streptococcal extract. With advances in new
technologies, such as whole-genome sequencing and
mass spectrometry based proteomics, researchers
are gaining new opportunities to develop effective
and globally relevant S. agalactiae recombinant
vaccines (Johri et al. 2006). Based on comparative
genome analysis and multiple genome screening,
some surface proteins of S. agalactiae, such as sur-
face immunogenic protein (Sip), CAMP factor, R5
protein, enolase, hyaluronidase, hemolysin (cylE),
and pilus proteins have been suggested as potential
vaccine candidates (Tettelin et al. 2002, Maione et al.
2005). Using the proteomics approach, Hughes et al.
(2002) identified the main surface-exposed proteins
of S. agalactiae. Sera directed against 2 of these
proteins, ornithine carbamoyltransferase (OCT) and
phosphoglycerate kinase (PGK), were protective
against lethal doses of S. agalactiae infection in a
neonatal-mouse model. Wang et al. (2014) later con-
firmed that the PGK protein enhanced the immuno-
genic effect of whole-cell S. agalactiae in tilapia.
A feed-based recombinant vaccine of S. agalactiae,
which includes a cell wall surface anchor family pro-
tein named pilus islands (PI)-1 ancillary protein 1
(Dramsi et al. 2006), was developed. This vaccine can
stimulate high levels of mucosal and systemic immu-
nity, and gave 70 % protection to red hybrid tilapia
following bacterial challenge (Nur-Nazifah et al.
2014). Moreover, using an immunoproteomics me-
thod, Liu et al. (2013) identified 4 immunoreactive
proteins (serine-rich repeat glycoprotein 1, branched-
chain alpha-keto acid dehydrogenase subunit E2, 5'-
nucleotidase family protein, and OCT). These 4 pro-
teins were conserved in multiple serotypes of S.
agalactiae and are anticipated to act as protective
antigens.

Although several antigenic proteins have been
identified successfully as S. agalactiae recombinant
vaccine candidates, few studies have directly
addressed the protective efficacy of these targets in
tilapia compared with that of whole-cell inactivated
vaccine. Recent studies have shown that recombi-
nant vaccines, such as PI, PGK, and Sip recombinant
proteins, require booster immunization and must be
mixed with suitable adjuvants to provide acceptable
protection to tilapia (Table 1). Moreover, the recom-
binant vaccines still provide lower protection to
tilapia than the whole-cell inactivated vaccines
under the same conditions. For example, Yi et al.
(2014) found that the recombinant a-enolase protein
and fibrinogen-binding protein A (FbsA) conferred
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some protection (mean + SD RPS = 62.50 + 18.75 and
40.63 + 17.21%, respectively) to tilapia against S.
agalactiae infection, while the inactivated vaccine
group provided higher protection (RPS = 93.75 +
5.41%). In this case, although increasing numbers of
protective and conserved proteins have been identi-
fied using new technologies, the efficacies of these
recombinant vaccines are not as good as those of the
inactivated vaccines. Thus, recombinant vaccines
should not only be improved in terms of their protec-
tive efficacy, but also the cost of their mass produc-
tion should be controlled when applied as a commer-
cial product for tilapia.

DNA vaccines

DNA vaccines and their effects against several
viral and bacterial diseases in fish have been
reported in the last decade (Helvold et al. 2014);
however, only a few DNA vaccine strategies have
been successful in providing significant protection to
fish against S. agalactiae infection. Huang et al.
(2014) developed an oral DNA vaccine that encoded
Sip. They used a live attenuated Salmonella typhi-
murium to deliver this DNA vaccine and then evalu-
ated the safety and stability of the recombinant DNA
vaccine in vivo and in vitro. This DNA vaccine pro-
vided a modest protective effect (RPS = 47-57%)
after immunization 3 times following S. agalactiae
challenge in tilapia. The development of DNA vac-
cines for tilapia is still in the early stages, and vaccine
efficacy will be improved as we increase our under-
standing of the tilapia immune processes during
infection.

VACCINATION METHODS IN TILAPIA

Vaccination in fish is more complicated compared
with that in terrestrial livestock because of the
aquatic environment. Many delivery methods, in-
cluding IP injection, bath immersion (BI), and oral
administration, have been studied to aid vaccination.
For practical reasons, Bl and oral vaccinations are
convenient for fishes, especially for fry and small
fishes. However, their protective efficiency is usually
not as good as injection under the same conditions.
The vaccine might be partially degraded by the
digestive fluids when given orally, or the vaccine
might not be sufficiently absorbed by the fish body
using the immersion and spray methods (Noraini et
al. 2013, Caipang et al. 2014). For example, the RPS

values of tilapia immunized with a live attenuated
Streptococcus agalactiae via IP injection, BI, and oral
administration were 96.88, 67.22, and 71.81 %, res-
pectively, at 15 dpv, but declined to 93.61, 60.56, and
53.16 %, respectively, after 30 dpv (Li et al. 2015).
These results indicate that vaccination by injection
provided the strongest protection and that the pro-
tection period of oral vaccination was shorter than
that of IP injection and BI. Although vaccination by IP
injection resulted in a high level and long duration
protective effect, the operation could be time-con-
suming and difficult to administer to small fishes
(Caipang et al. 2014). Under the same conditions,
tilapia obtained a high protection (RPS = 80 %) from
vaccination with inactivated S. agalactiae by IP injec-
tion at 30 dpv, while the protection was significantly
reduced (RPS = 34 %) using BI (Evans et al. 2004).
With the appearance of dedicated vaccination teams
and semi-automatic vaccination devices, vaccination
by injection is becoming feasible and is practiced
widely in modem tilapia aquaculture systems.

INFLUENCE OF ADJUVANTS

Adjuvants are defined as a group of structurally
heterogeneous compounds that slow down the re-
lease and modulate the intrinsic immunogenicity of
an antigen (Audibert & Lise 1993, Guy 2007). The
traditional adjuvant, mineral oil, has been used in a
commercial whole-cell killed Streptococcus agalac-
tiae vaccine (AQUAVAC® Strep Sa). In addition to
Freund's complete and incomplete adjuvants (FCA
and FIA; He et al. 2014, Yi et al. 2014), many other
types of adjuvants have been used in tilapia S.
agalactiae vaccination, such as aluminum-based
adjuvants (Eldar et al. 1995, He et al. 2014) and non-
mineral oil adjuvant Montanide ISA 763 (Wang et al.
2014) (Table 1).

Based on published data, most inactivated S.
agalactiae vaccines without adjuvants can provide
good protection for tilapia (Table 1). However, S.
agalactiae recombinant vaccines usually require the
use of adjuvants to provide appropriate protection
(Table 1). For instance, He et al. (2014) showed that
recombinant truncated Sip (tSip) mixed with FIA and
IP-injected provided very strong protection to tilapia
(RPS =90 %) against Group B streptococcal infections,
while tSip without adjuvant was only about half as ef-
fective (RPS = 50%). Similarly, Firdaus-Nawi et al.
(2013) showed that a feed-based vaccine with FIA
provided a significantly higher protection (RPS =
100 %) in tilapia than that without FIA (RPS = 57 %).
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Based on current research, FIA appears to be a
suitable adjuvant for tilapia vaccines. FIA promoted
the induction of both humoral and cellular immune
responses by producing higher humoral or mucosal
antibody responses in red tilapia (Firdaus-Nawi et al.
2013). In a Japanese flounder model, vaccination
with an FIA-adjuvanted recombinant protein en-
hanced the expression of a wide range of genes that
are likely to participate in humoral immunity and
innate cellular immunity mediated by activated natu-
ral killer cells and phagocytes (Jiao et al. 2010).
Although FIA has been shown to be highly effective
in vaccination of tilapia and provides a significant
reduction in toxicity compared with FCA, some side
effects still occur, such as granuloma and tissue ne-
crosis (Gjessing et al. 2012). To the best of our knowl-
edge, no study has been conducted to investigate the
side effects of adjuvants used in tilapia. Thus, the
search for effective adjuvants that maximize immu-
nogenicity and minimize side effects for piscine vac-
cines needs to be intensified.

OTHER FACTORS INFLUENCING
VACCINE EFFICACY

Some factors, such as temperature, immunization
duration and number, fish size, and challenge dose,
cannot be ignored when developing vaccines for
tilapia. Evans et al. (2004) showed that water temper-
ature (26 versus 32°C) did not appear to influence the
RPS results of inactivated Streptococcus agalactiae
vaccine; however, the size of the fish appeared to
play an important role in the vaccine efficacy. Larger
(30 g) tilapia had an RPS of 80 %, while 5 g tilapia had
an RPS of only 25 % under similar conditions.

The production cycle of farmed tilapia in tropical
regions takes 4 to 6 mo, and a desirable vaccine for
tilapia should provide significant long-term protec-
tion against S. agalactiae. Thus, the duration of pro-
tection is also an important factor in the evaluation of
vaccine efficacy. Table 1 lists the post-immunization
challenge time for all types of vaccines. Most studies
performed the challenge trials at 30 dpv; the longest
delay between vaccination and challenge was re-
corded by Pasnik et al. (2005), wherein one in-
activated vaccine could confer protection against
S. agalactiae up to 180 dpv when challenged with
10 x LDs.

Meanwhile, vaccine efficacy was also correlated
with the number of immunizations: 1 or 2 booster
vaccinations significantly improved the RPS (Pretto-
Giordano et al. 2010, Huang et al. 2014, Li et al.

2015). The RPS of the booster immunization (96.4 %)
was significantly higher than that of a single immu-
nization (83.6%; Pretto-Giordano et al. 2010). Re-
combinant and DNA vaccines usually require booster
vaccinations to obtain satisfactory protection, while
the inactivated and live attenuated vaccines only
need single immunizations (Table 1).

In the published studies, researchers used different
challenge doses, approximately 10 to 100 times the S.
agalactiae LDs,. It is thought that lower challenge
doses decrease vaccination-related mortality and
provide better protection (Evans et al. 2004). Thus,
these vaccines could provide higher protection for
tilapia in the natural infection situation compared
with laboratory IP injection.

CONCLUDING REMARKS AND PERSPECTIVES

Vaccines are among the most viable approaches
to prevent fish diseases in aquaculture. Inactivated,
live attenuated, recombinant, and DNA vaccines
against Streptococcus agalactiae have been devel-
oped for tilapia, an economically important fish.
Inactivated S. agalactiae vaccines showed superior
protection efficiency when compared with live
attenuated, recombinant, and DNA vaccines. Inject-
ing the vaccine into tilapia remains the most effec-
tive vaccination method, resulting in very good im-
munoprotection. In addition, adjuvants and booster
immunizations are necessary to increase the effica-
cy of vaccines, especially for recombinant vaccines.
Many immune-related genes of tilapia during S.
agalactiae infection have been identified (Nithikul-
worawong et al. 2012, Poochai et al. 2014, Shen et
al. 2015); therefore, a full understanding of the
immune processes in tilapia during infection would
aid in vaccine development.
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