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Abstract 

One of the most critical and frequent problems in biomedical data classification is 
imbalanced class distribution, where samples from the majority class significantly outnumber 
the minority class. SMOTE is a well-known general over-sampling method used to address 
this problem; however, in some cases it cannot improve or even reduces classification 
performance. To address these issues, we have developed a novel minority over-sampling 
method named safe-SMOTE. Experimental results from two gene expression datasets for 
cancer classification (i.e., colon-cancer and leukemia) and six imbalanced benchmark datasets 
from the UCI Machine Learning Repository showed that our method achieved better 
sensitivity and G-mean values than both the control method (i.e., no over-sampling) and 
SMOTE. For example, in the colon-cancer dataset, although the sensitivity and specificity 
achieved by SMOTE (81.36% and 88.63%) were lower than for the control method (81.59% 
and 89.50%), safe-SMOTE in contrast had these values increase (81.82% and 90.50%). 
Similarly, the G-mean value of the control (85.45%) decreased to 84.91% when SMOTE was 
employed, but increased to 86.04% when using safe-SMOTE. In the leukemia dataset, 
SMOTE was able to improve the sensitivity and G-mean values with respect to the control; 
however, safe-SMOTE achieved noticeable, even greater improvements for both of these 
criteria. 
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1. Introduction 

One of the most critical and frequent problems in biomedical data classification is imbalanced 
class distribution, where samples from the majority class significantly outnumber those from the 
minority class. The main problem with class imbalances is that typical machine learning methods 
are often biased to the majority class. As a result, the majority class samples are well classified, 
whereas many samples from the minority class are easily misclassified. In recent years, the number 
of imbalanced biomedical datasets has increased, such as microRNA (miRNA) gene prediction [1], 
protein network analysis [2], and detection of non-coding RNA [3]. 

Batuwita et al. [1] developed an effective system to classify human precursor microRNA 
(pre-miRNAs) hairpins from both genome pseudo hairpins and other non-coding RNAs (ncRNAs). 
In their study, the experimental datasets included three kinds of non-redundant human sequences: 
691 pre-miRNAs (positive), 8,494 pseudo hairpins (negative), and 754 other ncRNAs (negative; 
9,248 hairpins in total). The class imbalance (i.e. positive-to-negative) ratio of the dataset was 
determined to be 1:13.4. Radivojac et al. [2] considered designing a complete classification system 
in protein databases to understand, in detail, protein function and associated complex networks of 
interactions with other molecules in biochemical pathways. Some of the common characteristics of 
protein datasets uncovered in this study were that they are often noisy, high-dimensional, sparse, 
and have class imbalance. The research resulted in the construction of six datasets: e.g., PHOSS 
(613 positive samples and 10,798 negative samples), PHOST (140 positive samples and 9,051 
negative samples), CAM (942 positive samples and 17,974 negative samples), etc. Yu et al. [3] then 
presented a model for protein-protein interactions (PPIs) that has since aided understanding of the 
important principles of biological systems. Using the primary structure of proteins, the PPI 
predictor they developed processes the imbalanced datasets with a positive-to-negative ratio of up 
to 1:15.  

The issue of class imbalance in classification has attracted much research and resulted in a 
range of publications in the bioinformatics and data mining communities. There are two main 
strategies to deal with imbalanced class distribution: methods at the data level and methods at the 
algorithm level. The latter methods aim at adjusting an appropriate inductive bias. For example, 
Joshi et al. [4] developed a traditional boosting algorithm, which was a promising meta-technique 
for improving the classification performance of any weak classifiers. With each learning cycle, the 
boosting algorithm updated the weights of the samples. The weights of the incorrectly classified 
samples were increased and the weights of the correctly classified samples were decreased. In the 
following cycles, the classifier focused more on the incorrectly classified samples to achieve higher 
predictive ability for minority samples. Lin et al. [5] found that the standard Support Vector 
Machine (SVM) is not suitable for non-standard situations embodied by imbalanced datasets, and 
proposed a simple procedure for adapting the SVM methodology: using different penalty costs for 
different classes. Wu et al. [6] also showed that SVMs could be ineffective in determining the class 
boundary when dealing with imbalanced training-data problems. In order to solve this problem, 
they proposed to adjust the class boundary based on the kernel function and kernel matrix of SVMs. 
Based on this analysis, the class-boundary-alignment algorithm worked effectively for imbalanced 
problems posed by images and video sequences.  

There are two data sampling strategies to address class imbalance: over-sampling and 
under-sampling. In over-sampling, the samples in the minority class are increased, while in 
under-sampling, the samples in the majority class are decreased; both strategies aim to achieve 
balanced class distributions as a result. Chawla et al. [7] developed the Synthetic Minority 
Oversampling Technique (SMOTE), which over-samples minority class samples by generating 
synthetic minority samples along the line between the minority sample and its nearest neighbor. 
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This method effectively forces the decision region of the minority class to become more general, 
rather than it being subsumed by the majority class samples around it. Han et al. [8] showed that 
most of the classification algorithms in the literature tried to learn the borderline of each class as 
exactly as possible in the training process. As the result, the samples on the borderline and those 
nearby were more easily misclassified than those far from the borderline. Based on the above 
analysis, they proposed two novel minority over-sampling methods, borderline-SMOTE1 and 
borderline-SMOTE2, which improved the performance of SMOTE by over-sampling minority class 
samples near the borderline. Chen et al. [9] proposed a novel hybrid resampling technique based on 
the differential evolution clustering hybrid re-sampling SVM algorithm (DEC-SVM), which 
utilized the mutation and crossover operators of differential evolution for over-sampling. Thus, by 
combining over-sampling and data cleaning techniques, only the useful samples remained, and 
computational efficiency was improved. Kubat et al. [10] showed samples of the majority class 
could have a detrimental effect on the learner’s behavior, since noise or otherwise unreliable 
samples from the majority class could overwhelm the minority class. For this reason, an 
under-sampling method was proposed by removing noise and redundant majority class samples. 
The neighborhood cleaning rule (NCL) was presented by Laurikkala et al. [11], a technique that 
removed majority class samples based on Wilson’s edited nearest neighbor rule [12]. The results 
suggested that NCL was a useful method for improving modeling of difficult imbalanced class 
problems.  

In this paper, we focused on the problem of imbalanced class distribution in biomedical 
classification, including cancer classification from gene expression data. While SMOTE is a 
well-known general over-sampling method to address this problem, in some cases it cannot 
improve or can even reduce classification performance. Therefore, we developed a novel minority 
over-sampling method, named safe-SMOTE, in which only safe synthetic samples are generated so 
that any harmful effects of unsafe samples are suppressed.  

In this paper, we will briefly introduce SMOTE and discuss its primary drawback, proposing a 
novel method, safe-SMOTE, based on this drawback (Section 2). We then present our findings and 
compare the results obtained using our novel method with those using the control (no 
over-sampling) and SMOTE methods (Section 3), before describing our conclusions (Section 4). 

2. Methods 

2.1 SMOTE 

Chawla et al. developed a minority over-sampling technique called SMOTE (Synthetic 
Minority Oversampling TEchnique) [7] in which the minority class is over-sampled by creating 
synthetic samples rather than being over-sampled with replacement. SMOTE provided a new 
approach to over-sampling and introduced a bias towards the minority class. The results of their 
study showed that the SMOTE approach could improve the accuracy of classifiers for a minority 
class.  

In SMOTE, the minority class is over-sampled by synthesizing new samples along the line 
between the minority samples and a random selection of their nearest neighbors. In a less 
application-specific manner, synthetic samples are generated by operating in “feature space” rather 
than “data space”. Synthetic samples are generated by first computing the difference of the feature 
vector between each minority class sample and its selected nearest neighbor. Then, this difference is 
multiplied by a random number between 0 and l, and added to the feature vector of the minority 
sample. In this way, the synthetic minority sample is generated along the line segment between two 
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specific features. Depending on the requirement of the over-sampling amount, the nearest neighbors 
are selected by chance. 

This approach is effective in forcing the decision region of the minority class to become more 
general, as shown in Figure 1. Figure 1(A) presents a typical case of imbalanced data, where the 
samples from the majority class greatly outnumber those from the minority class. As a result, the 
majority class samples are well-classified, whereas many samples from the minority class are easily 
misclassified. Therefore, the problem of imbalanced datasets requires new and more adaptive 
methods, such as SMOTE. Figure 1(B) depicts how synthetic samples are generated by applying 
SMOTE in order to achieve a more balanced distribution, enabling the classifier to recognize all 
samples very well. 

 

Figure 1. Advantages of SMOTE 
Black, red, and blue dots indicate majority class, minority class, and synthetic minority class 
samples, respectively. The brown line depicts the discrimination hyperplane. (A) The original 
dataset with an erroneous classifier biased by the imbalanced dataset. (B) Synthesis of new minority 
class samples by applying SMOTE with a perfect classifier. 

2.2 Main Drawback of SMOTE 

To illustrate the above approach, Figure 2(A) shows how a given synthetic sample is generated 
using SMOTE. The blue sample x is a synthetic sample generated along the line that joins the 
minority class sample s and its randomly selected nearest neighbor n. Figure 2(B) presents a typical 
case of imbalanced data where the distribution of minority class samples is discrete and bordering 
the majority class samples. Figure 2(C) shows some synthetic minority samples generated using 
SMOTE; however, many of them are distributed inside and near the majority samples. Therefore, 
the classification accuracy could be reduced in comparison with the control method (i.e. no 
over-sampling). In Figure 2(C), the main drawback of SMOTE is apparent: many unsafe synthetic 
samples will not be paid any attention after they are generated. Therefore, in order to address this 
drawback and improve the classification accuracy of the SMOTE method, we focused on how to 
suppress the harmful effects of synthetic minority samples and only generate safe ones. This idea, 
illustrated in Figure 2(D), a novel method that we term safe-SMOTE, will be presented in more 
detail in the next section. 

2.3 Safe-SMOTE 

In order to overcome the drawback of SMOTE described previously, we focused on developing 
a way to suppress the harmful effect of synthetic minority samples and only generate safe ones. We 
note that x is generated by both s and n, where n is a randomly selected nearest neighbor whose 
position with respect to s is what determines x, as shown in Figure 2(A). If s is fixed, a change in n 
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will lead to a change in x. Therefore, given a typical s, an unsafe x will be generated by an unsafe n, 
and a safe x will be generated by a safe n. Consequently, the question of how to suppress unsafe 
synthetic samples becomes replaced by that of how to suppress unsafe nearest neighbors. 

 

Figure 2. Main Drawback of SMOTE 
Black, red, and blue samples are majority class, minority class, and synthetic minority class samples, 
respectively. (A) A representative synthetic minority class sample is generated along the line of two 
minority class samples by using SMOTE. (B) A typical case of imbalanced data. (C) Synthesis of 
new minority class samples by applying SMOTE. Many of these have harmful effects on the 
classifier. (D) Only safe synthetic samples are generated by using our novel method, safe-SMOTE. 

 
Based on the above analysis, we propose a novel minority over-sampling method, safe-SMOTE. 

Safe-SMOTE adds one more module, the filter, into SMOTE to remove all unsafe nearest 
neighbors. Firstly, the center o of the hypersphere between s and n is determined. Then, the 
distances d1 (between o and s) and d2 (between o and each majority class sample f) are calculated. 
As shown in Figure 3(A), if there is at least one majority class sample inside the hypersphere (i.e. 
d1 > d2), we could say that n is an unsafe nearest neighbor for newly generated unsafe synthetic 
samples. Therefore, the filter will remove n from the nearest neighbors. On the other hand, as 
depicted in Figure 3(B), if all the majority class samples are outside the hypersphere (i.e. d1 < d2), 
n’ will be called a safe nearest neighbor for generating the safe synthetic sample x.  

 

Figure 3. The filter for safe-SMOTE 
Black, red, and blue samples are majority class, minority class, and synthetic minority class samples, 
respectively. (A) At least one majority class sample f stays inside the hypersphere between minority 
sample s and its nearest neighbor n; thus, n is the unsafe nearest neighbor and no synthetic samples 
are generated. (B) All majority class samples are outside the hypersphere; therefore, n’ is a safe 
nearest neighbor. Consequently, this situation is appropriate to generate safe synthetic samples x. 
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The procedure of the safe-SMOTE method is explained briefly as follows: 
 
Algorithm: safe-SMOTE(T,N,k) 
Input: Number of minority class samples T; amount of safe-SMOTE N; number 

of nearest neighbors k; 
Output: (N*T) synthetic minority class samples 
 
1. I = (int)(N*T); 
2. While (I > 0) 
3.   Choose a minority sample (s). The choice is random but controlled 

to be as fair as possible. 
4.    Calculate its k nearest neighbors. 
5.    Apply filter to remove all dangerous nearest neighbors (n). 
6.    Randomly select one of the safe nearest neighbors (n’). 
7.    Synthesize new and safe x along the line joining s and n’. 
8.    I := I - 1; 
9. EndWhile; 
10. Return a set of synthesized samples. 

 
It should be noted that the safety for the above procedure has been considered only in the 

feature space. This means that if we use a kernel method like SVM, the safety is not guaranteed in 
the kernel space. It would be interesting to develop a “kernel-safe-SMOTE” method; however, this 
would involve losing the freedom of choosing difference classifiers. 

2.4 Evaluation measures 

In the medical science, bioinformatics, and machine learning communities [1][13][14][15], 
sensitivity (SE) and the specificity (SP) are two metrics used to evaluate the performance of 
classifiers. SE measures the proportion of actual positives that are correctly identified as such, 
while SP can be defined as the proportion of negatives that are correctly identified. Kubat et al. [10] 
proposed the geometric mean (G-mean) metric as defined below.  

SPSE ×=mean-G  
It is common practice to apply this metric to evaluate classifiers used in imbalanced class 

distributions [1][10][15][16][17], and so we also decided to use it to measure the performances of 
the classifiers in our research. Additionally, we also calculated the F-measure as another important 
metric. 

2.5 Classifier 

Support Vector Machine (SVM) is a supervised learning machine widely used to build a 
classifier that discriminates classes for binary class classification [18]. SVM is based on simple 
ideas originating from statistical learning theory [19] and has high generalization capability, 
optimizes global classification solutions, and can be successfully applied in bioinformatics.  

In this study, an SVM implementation in the kernlab package [20] was used, available at the 
Comprehensive R Archive Network (CRAN). This is an extensible package for kernel-based 
machine learning methods in R and includes various kernels such as the Linear kernel,  
Polynomial kernel, and Radial Basis kernel (Gaussian kernel), the latter of which was employed in 
this study. Using heuristics, kernlab automatically optimizes the value of the sigma parameter for 
the Radial Basis kernel to achieve better classification performance in most practical situations. In 
addition, all other hyper-parameters, e.g. cost and class weights, are set to default values. 
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3. Experiments and Discussions 

3.1 Datasets 

In this study, the cancer classifications from gene expression data selected were colon-cancer, as 
presented by Alon et al. [21], and acute leukemia, as described by Golub et al. [22]. The 
colon-cancer dataset consisted of 62 colon tissue samples (22 normal and 40 tumor) with 2000 
features, while the leukemia dataset consisted of 72 patients (25 acute myeloid leukemia patients 
(AML) and 47 acute lymphocytic leukemia patients (ALL)) with 7,129 features. The former dataset 
was considered positive, while the latter was negative. The positive-to-negative class imbalance 
ratios of the two datasets were 0.35:0.65 and 0.34:0.66, respectively.  

 

Table 1. Description of the datasets 
Name Examples Attributes Imbalance ratio 
*colon-cancer 62 2000 0.35 : 0.65 
*leukemia 72 7129 0.34 : 0.66 
ionosphere 351 34 0.36 : 0.64 
pima 768 8 0.35 : 0.65 
breast-w 683 10 0.35 : 0.65 
blood 748 4 0.23 : 0.77 
satimage 6435 36 0.097 : 0.903 
yeast 1484 8 0.034 : 0.966 

 
In order to demonstrate the applicability of our method, we also performed experiments using 

six real-world imbalanced benchmark datasets obtained from UCI [23]: Radar data (ionosphere), 
Pima Indians Diabetes (pima), Breast Cancer Wisconsin (breast-w), Blood Transfusion Service 
Center (blood), Landsat Satellite (satimage), and Yeast (yeast), each with a different class 
imbalance ratio, as shown in Table 1. For highly imbalanced problems, the classes “damp grey soil” 
and “ME2” of the satimage and yeast datasets, respectively, were converted into the minority class 
and the remaining classes of each dataset became the majority class. Except for ionosphere and 
satimage, these datasets all contained biomedical data. 

3.2 Classification imbalance learning results 

The experiments were executed to compare three methods: the control method (no 
over-sampling), SMOTE, and safe-SMOTE. A SVM was used as the classifier. The classification 
performances of the methods were all estimated based on the 10-fold cross-validation strategy. For 
each test, nine-tenths of the complete dataset were used as a training set. Then, for the cases of 
SMOTE and safe-SMOTE, minority samples in the training set were over-sampled. After training 
by an SVM model using the (possibly over-sampled) training set, the model was tested against the 
remaining one-tenth of the dataset (i.e. test set). This process was repeated 10-fold for all datasets 
and methods with different combinations of training and test sets. The values for the performance 
criteria—SE, SP, G-mean, and F-measure—were calculated by averaging 20 independent runs of 
10-fold cross-validation: they are summarized in Tables 2 and 3. Furthermore, two-sample t-tests 
with equal variance were conducted to assess whether the averages of the G-mean and F-measure 
by different methods were significantly different.  

Experimental results from the two gene expression datasets for cancer classification (leukemia 
and colon-cancer) showed that our method (i.e. safe-SMOTE) achieved a better G-mean than both 
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the control method and SMOTE. For example, in the colon-cancer dataset, although the sensitivity 
and specificity increased for the control method (81.59% and 89.50%) by SMOTE (81.36% and 
88.63%), it was also increased (to 81.82% and 90.50%) by safe-SMOTE. Furthermore, the G-mean 
of the control (85.45%) was reduced to 84.91% by SMOTE, but increased by safe-SMOTE 
(86.04%). In the leukemia dataset, the sensitivity and G-mean of the control method (54.80% and 
74.00%) were improved by SMOTE (78.60% and 88.64%); but, safe-SMOTE achieved even higher 
performance for these two criteria (80.80% and 89.82%). However, a different case was observed 
for the specificity in the leukemia dataset, with the specificity of the control method (100.00%) 
being unchanged when using SMOTE (100.00%), but decreasing slightly by 0.11% for 
safe-SMOTE (99.89%). 

 

Table 2. Comparison of Sensitivity (SE) and Specificity (SP) (%) 
 SE SP 

 

no 
over-sampling SMOTE safe-SMOTE no 

over-sampling SMOTE safe-SMOTE 
*colon-cancer 81.59 81.36 81.82 89.50 88.63 90.50 
*leukemia 54.80 78.60 80.80 100.00 100.00 99.89 
ionosphere 89.96 94.52 93.73 97.00 93.87 96.07 
pima 55.11 82.26 81.14 87.45 67.21 69.69 
breast-w 98.44 98.71 99.40 94.13 95.12 95.51 
blood 30.65 74.04 69.27 94.21 60.35 66.96 
satimage 51.26 85.30 87.60 97.99 92.62 91.94 
yeast 3.73 48.82 50.39 100.00 97.01 97.03 
 

Table 3. Comparison of G-mean and F-measure (%) 
 G-mean F-measure 

 

no 
over-sampling SMOTE safe-SMOTE no 

over-sampling SMOTE safe-SMOTE 
*colon-cancer 85.45 84.91 86.04 81.32 80.56 82.22 
*leukemia 74.00 88.64 89.82 70.75 87.98 89.25 
ionosphere 93.41 94.19 94.89 92.12 92.01 93.38 
pima 69.42 74.35 75.19 61.74 67.58 68.27 
breast-w 96.26 96.90 97.44 93.93 94.92 95.61 
blood 53.71 66.84 68.10 41.07 49.19 50.37 
satimage 70.88 88.88 89.74 60.35 67.22 66.76 
yeast 17.93 68.81 69.91 7.11 41.93 43.13 

 
Assessment by t-tests suggested that in the colon-cancer dataset, the control method 

significantly outperformed SMOTE (p = 3.44E-2), but safe-SMOTE achieved a significantly higher 
G-mean than both the control method and SMOTE could (p = 2.25E-2 and p = 9.86E-4, 
respectively). Furthermore, in the leukemia dataset, SMOTE significantly surpassed the control 
method (p = 2.2E-16) for G-mean, but safe-SMOTE significantly outperformed them both (p = 
2.2E-16 and p = 2.95E-2, respectively). 

We also performed experiments using the six imbalanced benchmark datasets from UCI to 
demonstrate the general applicability of our method. The experimental results also show our 
method as having achieved higher G-mean values than both the control and SMOTE methods in all 
six datasets. Furthermore, two-sample t-tests showed that our method remarkably outperformed 
both the control and SMOTE methods (p < 0.05; see Table 4). 
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Table 4. The assessment by two-sample t-test with equal variance 

Dataset Compared methods P-value for  
G-mean 

P-value for  
F-measure 

colon-cancer 
no over-sampling vs SMOTE  3.44E-02 3.40E-02 
safe-SMOTE vs no over-sampling 2.25E-02 1.90E-02 
safe-SMOTE vs SMOTE 9.86E-04 1.10E-03 

leukemia 
SMOTE vs no over-sampling 2.20E-16 2.20E-16 
safe-SMOTE vs no over-sampling 2.20E-16 2.20E-16 
safe-SMOTE vs SMOTE 2.95E-02 3.40E-02 

ionosphere 
SMOTE vs no over-sampling 6.24E-05 6.70E-01 
safe-SMOTE vs no over-sampling 3.22E-09 5.99E-06 
safe-SMOTE vs SMOTE 5.69E-05 6.80E-08 

pima 
SMOTE vs no over-sampling 2.20E-16 2.20E-16 
safe-SMOTE vs no over-sampling 2.20E-16 2.20E-16 
safe-SMOTE vs SMOTE 1.76E-05 6.09E-04 

breast-w 
SMOTE vs no over-sampling 1.81E-10 3.83E-12 
safe-SMOTE vs no over-sampling 2.20E-16 2.20E-16 
safe-SMOTE vs SMOTE 8.79E-10 9.84E-09 

blood 
SMOTE vs no over-sampling 2.20E-16 4.67E-16 
safe-SMOTE vs no over-sampling 2.20E-16 2.20E-16 
safe-SMOTE vs SMOTE 6.38E-06 8.60E-05 

satimage 
SMOTE vs no over-sampling 2.20E-16 2.20E-16 
safe-SMOTE vs no over-sampling 2.20E-16 2.20E-16 
safe-SMOTE vs SMOTE 2.80E-12 4.23E-05 

yeast 
SMOTE vs no over-sampling 2.20E-16 2.20E-16 
safe-SMOTE vs no over-sampling 2.20E-16 2.20E-16 
safe-SMOTE vs SMOTE 1.30E-02 1.40E-02 

4. Conclusions 

In this paper, we have addressed a common problem in efforts to classify cancers from gene 
expression data, known as the imbalanced class distribution problem. To this end, we proposed a 
novel minority over-sampling method called safe-SMOTE, which is an improved version of the 
SMOTE method in which only safe synthetic samples are generated, thereby suppressing the 
harmful effect of unsafe ones. 

Experimental results obtained from six imbalanced benchmark datasets from the UCI Machine 
Learning Repository and two gene expression datasets for cancer classification showed that our 
method achieved better G-mean and sensitivity than both the control and SMOTE methods (p < 
0.05). These results suggest that our method can outperform SMOTE in various biomedical 
classification problems, including cancer classification. 

Although safe-SMOTE achieved improvements and high performances in cancer classification, 
several further directions remain to be considered. These include combining our novel method with 
feature selection methods, applying other novel under-sampling methods for cancer classification, 
and extracting new and appropriate sets of features from gene expression data. Addressing these 
challenges will be a key aim of our work in the future. 

In conclusion, a number of improvements to SMOTE have recently been reported. These have 
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included a hybrid preprocessing approach based on SMOTE and Rough Set Theory (SMOTE-RSB) 
[24], a novel probability density function estimation-based over-sampling SMOTE [25], and the 
combination of a heuristic-based unsupervised feature selection technique and SMOTE [26]. The 
method proposed in our study, safe-SMOTE, differs markedly from such methods, and it may be 
interesting and worthwhile to consider its use in combination with these existing approaches. 

References 

[1] Batuwita, R.; Palade, V. microPred: effective classification of pre-miRNAs for human miRNA 
gene prediction. Bioinformatics 2009, 25(8), 989-95. 

[2] Radivojac, P. et al. Classification and knowledge discovery in protein databases. Journal of 
Biomedical Informatics 2004, 37(4), 224-239. 

[3] Yu, C.Y.; Chou, L.C.; Chang, D. T. H. Predicting protein-protein interactions in unbalanced 
data using the primary structure of proteins. BMC Bioinformatics 2010, 11, 167. 

[4] Joshi, M. V.; Kumar, V.; Agarwal, R. C. Evaluating boosting algorithms to classify rare 
classes: comparison and improvements, Proceedings 2001 IEEE International Conference on 
Data Mining, 2001, pp 257-264. 

[5] Lin, Y.; Lee, Y.; Wahba, G. Support Vector Machines for Classification in Nonstandard 
Situations by in Nonstandard Situations. Machine Learning 2002, 46(1-3), 191-202. 

[6] Wu, G.; Chang, E. Y. Class-Boundary Alignment for Imbalanced Dataset Learning, In Proc. of 
the ICML'03 Workshop on Learning from Imbalanced Data Sets, 2003, pp 49-56. 

[7] Chawla, N. V.; Bowyer, K. W.; Hall, L. O. SMOTE : Synthetic Minority Over-sampling 
Technique. Journal of Artificial Intelligence Research 2002, 16, 321-357. 

[8] Han, H.; Wang, W.-yuan.; Mao, B.-huan. Borderline-SMOTE: A New Over-Sampling Method  
in Imbalanced Data Sets Learning, In Advances in Intelligent Computing, Lecture Notes in 
Computer Science Volume 3644; Springer: Germany, 2005; pp 878-887. 

[9] Chen, L.; Cai, Z.; Chen, L. A Novel Differential Evolution-Clustering Hybrid Resampling 
Algorithm on Imbalanced Datasets, 2010 Third International Conference on Knowledge 
Discovery and Data Mining, 2010, pp 81-85. 

[10] Kubat, M.; Matwin, S. Addressing the Curse of Imbalanced Training Sets: One-Sided 
Selection, Proceedings of the Fourteenth International Conference on Machine Learning, 1997, 
pp 179-186. 

[11] Laurikkala, J. Improving Identification of Difficult Small Classes by Balancing Class 
Distribution, In Artificial Intelligence in Medicine, Lecture Notes in Computer Science Volume 
2101; Springer: Germany, 2001; pp 63-66. 

[12] Wilson, D. R.; Martinez, T. R. Reduction Techniques for Instance-Based Learning Algorithms. 
Machine Learning 2000, 38(3), 257-286. 

[13] Akbani, R.; Kwek, S.; Japkowicz, N. Applying Support Vector Machines to Imbalanced 
Datasets, In Machine Learning: ECML 2004, Lecture Notes in Computer Science Volume 
3201; Springer: Germany, 2004; pp 39-50. 

[14] Xiao, J.; Tang, X.; Li, Y.; Fang, Z.; Ma, D.; He, Y.; Li, M. Identification of microRNA 
precursors based on random forest with network-level representation method of stem-loop 
structure. BMC Bioinformatics 2011, 12(1), 165. 

[15] Anand, A.; Pugalenthi, G.; Fogel, G. B.; Suganthan, P. N. An approach for classification of 
highly imbalanced data using weighting and undersampling. Amino Acids 2010, 39(5), 
1385–91. 
 



Chem-Bio Informatics Journal, Vol.13, pp.19-29 (2013) 

 29 

[16] Han, K. Effective sample selection for classification of pre-miRNAs. Genetics and molecular 
research 2011, 10(1), 506–18. 

[17] Xuan, P. et al. PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. 
Bioinformatics 2011, 27(10), 1368–76. 

[18] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining 
and Knowledge Discovery 1998, 2, 121–167. 

[19] Vapnik, V. N. An overview of statistical learning theory. IEEE Transactions on Neural 
networks 1999, 10(5), 988–99. 

[20] Karatzoglou, A.; Smola, A.; Hornik, K. kernlab – An S4 Package for Kernel Methods in R. 
Journal of Statistical Software 2004, 11( 9). 

[21] Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and 
normal colon tissues probed by oligonucleotide arrays., Proceedings of the National Academy 
of Sciences of the United States of America, 1999, 96(12), pp 6745–6750. 

[22] Golub, T. R. Molecular Classification of Cancer: Class Discovery and Class Prediction by 
Gene Expression Monitoring. Science 1999, 286(5439), 531–537. 

[23] Frank, A.; Asuncion, A. UCI Machine Learning Repository, [http://archive.ics.uci.edu/ml], 
2010, Irvine, CA: University of California, School of Information and Computer Science. 

[24] Ramentol, E.; Caballero, Y.; Bello, R. SMOTE-RSB∗: a hybrid preprocessing approach based 
on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough 
sets theory. Knowledge and Information Systems 2012, 33(2), 245–265. 

[25] Gao, M.; Hong, X.; Chen, S.; Harris, C. J. Probability Density Function Estimation Based 
Over-Sampling for Imbalanced Two-Class Problems, International Joint Conference on Neural 
Networks, 2012, pp 1–8. 

[26] Kerdprasop, N.; Kerdprasop, K. On the Generation of Accurate Predictive Model from Highly 
Imbalanced Data with Heuristics and Replication Techniques. International Journal of 
Bio-Science and Bio-Technology 2012, 4(1), 49–64. 

 


	[1] Batuwita, R.; Palade, V. microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 2009, 25(8), 989-95.
	[2] Radivojac, P. et al. Classification and knowledge discovery in protein databases. Journal of Biomedical Informatics 2004, 37(4), 224-239.
	[3] Yu, C.Y.; Chou, L.C.; Chang, D. T. H. Predicting protein-protein interactions in unbalanced data using the primary structure of proteins. BMC Bioinformatics 2010, 11, 167.
	[4] Joshi, M. V.; Kumar, V.; Agarwal, R. C. Evaluating boosting algorithms to classify rare classes: comparison and improvements, Proceedings 2001 IEEE International Conference on Data Mining, 2001, pp 257-264.
	[5] Lin, Y.; Lee, Y.; Wahba, G. Support Vector Machines for Classification in Nonstandard Situations by in Nonstandard Situations. Machine Learning 2002, 46(1-3), 191-202.
	[6] Wu, G.; Chang, E. Y. Class-Boundary Alignment for Imbalanced Dataset Learning, In Proc. of the ICML'03 Workshop on Learning from Imbalanced Data Sets, 2003, pp 49-56.
	[7] Chawla, N. V.; Bowyer, K. W.; Hall, L. O. SMOTE : Synthetic Minority Over-sampling Technique. Journal of Artiﬁcial Intelligence Research 2002, 16, 321-357.
	[8] Han, H.; Wang, W.-yuan.; Mao, B.-huan. Borderline-SMOTE: A New Over-Sampling Method
	in Imbalanced Data Sets Learning, In Advances in Intelligent Computing, Lecture Notes in Computer Science Volume 3644; Springer: Germany, 2005; pp 878-887.
	[9] Chen, L.; Cai, Z.; Chen, L. A Novel Differential Evolution-Clustering Hybrid Resampling Algorithm on Imbalanced Datasets, 2010 Third International Conference on Knowledge Discovery and Data Mining, 2010, pp 81-85.
	[10] Kubat, M.; Matwin, S. Addressing the Curse of Imbalanced Training Sets: One-Sided Selection, Proceedings of the Fourteenth International Conference on Machine Learning, 1997, pp 179-186.
	[11] Laurikkala, J. Improving Identification of Difficult Small Classes by Balancing Class
	Distribution, In Artificial Intelligence in Medicine, Lecture Notes in Computer Science Volume 2101; Springer: Germany, 2001; pp 63-66.
	[12] Wilson, D. R.; Martinez, T. R. Reduction Techniques for Instance-Based Learning Algorithms. Machine Learning 2000, 38(3), 257-286.
	[13] Akbani, R.; Kwek, S.; Japkowicz, N. Applying Support Vector Machines to Imbalanced Datasets, In Machine Learning: ECML 2004, Lecture Notes in Computer Science Volume 3201; Springer: Germany, 2004; pp 39-50.
	[14] Xiao, J.; Tang, X.; Li, Y.; Fang, Z.; Ma, D.; He, Y.; Li, M. Identification of microRNA precursors based on random forest with network-level representation method of stem-loop structure. BMC Bioinformatics 2011, 12(1), 165.
	[15] Anand, A.; Pugalenthi, G.; Fogel, G. B.; Suganthan, P. N. An approach for classification of highly imbalanced data using weighting and undersampling. Amino Acids 2010, 39(5), 1385–91.
	[16] Han, K. Effective sample selection for classification of pre-miRNAs. Genetics and molecular research 2011, 10(1), 506–18.
	[17] Xuan, P. et al. PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics 2011, 27(10), 1368–76.
	[18] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 1998, 2, 121–167.
	[19] Vapnik, V. N. An overview of statistical learning theory. IEEE Transactions on Neural networks 1999, 10(5), 988–99.
	[20] Karatzoglou, A.; Smola, A.; Hornik, K. kernlab – An S4 Package for Kernel Methods in R. Journal of Statistical Software 2004, 11( 9).
	[21] Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays., Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(12), ...
	[22] Golub, T. R. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 1999, 286(5439), 531–537.
	[23] Frank, A.; Asuncion, A. UCI Machine Learning Repository, [http://archive.ics.uci.edu/ml], 2010, Irvine, CA: University of California, School of Information and Computer Science.
	[24] Ramentol, E.; Caballero, Y.; Bello, R. SMOTE-RSB∗: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowledge and Information Systems 2012, 33(2), 245–265.
	[25] Gao, M.; Hong, X.; Chen, S.; Harris, C. J. Probability Density Function Estimation Based Over-Sampling for Imbalanced Two-Class Problems, International Joint Conference on Neural Networks, 2012, pp 1–8.
	[26] Kerdprasop, N.; Kerdprasop, K. On the Generation of Accurate Predictive Model from Highly Imbalanced Data with Heuristics and Replication Techniques. International Journal of Bio-Science and Bio-Technology 2012, 4(1), 49–64.

