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Abstract: In general terms, it is not possible to establish symbolic
explicit analytic expressions of the operating point and transient anal-
ysis for circuits containing diodes modelled using an exponential func-
tion. Therefore, this work propose replacing the diode for an equivalent
circuit obtained by using a power series and a Taylor series consecu-
tively. Finally, we present a symbolic solution for some circuits that
include diodes; resulting for the best case: for DC analysis a relative
error of 1E-11 and for transient analysis a relative error < 5E-4.
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1 Introduction

Circuit designers do not posses analytic explicit expressions to perform anal-
ysis of diode circuits; that is the reason they analyse circuits, first, by using
crude approximations and, second, by an iterative process of numerical sim-
ulations allowing them to reach the required specifications of the design.

In [1], an explicit analytic expression for the current of a basic circuit
containing a voltage source, a resistor, and a diode was proposed. Never-
theless, such approximation cannot be generalized to circuits with several
meshes containing diodes. Therefore, due to the exponential characteristic
of the diode model, in general, it is not possible to establish symbolic ex-
plicit analytic expressions of the operating point and transient analysis of
circuits containing diodes. In [2] an analytic approximate solution of the AC
behaviour for a rectifier circuit based on a perturbation method is exposed;
nevertheless, the provided expression is not handy and not suitable to be
applied on large circuits. In consequence, this work propose a procedure to
generate approximate analytic expressions for transient and DC analyses for
circuits including diodes; which is based on power series and can be extended
to VLSI circuits.

This paper is organized as follows. In Section 2, we will perform the
DC and transient analyses of a basic circuit with one diode. In Section 3,
the analyses will be done for a circuit with two diodes. In Section 4, we
present some numerical simulations. In Section 5, we summarize our find-
ings and suggest possible directions for future investigations. Finally, a brief
conclusion is given in Section 6.

2 Circuit analysis of the basic nonlinear circuit

Fig. 1 (a) shows a circuit containing a voltage source (V), a resistor (R), an
inductor (L), and a diode (D). The voltage drop at the diode is

Vp = Vrn(i(t)/Is + 1), (1)

where I is the saturation current of the diode and Vi is the thermal voltage.
Now, we establish the nonlinear differential equation that describes the
transient behaviour for the circuit

Ri(t) + L% 4 vrln(i(t) /I, +1) =V =0,  i(0) = A. (2)

Equation (2) does not have analytic solution due to the natural logarithm
term from the diode model. Nevertheless, it is possible to establish a reason-
able approximation expanding (1) to a power series with respect to I, giving
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Fig. 1. a) Basic cell, b) Proposed equivalent diode model,
¢) DC scheme of two mesh circuit, and d) Tran-
sient scheme of two mesh circuit.
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Given that Iy has values in the order of 1E-12 (for silicon diodes), it is
possible to discard all the terms but first in (3)

I3+ 0 (134) . (3)

Vp=VrIn (%) . (4)
Expanding (4) the result is

Vo= Vr In (% + 2 (i() - B) - (%) (i(t) - B)? .
+§ (% (i(t) - B)® + O ((i(t) - B)*)

where B is the current at the expansion point. If i(¢) is close to B, then it
is possible to use the first two terms of the series and discard the rest of the
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terms.
Vp=Vrn(2)+ Y (i(t)—B), B>0 (6)

Therefore, using (6), we can rewrite equation (2)

Ri(t) + L% 4 v In(B/I,) + (Vi / B)(i(t) = B) =V =0, i(0) = A.  (7)

The solution for (7) is

N . (RB+ Vp)t
i(t) = ige + (A — ige) exp ( BT , (8)
where 74, is
B(V —Vpln(B/I,
ide = (V= VrIn(B/L) +Vr) =, > Vo In(B/I,) — V. (9)

RB + Vr ’

Equation (8) represents the transient for the nonlinear circuit in Fig. 1 (a)
and (9) represents the steady state of the transient, that is, the DC current
value of the circuit. By inspecting (5) or (6) we can conclude that the best
approximation for (9) is when we select B right at the operating point, thus,
equalling i4. = B in (9) and solving for B, we obtain

idc =B = Is exp (V/VT — W((RIS/VT) exp (V/VT))). (10)

where W represents the Lambert W function.

The value obtained for B by evaluating (10) can be used as expansion
point for the approximate current formula (9).

In [1], an analytic expression for the current in the circuit shown in
Fig. 1 (a) is formulated

(11)

ive = I + (Vi) RYW((I,R/Vir) exp (w) .

Vr

In fact, using a numerical example we will show in Section 4 that the
error between the exact current (11) and the approximate (10) is quite low.

By using (6) is possible to build an approximate circuital model for the
diode (as it can be seen in Fig. 1 (b))

B
Vpe = Vrln (I_) — Vr,
s Vin > VpE (12)
Vr
Rpe = B

where Vpg is an independent voltage source, Rpr an equivalent linear re-
sistor and Vy, results from the Thevenin equivalent seen between the diode
terminals. Such model may be employed to perform approximate analysis
on DC and transient by means of mesh circuit analysis techniques, MNA [3],
among others.
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3 DC and transient analysis for two mesh circuit with diodes

Fig. 1(c) shows a circuit composed by two identical diodes (D; and Dy),
two resistors (R; and Rz), and two voltage sources (Vi and V). Applying
loop analysis and approximate circuital model (see Fig. 1 (b)), we obtain the
following solution

i1=(1/D)(—R1B1B2(Vi + Vo — VpIn (By/Is) + V)

—Bl((R1 + R2)B2 + VT)(Vl —Vrin (Bl/Is) + VT)), (13)
and
iz = (1/D)(Ba(R1 By + Vr)(Vi + Vo — VpIn (B2 /1) + Vr) (14)
—BIBQRl(‘/l — VT ln (Bl/Is) + VT)),
where
D= (RlBl + VT)((Rl + RQ)BQ + VT) — BlBgR%, (15)

where B; and Bs are Taylor series expansion points for currents i1 and o,
respectively.

The exact equations for the nonlinear transient of the circuit shown in
Fig. 1 (c) are established as

R (i1 (t) + ia(t)) + Ly (228 4 420y | yoin( (1) /1, +1) = Vi = 0,  (16)

and . ]
Ry (i1 () + ia(t)) + Lo (U542 + 930+
Raia(t) + Ly®2() 1 v 1n(12( VI +1) — Vi — Vo = 0.
where i;(0) = A; and i2(0) = As.
Likewise, by using (12) the approximate equations for the nonlinear tran-

(17)

sient for the circuit in Fig. 1 (c) are

Ri(i1(t) + ia(t)) + Ly (%20  di2t)y

+Vr ln(Bl/Is) + VT/Bl)(Zl( ) Bl) -V =0, (18)

and

R (i (£) + ia(t)) + L1 (2218 4 420y 4 pojy (1) +

dzg(t) (19)
Lo + VrIn(Ba/Is) + (Vr/B2)(i2(t) — B2) — Vi — V2 = 0.

where i1 (0) = A1, i2(0) = Aa, By, and By are Taylor series expansion points
for currents 7; and is.

Solving the equations system (18) and (19), and separating the steady
state term for i; and ig, we find exactly the same equations (13) and (14),
respectively.

4 Numerical simulations

For all the above cases we considered the diodes to have identical thermal
voltage Vpr = 0.02585V and saturation current I;=1E-12A. By choosing an
arbitrary expansion point B = 1 in (8), transient analysis was performed for
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Fig. 2. Numerical solution for (2) (dash-dot) against ap-
proximate solution (continuous line) (20), (21)
and (22). Time is in seconds and current in
Amperes.

the circuit in Fig. 1 (a) for two different cases (see Fig. 2 (a) and Fig. 2 (c)).
The results are the following approximations

i(t) = 0.9287579710 — 0.9287579710 exp (—100.2585¢), (20)
considering V7 = 10V, L1 = 0.1H, Ry = 104Q and A = 0A; and
i(t) = 0.0002327895521 + 0.0005672104479 exp (—40000.02585t). (21)

considering V7 = 10V, L1 = 1H, R =40k and A = 0.8E-3A.

From Fig. 2(a) and Fig. 2(c) can be seen that the exact solution (2)
and approximations ((20) and (21)) are very similar and exhibit a typical
asymptotic behaviour for this type of circuit. Besides, in general terms, the
present solution encompass good accuracy in the range of amperes down to
micro-amperes with an acceptable relative error margin (see relative error
from Fig. 2 (b) and Fig. 2(d)). The worst case for the relative error is found
in Fig. 2 (d), which has a maximum value of 0.02. Therefore, in case that a
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better precision is required, (10) should be evaluated, giving as result B =
0.0002375365310 (see Fig. 2 (e)); thus, the value for the current is

i(t) = 0.000237536531 + 0.000562463468 exp (—40108.82536621). (22)

Now, Fig. 2 (f) shows that the maximum relative error of (22) has been
reduced to 0.00045 against the relative error 0.02 obtained by (21). The DC
relative error value represented by a steady state term in (20) and (21) is
TE-6 and 2E-2, respectively.

Considering that the expansion point for the current was B = 1 (see
Fig. 2 (a) and Fig. 2(c)), becomes clear that as i4. moves away from that
value, the relative error increases. Nevertheless, for this case, the range of
practical values around the expansion point is quite wide because having
Taylor expansion at B = 1, an acceptable relative error was reached.

Also, for (22) the steady state absolute relative error is 1E-11, meaning
that using (10) to calculate expansion point B helps to increase accuracy,
where the exact DC value was calculated using (11).

Solving (18) and (19) using these parameter values V) = 15V, = 7V,
L1 = 0.1H, L2 = 0.01H, Rl =30 Q, R2 =60 Q, Al = 0.2A and A2 = OA, we
obtain the following transients

i1(t) = 0.1166513312 exp (—6005.170115¢)

23
—0.2766226475 exp (—300.2583830¢) + 0.3599713163, 23)

and

in(t) = —0.1166460458 exp (—6005.170115¢)

24
—0.0001253995687 exp (—300.2583830¢) + 0.1167714453. 24)

At steady state for (23) and (24), the relative error is 1.4E-4 and 3.2E-3,
respectively. Besides, the relative error of the transient for currents i (t) and
i2(t) shown in Fig. 3 (b) and Fig. 3 (d), is quite low.

In Fig. 3 (a) and Fig. 3 (c) are shown currents 41 (¢) and i2(¢) for the exact
transient (16) and (17)), and the approximate transient (23) and (24), re-
spectively. The expansion point for both cases is B; = 1y By = 1, providing
a low relative error (see Fig. 3 (b) and Fig. 3(d)); even though the currents
for the steady state are i1 = 0.3A and 75 = 0.12A.

5 Discussion

Approximate solutions for DC and transient analysis for circuits in Fig. 1 (a),
Fig. 1(c), and Fig. 1(d) showed low relative errors, even for regions away
from the Taylor series expansion point. Also, it was shown how to reduce,
significantly, the relative error by expanding Taylor series for the current to a
value closer (10) to the exact (11) (see Fig. 2 (e) and Fig. 2 (f)). Besides, the
approximate diode model (12) (see Fig. 1(b)) has the advantage that can
be used to explicitly formulate the currents for circuits containing several
meshes that includes diodes; while (11) does not allow performing general
analyses to larger circuits with diodes. In a future research, we will extend
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Fig. 3. Numerical solution of i; (16) and iz (17) (dash-
dot) against approximate solutions (continuous
line) (23) and (24), respectively. Time is in
seconds and current in Amperes.

the present work to analyse circuits with more devices like capacitors, current
sources, among others.

For a given diode circuit, if choosing arbitrarily expansion points and eval-
uating numerically the expressions for the currents, we obtain non-satisfactory
results (in terms of accuracy); it is possible to use the results as the new ex-
pansion points. This iterative procedure may produce a lower relative error.

Model (12) should be improved to overcome the restriction Vi, > Vpg,
in order to perform symbolic analysis for VLSI circuits composed by bipolar
transistors using the Ebers-Moll model.

Finally, analytic proposed approximations for DC and transient may be
used to perform more complex analysis like power consumption at the tran-
sient, operating point sensibility, temperature effects analysis, symbolic small
signal analysis [4], among others.

6 Conclusions

This work showed that by using power series is possible to establish an ap-
proximate circuital equivalent for the diode. Therefore, explicit expressions
can be obtained for transient and DC regimen, for electrical variables em-
anating from circuits containing: diodes, resistors, inductors, and voltage
sources. The main advantages for the obtained results are the low relative
error and the analytic expressions accurately reproduce the behaviour of the
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diodes in a circuit; thus, designers are capable to analyse, quantitatively, the
performance of the circuits under study.
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