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THE INFLUENCE OF ANISOTROPIC STIFFNESS ON THE CONSOLIDATION OF PEAT

C. ZWANENBURGi),ii) and F. B. J. BARENDSi),ii)

ABSTRACT

An analytical solution for the consolidation problem of an axially loaded triaxial sample including anisotropy in
stiŠness is presented. The solution shows that anisotropy in stiŠness strongly in‰uences the consolidation process. The
in‰uence of anisotropy in stiŠness is found in the initial pore pressure reaction, in the Mandel-Cryer eŠect and in the
consolidation coe‹cient. Measurements on conventional sized peat samples appear not to correspond to the analytical
solution. Besides drain resistance, literature presents two other explanations for this fact. These explanations are tested
in a large scale test set-up. It is found that induced permeability changes have a strong in‰uence. The possibility of
using the Mandel-Cryer eŠect for assessment of stiŠness parameters of peat introduces extra parameters to describe the
variations in permeability. For strongly over-consolidated samples, leading to a nearly constant permeability the
analytical solution ˆts perfectly to measurements.
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INTRODUCTION

Consolidation of soft soil is one of the main problems
of geomechanics. Many authors have studied consolida-
tion problems or related problems. Still, not all phenome-
na and their interaction are fully understood. One of
these phenomena deals with the redistribution of stresses.
This paper studies this phenomenon including anisotropy
in stiŠness for a consolidating axial symmetric soil sam-
ple. In LITERATURE OVERVIEW, a short literature
overview is presented. ANISOTROPIC SOIL BEHAV-
IOUR, PROBLEM DESCRIPTION and SOLUTION
discuss the analytical solution for the axial-symmetric
consolidation problem. MEASUREMENTS and
LARGE SCALE TESTING discuss test results.

LITERATURE OVERVIEW

The pioneers who discussed the in‰uence of a redistri-
bution of stresses to the pore pressure development
during consolidation are Mandel (1953) and Cryer (1963).
Cryer considers a spherical soil sample which is drained at
the outer radius. Due to an isotropic load increment the
outer radius will consolidate almost instantaneously
leading to volumetric strain in the outer skin of the
sample. The outer skin compresses the inner core of the
sample which still behaves undrained. Due to this
compression the pore pressure increases in the inner core
until consolidation reaches the inner part. Then
monotonic pore pressure decay follows. Mandel (1953)
shows equivalent results in a mathematical analysis. The

phenomenon of initial pressure rise is referred to as the
Mandel-Cryer eŠect. Gibson et al. (1964) show measure-
ments of this phenomenon. De Leeuw (1964, 1965) and
Kumamoto and Yoshikuni (1981) show the Mandel-Cryer
eŠect for axial-symmetric conditions, based on the Biot
solution for three-dimensional consolidation, see Biot
(1941, 1955, 1957).

Al-Tabbaa and Wood (1991) and Al-Tabbaa (1992)
discuss results of a numerical analysis and measurements
for axial symmetric conditions including plastic material
behaviour. Their analysis includes the in‰uence of the
strain condition at the top, free strain or uniform strain.
Both conditions can be used to reproduce the Mandel-
Cryer eŠect. However, for free vertical strain the
numerical analysis predicts an initial decay in pore
pressure preceding a reduced Mandel-Cryer peak in the
middle of the sample.

Abousleiman et al. (1996) present an analytical solu-
tion for plane strain conditions including cross-
anisotropic linear elastic material behaviour. The solu-
tion is illustrated by examples regarding soft rock. It is
found that anisotropy strongly in‰uences the Mandel-
Cryer eŠect. Chen et al. (2005) give a semi-analytical so-
lution to the axial-symmetric consolidation problem of a
transversely isotropic soil layer subjected to a uniform
circular load at ground surface.

This paper discusses the possibility of using measure-
ments of pore pressure development inside soft soil
samples, in particular peat, to derive information on the
level of anisotropy in stiŠness. Peat is an organic material
which, depending on the rate of humiˆcation, can be
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Fig. 1. Axial symmetric conditions
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considered as a ˆbrous material. Due to the strong heter-
ogeneity anisotropic stiŠness, parameters can hardly be
obtained by testing diŠerent soil samples taken in diŠer-
ent directions. If instead measurements of pore pressure
development can be used to derive information on the
level of anisotropy, an alternative assessment of material
behaviour becomes available.

ANISOTROPIC SOIL BEHAVIOUR

Extending the De Leeuw solution to anisotropic linear
elasticity requires an extension of Hooke's law. Assum-
ing cross-anisotropic conditions with the axis of symmet-
ry in vertical direction yields:

ei j＝Di jkls?kl (1)
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In which ei j represents the strain tensor, si j the stress
tensor, Eh the Young's modulus in horizontal direction,
Ev the Young's modulus in vertical direction, nvh the
Poisson's ratio for horizontal strain due to vertical strain,
nhh the Poisson's ratio for horizontal strain due to
horizontal strain, and Gvh the Shear modulus in vertical
plane. As shown by Brodeau (1946) ˆve is the minimum
number of parameters to describe cross-anisotropy, since
the shear modulus in the horizontal plane Ghh can be
expressed in Ghh＝Eh W2(1＋nhh).

Inversion of Eq. (1) gives:

s?xx＝Ae＋2Ghhexx＋Bezz,

s?yy＝Ae＋2Ghheyy＋Bezz,

s?zz＝(A＋B )e＋Dezz,

txy＝Ghhgxy

tyz＝Gvhgyz

tzx＝Gvhgzx

(2)

with:
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In which e represents the volumetric strain, t the shear
stress and g the shear strain. Note that for isotropic
conditions, Eh＝Ev＝E, Ghh＝Gvh＝G and nhh＝nvh＝n,
Eq. (2) reduces to s?ij＝ledij＋2meij, in which l and m are

the well-known Lam áe constants, l＝nEW[(1＋n)(1－2n)]
and m＝G.

PROBLEM DESCRIPTION

Figure 1 sketches the problem, with sb the applied
loading and qr the expelled pore water ‰ow. In solving
this consolidation problem the following is assumed;
uniform vertical strain leading to &ez W&z＝0 and &ez W&r＝
0, axial-symmetry leading to all &W&u＝0, eu＝0 and tzr＝
tzu＝tur＝0, the pore ‰uid is considered incompressible
and pore water ‰ow is described by Darcy's law. All stress
and strain are chosen positive for tension; pore pressure is
denoted by －sw.

The consolidation problem is solved for two diŠerent
sets of boundary conditions, ˆrst for the case of an
axially loaded triaxial sample and second for the isotropi-
cally loaded sample.

Conditions of equilibrium give in combination to
Eq. (2) after some elaboration:

[A＋2Ghh]:2e＝:2sw (3)

Since anisotropy in stiŠness does not in‰uence the storage
equation, it remains unaltered. The storage equation,
when neglecting the compressibility of the pore ‰uid, is
given by Verruijt (1969):

k
gw

:2sw＝
&e
&t

(4)

In which k represents the permeability, gw the volumetric
weight of the pore ‰uid and t time. Eliminating sw gives
the consolidation equation:

:2e＝
1
c

&e
&t

, c＝[A＋2Ghh]
k
gw

(5)

In which c is the consolidation coe‹cient for anisotropic
conditions.
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Table 1. Seven cases for visualisation of solution (6) and (7), K?WJ?
deˆned by Eq. (8)

Case
Eh Ev nhh nvh c K?WJ?

[kNWm2] [kNWm2] [—] [—] [10－6 m2Ws] [—]

a (isotropic) 1000 1000 0 0 1.02 0
b 5000 1000 0 0 5.10 0.38
c 1000 5000 0 0 1.02 －0.24
d 1000 1000 0 0.3 1.13 －0.11
e 1000 1000 0.3 0 1.12 0.08
f 5000 1000 0.3 0 5.60 0.45
g 1000 5000 0 0.3 1.04 －0.29

Fig. 2. Pore pressure development at rWR＝0.02 for axial-symmetric conditions a to according to Table 1
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SOLUTION

APPENDIX A discusses the analytical solutions for
Eq. (5). A more detailed discussion on the analytical solu-
tion is given in Zwanenburg (2005). This paper focuses on
the solution for the pore pressure development. For an
axially loaded sample the following is found:

sw

sb
＝

/

S
j＝1

«1－ J0(ljr )
J0(ljR )$ exp (sjt )

a＋b
(6)

with:
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2
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With J0 and J1 representing Bessel functions, r the
co-ordinate in radial direction, sb the applied load and
lj＝ －sj Wc in which sj represents the characteristics of
the Laplace inverse transformation, in which sj are the
roots of:
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Figure 2 visualises Eqs. (6) and (7) for seven diŠerent
combinations of stiŠness parameters, explained in Table
1 and k＝1×10－8 mWs. The solution, especially for case
d, converges slowly for small values for r and t.

Figure 2 shows the in‰uence of anisotropy in stiŠness
to the pore pressure development during consolidation.

The in‰uence is most distinct for the axially loaded sam-
ple, Fig. 2(a). The size of the Mandel-Cryer peak is
in‰uenced by the anisotropy as well as the initial pore
pressure reaction. This phenomenon is explained by the
fact that undrained soil behaviour can be considered as
constant volume deformation. For isotropic materials,
volumetric strain is only initiated by an isotropic stress
increment. Anisotropic materials, however, also show
volumetric strain due to a deviatoric stress increment.
Atkinson et al. (1990) present the following stress-strain
relationship:

« de

deq
$＝





1
K?

1
J?

1
J?

1
3G?






«dp?

dq
$ (8)

In which eq represents deviatoric strain, the d-sign
denotes increments and K?, J? and G? are stiŠness
parameters which can be expressed into Ev, Eh, nvh and
nhh, Atkinson et al. (1990). For isotropic materials J?
reaches inˆnity and volumetric and deviatoric stress and
strain components become uncoupled.

Equation (8) can be used to ˆnd an expression for the
initial pore pressure reaction. Initially the soil behaves
undrained, no pore water is expelled and volumetric
strain equals compression of the pore ‰uid. With porosity
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Fig. 3. Comparison between measurements and analytical solutions,
a, b, c, according to Table 1
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represented by n and the bulk modulus of pore water by
Kw, this yields:

e0＝
p?
K?

＋
q
J?
＝sw0

n
Kw

(9)

Inversion gives:

K?J?e0＝J?(p－sw0)＋K?q, sw0＝
Kw

n
e0

e0＝Ø n
nK?＋Kw

»Ø p＋
K?

J?
q»＝ n

Kw
sw0 (10)
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
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


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(11)

in which " represents the Skempton B-factor. Equation
(11) is also given in Chowdhury (1978) for "＝1. Equa-
tion (11) shows the in‰uence of anisotropy by the ratio
K?WJ?. For isotropic materials K?WJ?＝0 and the initial
pore pressure increment equals the isotropic load incre-
ment. Then the isotropic eŠective stress remains un-
altered. For K?WJ?À0 the initial pore pressure reaction
exceeds the isotropic case, while for K?WJ?º0 a smaller
or even negligible initial pore pressure is found. K?WJ?À0
is found when EhÀEv and nhh and nvh remain small. It
should be noted that for a triaxial sample, loaded by an
axial load increment sb, Eq. (11) reduces to sw Wsb＝1W3
＋K?WJ?. Equation (11) equals Eqs. (6) and (7) for t＝0,
the initial response.

MEASUREMENTS

In order to validate Eqs. (6) and (7) tests are conduct-
ed. Since the Mandel-Cryer eŠect is found in the middle
of the sample the pore pressure needs to be measured
there. This is achieved by using a miniature pore pressure
transducer connected to a needle. The needle is pierced
through the membrane just reaching the middle. The
transducer is ˆxed to the membrane using glue, which
also prevents leakage of pore water. A stiŠ impermeable
top cap and footing encloses the sample, providing the
uniform strain conditions. Filter paper drains are placed
between membrane and sample for radial drainage
conditions.

In total 20 samples are tested. The samples, with
diameter d＝6.6 cm and height h＝8 cm, are retrieved at
Vinkeveen, near the city Utrecht, The Netherlands at a
depth of approximately 1 m. After trimming the samples
remaining parts are used to determine the water content
W＝5.2 [—], loss on ignition N＝0.57 [—], solid density
rs＝1690 [kgWm3]. The wet density of the tested samples
was on average, after testing r＝1040 [kgWm3].

In the ˆrst test series the samples are isotropically over-
consolidated to OCR＝3. Figure 3 shows two typical
measurements for this series marked by the open circle
and asterix. The load increment is applied undrained, in
the previous phase. The undrained loading phase is not
shown in Fig. 3 except for the ˆnal value for sw Wsb. It is
considered to represent the initial value sw0 given by

Eq. (11) or by Eq. (6) at t＝0. Since on a logarithmic scale
t＝0 is not given, the initial value for sw Wsb is plotted at
the left side of vertical axis. Equation (11) shows for
isotropic material behaviour an initial value for sw Wsb

equal to 1W3. So Fig. 3 seems to indicate that the isotropi-
cally over-consolidated samples do not show anisotropic
behaviour. Furthermore only a minor peak is found
preceded by an initial decrease in pore pressure. Besides
triaxial tests, oedometer and simple shear tests are
conducted on horizontally and vertically retrieved sam-
ples. No signiˆcant diŠerence in stiŠness parameters is
found in any of these tests. This indicates that the
retrieved samples do not behave anisotropic initially, or
that a possible minor anisotropy is removed when ap-
plying the isotropic pre-consolidation.

A second test series is conducted on axially pre-loaded
samples. Figure 3 shows one typical measurement indi-
cated by triangles. With s?ac the axial stress level at which
the sample is pre-consolidated and the sa? the actual axial
eŠective stress, the ratio s?ac Wsa? equals 5.4. The initial
value for sw Wsb equals 0.6, indicating anisotropic behav-
iour of the tested sample. Only a minor Mandel-Cryer
peak is visible.

It is remarkable that prior to the MC peak the pore
pressure seems to decay such that the maximum peak
value remains below the initial pore pressure reaction.
Figure 3 repeats some of the analytical solutions present-
ed by Fig. 2. Figure 3 shows a clear diŠerence between
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Fig. 4. In‰uence of drain resistance for diŠerent sample sizes, pore pressure development at r＝0, k＝1.5×10－7 mWs, k?＝1×10－5 mWs
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measurements and the analytical solutions. The measure-
ments show an initial decay followed by a peak. The
analytical solution presents a steeper slope after the peak
then found by measurements. The analytical solution can
not be ˆtted such that it represents correctly the initial
pore pressure, the peak and the slope of the pore pressure
after the peak. Three possible explanations are proposed
to explain these diŠerences between measurements and
analytical solution. The ˆrst explanation is drain
resistance violating the boundary condition sw＝0 at
r＝R. The drain pressure pd follows from:

d 2pd

dz 2 ＝
q0gw

k?d
, q0＝－

k
gw

&sw

&r

with pd＝0 at z＝h,
&pd

&z
at z＝0 (12)

With k? representing drain resistance and d drain thick-
ness. Implementing the boundary condition sw＝pd at
r＝R yields a partial diŠerential equation that can not be
solved analytically. Instead an approximation method
known as the Direct Method, Barends (1999), is used.
Validation of this method shows that the approximation
tends to underestimate the Mandel-Cryer peak and
overestimates the hydrodynamic period. However the
approximation clearly shows the relevant tendencies
caused by in‰uence of the drain resistance.

Figure 4 shows that the approximation for the analyti-
cal solution including drain resistance leads to sample size
eŠects. For small samples, Fig. 4(a), the Mandel-Cryer
peak is only found at the top of the sample where pd＝0
during the consolidation process. For larger samples
Fig. 4(b), the Mandel-Cryer peak is found at each level,
however the maximum value is reduced at each level. In
the conventional tests the pore pressures are measured
inside the specimen at just one level, i.e., the middle of
the sample. So the experiments can not support nor reject
the tendencies presented by Fig. 4. However, Fig. 4 shows
that drain resistance is an eŠect that should be considered
when analysing the measurement data.

A second explanation is presented by Al-Tabbaa and
Wood (1991), Al-Tabbaa (1992). Here results of numeri-
cal simulation of radial consolidation for axial symmetric
conditions are presented for normally consolidated sam-
ples. In absence of the uniform strain condition an initial
pore pressure reduction is found which is explained by
plasticity. Although, for the measurements presented in
Fig. 3 the sample is enclosed by a stiŠ plate at the top and
bottom, the pore pressure is measured in the middle of
the sample at half the sample height. Probably, the
uniform strain conditions does not hold at z＝hW2 and
OCR＝3 is not enough to prevent, locally, occurrence of
plasticity.

The third explanation is a non-homogeneous
permeability. Gibson et al. (1990) present a numerical
simulation of the consolidation of a spherical sample
including a variable permeability. Due to initial consoli-
dation the permeability in the outer radius is reduced in
an early stage of the consolidation process causing a
retardation in the pore water ‰ow from the inner core of
the sample. This leads to a reduction in peak value and a
milder slope in pore pressure development. These
observations correspond to the measurements presented
in Fig. 3.

LARGE SCALE TESTING

To test the scale eŠects shown by Fig. 4 a large scale
triaxial test is conducted. The sample dimensions are
presented by Table 2. A stiŠ plate is placed at the top and
bottom of the sample. The pore pressure transducer is
connected to the stiŠ plate at the top of the sample
protruding into the peat by approximately 3 cm.

The sample is retrieved from a peat embankment in
Wilnis, The Netherlands, Bezuijen et al. (2005). After
ˆnishing the test, the water content W＝0.544 [—]
density r＝1.51 tWm3 and loss on ignition N＝0.80 [—]
are derived.

Figure 5 shows the applied loading path. After consoli-
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Table 2. Initial and ˆnal sample dimensions

Parameter Initial value Final value

Diameter [m] 0.42±0.005 0.42±0.005
Height [m] 0.61±0.005 0.50±0.005
Weight [kg] 77.5±0.05 67.4±0.05
Density [kgWm3] 940±4 960±6

Fig. 5. Applied loading path

Fig. 6. Pore pressure development at r＝0 after an axial load incre-
ment
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dation at 10 kPa a back-pressure of 100 kPa is used. In
step 1, the sample is consolidated at an isotropic cell
pressure of 113 kPa followed by reduction in cell pressure
is reduced to 110 kPa followed by a swelling phase. In
step 2 an undrained axial load is applied, followed by a
consolidation phase. The pore pressure development
found in this consolidation phase is presented by Fig. 6.
Next the sample is unloaded by removing the axial load
undrained followed by a swelling phase. Figure 6 presents
the pore pressure development found in this phase. In
step 3 the same sample is consolidated under a deviatoric
pre-load. With sv? the actual vertical eŠective stress and
s?vc the maximum eŠective vertical stress, the level of axial
pre-loading is presented by sv?Ws?vc＝5.4, followed by an
unloading and swelling phase. A small isotropic load
increment is applied in step 4, followed by a small axial
load increment, step 5. This increment is applied un-
drained followed by a consolidation phase, which is
shown by Fig. 6.

Figure 7 shows the results for curve ˆtting Eqs. (6) and
(7) to the measurement data from steps 4 and 5. The ˆtted
stiŠness parameters are presented next to the graph. The
actual value for Ev is found from the deviatoric pre-
consolidation phase, by the initial tangent line of the
q－ea curve. Next by trial and error, values are found for
Eh, nhh and nvh which represent the initial excess pore
pressure and the peak value. Finally, a value for the
permeability needs to be found such that the time of oc-
currence of the peak as well as the slope of the pore
pressure development correspond to the measurements.

From the test results the permeability could not be found
independently from the stiŠness parameters since all steps
consist of either undrained loading or consolidation. The
test set-up did not allow for a classical constant head or
falling head test. Instead a number of constant rate of
strain oedometer tests, CRS tests, are conducted on sam-
ples retrieved in the vicinity of the location where the
large sample has been retrieved. The measurements are
used to ˆt Eq. (13), in which k0 represents the permeabil-
ity at e0 and x is a coe‹cient to be derived from measure-
ments;

k＝k0 exp (－xe) (13)

In total 10 samples have been tested. On average
x＝8.5 is found indicating a strongly varying permeabil-
ity and k0＝4.5×10－8 mWs. These measurements were
used in the analysis of the large scale test. For a proper
reproduction of the time of occurrence of the peak and
the slope of pore pressure development some adjustment
of k-value is needed. Equations (6) and (7) include a
constant k-value. Therefore, Fig. (7) presents a diŠerent,
actual, value for each loading step. This value is assumed
to be constant during the loading step for which it is
derived. The adjustment can be fully explained by the
heterogeneity of peat. It should be noted that large peat
samples will include a larger heterogeneity scale which, in
general, lead to a larger permeability for larger samples.

For step 2 however no accurate ˆt can be found. Again
the analytical solution will overestimate the peak and
predict a steeper slope. The previous section discusses
three optional causes for the diŠerences between analyti-
cal solution and measurements. Firstly, to check the
validity of boundary condition, sw＝0 at r＝R, the drain
pressure is measured in the tube connecting the porous
stone to the pore water collection device. Measurements
indicate that the drain resistance is negligible. All cases
clearly show the Mandel-Cryer eŠect. Secondly, the
initial decrease in pore pressure found in the small sample
triaxial tests is absent.
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Fig. 7. Analytical ˆt for measurement data step 4 and 5

Fig. 8. Illustration of decay in permeability during the test, based on
axial strain
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Thirdly, as mentioned earlier, a non-homogeneous
permeability is found in the CRS tests on conventional
sized samples retrieved from the direct surroundings of
the large-scale sample. To get an impression on the
development of the permeability during the test Eq. (13)
is applied in combination to the deformation measure-
ments during the test. Due to malfunction of the triaxial
device in the early stages of the test a continuous
measurement of expelled pore water volume is not
available. However since radial deformations remain
small the vertical strain gives a reasonable indication for
volumetric strain. Using Eq. (13), Fig. 8 illustrates the
development in k during the test for k0＝4.5×10－8 mWs
and x＝8.5. It should be noted that the value for k
presented in Fig. 7 exceeds the value for k0 found for the
CRS tests.

Figure 8 shows that the permeability decays during the
steps 1–3 indicating a strong in‰uence for these steps.

After the deviatoric pre-consolidation the permeability is
strongly reduced which invokes retardation of the con-
solidation process. This is in agreement to Figs. 6 and 7.

CONCLUSIONS

Anisotropy in stiŠness strongly in‰uences the pore
pressure development during consolidation of a triaxial
sample. This is mainly found by the initial pore pressure
reaction and the size of the Mandel-Cryer eŠect.

The conventional sized samples show only a negligible
Mandel-Cryer eŠect. A large scale sample shows clearly
the Mandel-Cryer eŠect for axially pre-consolidated con-
ditions. The analytical solution can perfectly be ˆtted to
the measurements on the large scale tests.

Three possible explanations are proposed by literature
why measurements on conventional triaxial samples for
peat do not correspond to the analytical solution. These
are drain resistance, non uniform axial deformation and
varying permeability. The ˆrst two might be solved by a
proper test set-up. However the variability in permeabil-
ity depends on the tested material and load history. So,
for peat, measurements of the Mandel-Cryer eŠect is not
appropriate for the assessment of anisotropic stiŠness
parameters.
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APPENDIX: ANALYTICAL SOLUTION OF THE
PORE PRESSURE DEVELOPMENT

SOLUTION discusses the analytical solution to the
cross-anisotropic consolidation problem given by Eq. (5).
This appendix discusses the derivation of the analytical
solution Eqs. (6) and (7). The following symbols are
used:

A, B, D, 2Ghh＝StiŠness parameters deˆned in Eq. (2)
C1, C2, C3, C4＝Integrational constants to be solved by

boundary conditions
J0, J1, Y0, Y1＝Bessel functions

e, e0＝volumetric strain, initial volumetric

strain
K?, J?＝StiŠness parameters deˆned by Eq. (8)

k＝permeability
t＝time

r, u, z＝co-ordinates of axial symmetry
R＝radius of sample, see Fig. 1
s＝parameter in Laplace transform

ur, uz＝displacement in radial, respectively in
vertical direction as deˆned by Fig. 1

gw＝volumetric weight of water
sr, su, sz＝total stress in r, u and z direction

sr?, su?, sz?＝eŠective stress in r, u and z direction
sb＝load applied at the top, see Fig. 1

The consolidation problem is given by Eq. (5):

:2e＝
1
c

&e
&t

, c＝k[A＋2Ghh]Wgw (14)

Equation (14) can be solved by the Laplace transforma-
tion. With the overbar denoting the Laplace transform,
the following is found:

:2 še＝
1
c

[s še－e0], e0＝0

:2 še＝
s
c

še, ª
&2 še
&r 2＋

1
r

& še
&r
－

s
c

še＝0 (15)

Equation (15) is solved by a standard solution:

še＝C1 J0(lr )＋C2Y0(lr ), l＝
－s
c

(16)

Application of the Laplace transform to Eq. (3) yields:

[A＋2Ghh]:2 še＝:2 šsw, :2 še＝
:2 šsw

A＋2Ghh

še＝
1

A＋2Ghh
šsw＋C3, :2C3＝0 (17)

Combination of Eq. (16) to Eq. (17) yields:

šsw＝[A＋2Ghh][C1 J0(lr )＋C2Y0(lr )－C3] (18)

The volumetric strain is deˆned by:

še＝
1
r

&(r šur)
&r

＋
& šuz

&z
(19)

which yields with Eq. (16):

1
r

&(r šur)
&r

＝C1 J0(lr )＋C2Y0(lr )－
& šuz

&z

Integration of Eq. (19) gives:

šur

R
＝C1

J1(lr )
lR

＋C2
Y1(lr )

lR
－

r
2R

& šuz

&z
＋

C4

rR
(20)

DiŠerentiation of Eq. (19) results in:
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še＝C1 J0(lr )＋C2Y0(lr ) (22)

šsw＝[A＋2Ghh][C1 J0(lr )＋C2Y0(lr )－C3] (23)

šs?r＝A[C1 J0(lr )＋C2Y0(lr )]＋2Ghh






C1 «J0(lr )－
J1(lr )

lr $
＋C2 «Y0(lr )－

Y1(lr )
lr $－ 1

2
& šuz

&z
－

C4

r 2






＋B
& šuz

&z
(24)

šs?u＝A[C1 J0(lr )＋C2Y0(lr )]＋2Ghh «C1
J1(lr )

lr
＋C2

Y1(lr )
lr $＋2Ghh « C4

r 2 －
1
2

& šuz

&z $＋B
& šuz

&z
(25)

šs?u＝(A＋B )[C1 J0(lr )＋C2Y0(lr )]＋D
& šuz

&z
(26)

šsr＝ šsr?＋ šsw, šsu＝ šsu?＋ šsw, šsz＝ šsz?＋ šsw (27)

Since še and šsr have a ˆnite value at r＝0 it is found that C2＝C4＝0. Three unknown parameters, C1, C3 and & šuz W&z are
to be solved by boundary conditions. In general the boundary conditions are given by:

a) at r＝R sw＝1, ª šsw＝ š1

b) at r＝R sr＝2, ª šsr＝ š2

c) at z＝h 1WAf2prsz dr＝3, ª 1WAf2pr šsz dr＝ š3

From boundary condition a and Eq. (23) the following is found:

C3＝C1 J0(lR )－
š1

A＋2Ghh
(28)

Equations (27), (24), (23), (28) and boundary condition b yield:

& šuz

&z
＝

C1

B－Ghh « (A＋2Ghh) J0(lR )－2Ghh
J1(lR )

lR $＋ š1＋ š2

B－Ghh
(29)

Equations (27), (26), (23), (28), (29) and boundary condition c yield:

C1＝

D( š1＋ š2)
B－Ghh

－ š3－ š1

2
J1(lR )

lR «B－2Ghh＋
DGhh

B－Ghh $＋(A＋2Ghh) J0(lR ) «1－ D
B－Ghh $

(30)

Axial Loading
The solution for the pore pressure development the axially loaded sample is elaborated. The corresponding boundary
conditions are presented by š1＝ š2＝0, š3＝ šsb. Equation (23) is then given by:

šsw

sb
＝

J0(lR )－J0(lr )

s « 2J1(lR )
[A＋2Ghh]lR « (B－2Ghh)＋

DGhh

B－Ghh $＋J0(lR ) Ø1－ D
B－Ghh

»$
(31)

The Heaviside expansion theorem is used to ˆnd the inverse transform of Eq. (31). A removable root is found for s＝0,
the other roots satisfy the following equation:

J1(lR )
J0(lR )

＝
1
2






A＋2Ghh

B－2Ghh＋
DGhh

B－Ghh






« D
B－Ghh

－1$ lR (32)

The values for s that fulˆl Eq. (32) are indicated by sj. The expression for sw is now given by:

sw

sb
＝

/

S
j＝1

«1－ J0(ljr )
J0(ljR ) $ exp (sjt )

« B－2Ghh＋DGhh W(B－Ghh)
A＋2Ghh $＋« ljR

2
J1(ljR )
J0(ljR )

－1$« D
B－Ghh

－1$
(33)
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Isotropical Loading
Using Eqs. (18), (28) and (30) the pore pressure development for isotropic loading is found. For the corresponding
boundary conditions 1＝0 and 2＝3＝sb it follows that:

šsw

sb
＝

J0(lR )－
B－Ghh－D

B－Ghh
J0(lr )

s « 2J1(lR )
[A＋2Ghh]lR « (B－2Ghh)＋

DGhh

B－Ghh $＋J0(lR ) Ø1－ D
B－Ghh

»$
(34)

The inverse transform gives:

sw

sb
＝

/

S
j＝1

B－Ghh－D
B－Ghh «1－ J0(ljr )

J0(ljR ) $ exp (sjt )

« B－2Ghh＋DGhh W(B－Ghh)
A＋2Ghh $＋« ljR

2
J1(ljR )
J0(ljR )

－1$« D
B－Ghh

－1$
(35)

Note that the reciprocal value for the constant (B－Ghh－D )W(B－Ghh) can be rewritten, using Eq. (2):

B－Ghh

B－Ghh－D
＝－Ø 1

3
＋

K?

J? »
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