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INTRODUCTION

Complex host–parasite interactions are often greatly
altered by human activities. Translocation of live ani-
mals and destruction of environments are just a few
such activities altering parasite communities which
may lead to outbreaks of emerging diseases (Patz et al.
2000). In the aquatic environment, pollution has a sig-
nificant impact on host–parasite associations (Khan &
Thulin 1991, Poulin 1992, Williams & MacKenzie 2003,
Sures 2008). Metals, pesticides, sewage effluents and
other pollutants directly affect ectoparasites and free-
living stages as well as indirectly influence endopara-
sites through interference with the hosts’ physiological

homeostasis or immune defense (Khan & Thulin 1991).
Pollutants may also alter food web structure and the
abundance of intermediate hosts, resulting in signifi-
cant changes in the transmission dynamics of parasites
(Lafferty 2008). 

Alterations of parasitic diversity and abundance as-
sociated with aquatic pollution have been documented
in various field and laboratory studies. For example,
the intensity and diversity of parasites on the Spanish
marine fish Boops boops significantly increased shortly
after an oil spill (Perez-Del-Olmo et al. 2009); parasite
species richness in freshwater fishes has been posi-
tively associated with eutrophication in Finnish lakes
(Valtonen et al. 1997); and Coors et al. (2008) experi-
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mentally demonstrated that pesticides increase the vir-
ulence of a bacterium and microsporidium for their
crustacean host, Daphnia magna. The abundance of
ectoparasites and protozoans are generally positively
correlated, to some extent, with the degree of pollution
(MacKenzie et al. 1995, MacKenzie 1999, Khan 2003),
while numbers of endoparasitic helminths tend to de-
cline under polluted conditions (Poulin 1992, Marco-
gliese & Cone 1997, MacKenzie 1999, Marcogliese
2005). An increment in ectoparasites and protozoans
likely attributed to impaired immune response of the
host and the reduction of endoparasitic helminths may
be due to toxic effects on intermediate hosts or free-
living stages. Despite the accumulating knowledge on
the effects of environmental pollution on host–parasite
systems, very little is known regarding whether pollu-
tion affects infection dynamics of myxozoans, obligate
heteroxenous endoparasites.

Nearly all myxozoans are found in the aquatic envi-
ronment (Canning & Okamura 2003, Lom & Dykova
2006, Bartholomew et al. 2008), though some infect ter-
restrial mammals (Prunescu et al. 2007). Therefore,
their transmission, development and propagation are
directly affected by aquatic pollution. In the present
study, we used the Myxobolus cerebralis –Tubifex
tubifex system to investigate the effects of a metal tox-
icant on myxozoan infection. The parasite, M. cere-
bralis, is the most well-studied myxozoan as it causes
the notorious salmonid whirling disease that has been
causing tremendous losses in wild and cultured trout
populations in North America (Nehring & Walker 1996,
Bartholomew & Reno 2002).

The life cycle of Myxobolus cerebralis involves 2
alternate hosts: salmonid fish and the cosmopolitan
freshwater oligochaete Tubifex tubifex (Markiw &
Wolf 1983, Wolf et al. 1986). Following ingestion by the
oligochaete, the parasite undergoes development and
propagation between the gut epithelial cells (El-Mat-
bouli & Hoffmann 1998). Within several months,
numerous triactinomyxon spores (TAMs) are released
into the water and subsequently infect the suitable fish
host (El-Matbouli et al. 1999, Gilbert & Granath 2001,
Stevens et al. 2001). Infection in T. tubifex may persist
for the duration of the worm’s lifespan and release of
TAMs can occur periodically over the span of at least a
few years (Gilbert & Granath 2001). Infected worms
suffer from suppressed feeding, reduced growth
(Stevens et al. 2001, Kerans et al. 2004, Steinbach
Elwell et al. 2006, Rasmussen et al. 2008) and inhibited
reproductive development (Shirakashi & El-Matbouli
2009), though no obvious parasite effects on survival
have been shown (Shirakashi & El-Matbouli 2009).
Several studies have revealed the importance of envi-
ronmental factors such as temperature and substrate
(Kerans & Zale 2002) and water flow (Hallett &

Bartholomew 2008) on the establishment and develop-
ment of the parasite within T. tubifex.

Tubifex tubifex is highly tolerant to polluted environ-
ments. Understanding the relationship between T.
tubifex and Myxobolus cerebralis under polluted con-
ditions may be important for predicting outbreaks of
whirling disease. However, T. tubifex is highly poly-
morphic and its susceptibility to pollutants and the par-
asite is highly variable. To date, 6 mitochondrial lin-
eages (I to VI) of T. tubifex have been distinguished
(Beauchamp et al. 2001, Sturmbauer et al. 1999), and
only lineages I (in some cases) and III are susceptible to
M. cerebralis (Beauchamp et al. 2002, 2005, 2006,
DuBey et al. 2005). Moreover, tolerance against pollu-
tants differs between the lineages (Sturmbauer et al.
1999). In the present study, we used a monoculture of
lineage III T. tubifex to investigate whether cadmium
(Cd) affects its susceptibility to M. cerebralis and if its
tolerance against the metal is influenced by infection
with the parasite.

MATERIALS AND METHODS

Study species. Tubifex tubifex were originally col-
lected from a sewage pond in Aufseß (Bavaria, Ger-
many) and had been maintained in the laboratory for
over 2 yr. The stock culture consisted of various
oligochaete species including T. tubifex lineages II and
III, thus a subculture of the susceptible T. tubifex was
initiated. The mixed culture of worms was experimen-
tally exposed to Myxobolus cerebralis myxospores and
individuals confirmed to release TAMs were selected.
Because infected T. tubifex are reproductively im-
paired (Shirakashi & El-Matbouli 2009), they were first
kept at 28 ± 2°C to overcome the infection (El-Matbouli
et al. 1999). Monoculture of the susceptible strain was
started using cocoons produced by these worms. Based
on the molecular analyses on sampled worms, the cul-
ture was identified as mitochondrial lineage III, which
is relatively insensitive to Cd according to Sturmbauer
et al. (1999). To avoid contamination by pollutants in
the natural sediment, an artificial substrate consisting
of quartz sand (<250 um) and Kaolinite clay (approxi-
mately 8:2 in volume) was used. The culture was held
in an 84 l plastic container with flow-through water at
15 ± 2°C. A mixture of Tetramin flake fish food, algae
pellets and dried artemia was given weekly.

Myxospores of Myxobolus cerebralis were obtained
from experimentally infected juvenile rainbow trout
that were raised from eggs under specific pathogen-
free (SPF) conditions. The myxospores were collected
by homogenising head and skeletal tissue of 5 fish
showing typical symptoms of whirling disease. The
spores were counted using a haemocytometer.
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Long-term Cd exposure experiment. Effects of Cd on
the susceptibility of Tubifex tubifex to Myxobolus cere-
bralis were assessed by infecting worms in various con-
centrations of Cd. Solutions of 0, 0.01, 0.1, 1.0 and
2.0 mg l–1 were prepared with CdCl2·2/5H2O and tap
water. The worms were assigned to one of the concen-
trations in a plastic container (8 cm diameter, 9 cm
depth) with 50 ml quartz sand and 150 ml solution. Four
replicate containers were prepared for each concentra-
tion. Worms were first acclimated to the experimental
conditions for 1 wk without food and then 50 000 myx-
ospores were added (1000 spores per individual). Slight
aeration was provided and 1 ml of food was given every
week. To avoid loss of myxospores, Cd solutions were
renewed twice during the experiment at 1 and 2 mo
post exposure. After 3 mo, TAM production was
checked every 2 wk and the experiment was termi-
nated at 15 wk, 2 wk after the first TAM detection.

At the end of the experiment, the substrate was
sieved to count survivors, offspring and cocoons in
each container. The survivors were placed individually
in the wells of 48 well microtiter plates with 1 ml water
and the proportion of autotomised individuals, infec-
tion prevalence and number of TAMs produced within
48 h were determined. Worms with a missing or appar-
ently regenerated (abnormally short) caudal body part
were considered ‘autotomised’. The total number of
TAMs produced by individuals was calculated from
the average spore count in 2 sets of 10 µl from 1 ml
solution in each well.

LC50 toxicity test. The effects of Myxobolus cere-
bralis on the sensitivity of Tubifex tubifex to acute cad-
mium toxicity were investigated. The mortality of
infected and uninfected worms in various concentra-
tions of Cd was assessed and the lethal concentrations
(LC50) were calculated. Both groups of worms were
originally from the same culture, but the infected
group was experimentally exposed to fish homogenate
containing myxospores. The controls were exposed to
the same amount of tissue homogenate from unin-
fected SPF fish. The worms were maintained under the
same conditions for approximately 4 mo and were indi-
vidually checked for infection in a 48 well microtiter
plate. All infected individuals were releasing TAMs at
the time of the experiment and controls were free of
the parasite.

The 96 h LC50 bioassay was conducted using Cd con-
centrations of 0, 0.01, 0.03, 0.05, 0.07 and 0.10 mg l–1

(CdCl2·2/5H2O in distilled H2O). The preliminary trial
showed that worms can survive in distilled H2O for 1
wk. For each concentration, 10 infected and 10 control
worms were individually placed in a 24 well microtiter
plate with 1 ml solution and kept at 20 ± 2°C under
ambient light. The solutions were replaced every 24 h
with freshly prepared ones and no food was given dur-

ing the experiment. Numbers of dead individuals were
noted every 24 h until the experiment was terminated
at 96 h. Worms were considered dead if they showed
no sign of movement and more than 90% of the body
was degenerated. The entire experiment was repeated
4 times.

Statistical analyses. The data were tested for nor-
mality and homogeneity of variance using the
Shapiro-Wilks and Bartlett’s tests. ANOVA was used
for comparison of the survival rate between different
Cd concentrations in the long-term experiment. The
infection prevalence of Cd-treated groups and control
groups was compared using Dunnett’s multiple com-
parison test. The effects of Cd on TAM production
was tested using the Kruskal-Wallis test followed by
Steel’s nonparametric multiple comparison test. In the
toxicity test, the average survival rate between unin-
fected and infected Tubifex tubifex in each Cd con-
centration was compared using Kaplan-Meier survival
analysis. Mortality at 72 and 96 h was subjected to
probit analysis to obtain the LC50. These analyses
were performed using JMP, StatPlus and Kyplot sta-
tistical software.

RESULTS

Long-term Cd exposure 

The metal affected neither survival nor reproduction
of the oligochaetes, but some effects on susceptibility
to the parasite were observed. The overall average sur-
vival rate was 79.3 ± 14.2% and the survival was not
significantly different between groups (ranged from
70.5 ± 21.44% in 0.01 mg l–1 to 83.0 ± 17.01% in 1.0 mg
l–1). The mean infection prevalence exceeded 60% in
all groups. The control showed the lowest prevalence
and the highest prevalence was observed in the 1.0 mg
l–1 group (Fig. 1). However, the difference between
treatment group and control was not statistically sig-
nificant (Dunnett’s test, p > 0.05). The average num-
bers of produced TAMs differed significantly between
groups (Kruskal-Wallis, p < 0.0001; Fig. 2). All the Cd-
exposed groups produced significantly greater num-
bers of spores than the unexposed control (Steel’s test:
0.01 mg l–1, t = –7.19, p < 0.01; 0.1 mg l–1, t = –3.93, p <
0.01; 1.0 mg l–1, t = –7.19, p < 0.01; 2.0 mg l–1, t = –4.63,
p < 0.01). The oligochaetes exposed to Cd showed a
lower autotomy rate than the control (Fig. 3). Most
autotomised worms possessed a regenerated posterior
end, indicating that autotomisation occurred relatively
early in the experiment. The numbers of offspring var-
ied considerably among replicates, ranging from 2 to
428, and there were no significant differences between
treatment groups.
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LC50 toxicity 

The toxicity assay showed that uninfected Tubifex
tubifex were more susceptible to Cd than those
infected by Myxobolus cerebralis. Kaplan-Meier
analysis revealed that the survival of the uninfected
controls was significantly lower than that of the
infected groups for Cd concentrations of 0.05 (p =
0.0128), 0.07 (p = 0.0295) and 0.10 mg l–1 (p = 0.0124;
Fig. 4). A similar difference was not observed in groups
with lower Cd concentrations (0.01 and 0.03 mg l–1, p >
0.1) and no mortality was observed in the control group
(0 mg l–1). The mean LC50 values of 4 assay trials were
nearly 4- or 2-fold lower for uninfected oligochaetes at
72 h and 96 h, respectively (mean LC50 ± SD, 95%
mean CI, 72 h: control, 0.05 ± 0.04 mg l–1, 0.03 to
11.6 mg l–1; infected, 0.21 ± 0.21 mg l–1 0.02 to 14.03 mg
l–1; 96 h: control, 0.03 ± 0.02 mg l–1, 0.01 to 0.11 mg l–1;
infected, 0.05 ± 0.04 mg l–1, 0.02 to 5.31 mg l–1). How-
ever, no statistical significance between the 2 groups
was detected for either time point (t-test: 72 h: t = 1.44,
p = 0.20; 96 h: t = 0.80, p = 0.46).

DISCUSSION

Increased parasite abundance and incidence of par-
asitic disease associated with pollution have been doc-
umented mostly for protozoan and monogenean para-
sites (MacKenzie et al. 1995, MacKenzie 1999). For
instance, chemical pollutants increased the suscepti-
bility of eastern oyster to the protozoa Perkinsus mari-
nus, the causative agent of the dermo disease respon-
sible for high mortalities of oyster on American coasts
(Chu et al. 2002). On the other hand, pollutants seem to
have negative effects on endoparasitic helminths, and
their abundance tends to be lower in polluted condi-
tions (Poulin 1992, Marcogliese & Cone 1997, Mac-
Kenzie 1999, Marcogliese 2005).

In the present study, infection prevalence did not dif-
fer between the Cd-treated and Cd-free groups,
although the Cd-treated worms produced greater
numbers of TAMs. The lack of apparent difference in
infection prevalence suggests that Cd has no clear
effect on the susceptibility of Tubifex tubifex to
Myxobolus cerebralis. However, because the experi-
ment was terminated at 15 wk, just after the worms
started to produce spores, the long-term effect of Cd
on the host–parasite interaction is still unknown. Also,
use of the molecular method for determination of infec-
tion and an an increased number of replicates may
yield different results.

The greater TAM production of Cd-exposed Tubifex
tubifex suggests that the metal facilitated development
of Myxobolus cerebralis in its invertebrate host.
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Although the mechanism behind this phenomenon is
unknown, Cd may alter immunological processes of
the worm. Immunotoxicological effects of Cd have
been reported in various aquatic animals. In fish, Cd
reduced numbers of white blood cells and induced
blood cell deformation (Witeska et al. 2006) and lym-
phocyte mortality (Witeska & Wakulska 2007), leading
to higher intensities of monogenean and protozoan
parasites (Hoole 1997, Khan 2003, Sanchez-Ramirez et
al. 2007). Similarly, short-term exposure to high con-
centrations of Cd significantly increased the encyst-
ment of a trematode parasite Echinoparyphium recur-
vatum in its first intermediate host, the snail Lymnaea
peregra (Morley et al. 2004). In oligochaetes, exposure
to metals reduced coelomocytes and increased abun-
dance of coelomic bacteria in Dendrobaena veneta
(Wieczorek-Olchawa et al. 2003). Such Cd-induced
reduction in coelom defense may also occur in T.
tubifex and it may facilitate the development of M.
cerebralis. However, more immunological and physio-
logical studies are required to determine the precise
mechanism behind the reduced resistance of metal-
exposed worms to the parasite.

Possible links between pollution and myxozoan dis-
eases in fishes have been documented in field studies.
Cone et al. (1997) reported an unusually high intensity
of Myxobolus procerus in trout-perch Percopsis omis-
comaycus from a highly polluted area of Lake Supe-
rior, USA. Nases Chondrostoma nasus from a copper-

polluted river in Australia were more heavily infected
with Myxobolus muelleri compared to the fish from
less polluted waters (Jirsa et al. 2008). El-Matbouli
& Hoffmann (2002) indicated a strong association
between organic pollutants and the occurrence of
proliferative kidney disease in trout, which is caused
by the myxozoan Tetracapsula bryosalmonae. Modin
(1988) also reported a serious whirling disease out-
break in a trout hatchery which used contaminated
water. In most of these cases, high myxozoan infection
in the vertebrate hosts was associated with greater
abundance of invertebrate hosts (oligochaetes for M.
procerus and bryozoans for T. bryosalmonae) in their
favourable eutrophied environment. However, as indi-
cated in the present study, pollutants may also increase
spore production of the invertebrate hosts, and this
could be an important additive factor in epidemics of
myxozoan diseases in fish hosts.

Metals have both lethal and sublethal effects on
Tubifex tubifex. The latter include reduction in growth
(Milani et al. 2003), reproduction (Gillis et al. 2002) and
hormonal activity (Chen et al. 1994) and an increase in
mucus production (Bouché et al. 2000) and autotomy
(Brković-Popović & Popović 1977, Lucan-Bouché et al.
1999, Bouché et al. 2000). Autotomy followed by
regeneration of a broken caudal body part is com-
monly observed in oligochaetes suffering from various
stressors such as predation and toxicant exposure.
Bouché et al. (2000) suggested that autotomy is a
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detoxication process in which the caudal body accu-
mulating toxicants is dislodged from the body. In the
present study, the autotomy rate was much lower for
the Cd-exposed worms, and this apparently contra-
dicts other reports. There are 3 possible explanations
for this phenomenon: (1) autotomy in Cd-exposed
worms occurred in a very early toxification period and
the regeneration of the missing body part was com-
pleted by the end of the experiment (the regeneration
rate of the autotomised caudal part can be as fast as
160 µm d–1; Bouché et al. 2003); (2) Cd reduced the
worms’ burrowing activity in the artificial substrate,
which could damage their caudal part; and (3) Myxo-
bolus cerebralis infection also induced autotomy, but
the process was interfered with by Cd. Regardless of
the metal exposure, the rate of autotomy seemed to be
higher in infected worms than uninfected ones (S. Shi-
rakashi pers. obs.). This suggests that autotomy may
also be a possible defence mechanism against para-
sites. However, more studies are needed to deepen our
understanding of this phenomenon.

The acute lethality tests showed a negative associa-
tion between infection and the lethal effect of Cd. The
LC50 values observed in the present study were com-
parable with Bouché et al.’s (2000) results, and slightly
lower than those of Sturmbauer et al. (1999), though
the results of past studies were highly variable. The
apparently higher toxicity of Cd in acute lethality tests
compared to the long-term exposure experiment likely
arose from the different amounts of available Cd in the
water: in the long-term experiment, Cd was adsorbed
to the organic and inorganic materials in the container
and its toxicity was greatly reduced, whereas more Cd
was available in the assay trial because the solutions
were replaced every 24 h. The higher LC50 values of
infected worms and thus their higher resistance to Cd
were unexpected because Myxobolus cerebralis infec-
tions would cause adverse physiological changes in
the worm. The simplest interpretation of the observed
results is that Cd uptake was affected by the infection.
M. cerebralis reduces food intake of Tubifex tubifex by
40% (Shirakashi & El-Matbouli 2009). Although no
substrate was provided in the assay, TAM-releasing
worms likely had lower Cd uptake rates compared to
the uninfected control. Another explanation is that the
toxicity of Cd was reduced by the parasite. Some para-
sites, mainly acanthocephalans and cestodes, are
known to accumulate toxicants at considerably higher
rates than the hosts. These parasites act as detoxifi-
cants and reduce the amount of toxic substances in the
host tissue (Sures 2008). Whether myxozoans accumu-
late metals at such a high rate is unclear, and an exper-
iment using the worms at earlier infection stages may
provide a different result. Nevertheless, there is the
possibility that T. tubifex infected with M. cerebralis

have higher Cd tolerance in polluted environments
and are selected for in such conditions.

In conclusion, the present study indicated the possi-
ble association between aquatic pollution and the epi-
demic of myxozoan diseases in fishes. Pollutants can
induce greater actinospore production and may
increase the abundance of susceptible oligochaetes
through the induction of mortality of uninfected
worms. We strongly emphasise that pollution control is
important not only for environmental health but also
for preventing the spread of whirling disease in wild
and cultured trout populations.
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