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INTRODUCTION

Although shrimp aquaculture is important in much
of Asia, it continues to be threatened by several viral
shrimp diseases, including white spot disease (WSD)
(Chang et al. 1995, Wang et al. 1995, Wongteerasu-
paya et al. 1995, Lo et al. 1997, Lu et al. 1997, Lo & Kou
1998, Sangamaheswaran & Jeyaseelan 2001, Liu et al.
2005). The causative agent of this disease, white spot
syndrome virus (WSSV), is the type species of the
genus Whispovirus, family Nimaviridae (Vlak et al.
2004). WSSV is a large DNA virus with a virion that
consists of a nucleocapsid, tegument and envelope,
and includes at least 39 structural proteins (Tsai et al.
2004, 2006, Leu et al. 2005).

When WSD first appeared in 1992, it caused tremen-
dous economic losses, and the aquaculture industry
responded by completely changing the traditional
ways in which shrimp were managed (Lightner 2003).

One change in particular was the increased emphasis
on aquatic animal disease surveillance, and this, in
turn, led to a demand for non-destructive molecular
diagnostic tests to screen broodstock and postlarvae.
Nested polymerase chain reaction (PCR) tests are now
commercially available for most of the economically
important crustacean viruses, including WSSV (Hsu et
al. 1999, Chen et al. 2000, Peng et al. 2001). However,
although these diagnostic kits are routinely used in
research laboratories, the associated costs and techni-
cal expertise required have prevented their wide-
spread adoption in traditional farms. It would therefore
be very helpful to develop a diagnostic test that is not
only highly sensitive and rapid, but also cheap and
easily performed.

An immuno-based detection system is a good candi-
date for such a test. The sensitivity of this kind of test
depends on the immuno-detected target protein, and
several candidate proteins have already been conside-
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red. Liu et al. (2002) and Yoganandhan et al. (2004) in-
dependently developed procedures that targeted the
WSSV major envelope protein, VP28, while Okumura
et al. (2005) developed a reverse passive latex aggluti-
nation method to detect WSSV virion particles by using
anti-WSSV immunoglobulin G (IgG). All 3 of these
studies were based on WSSV structural proteins, which
until now were thought to be the most highly expressed
proteins of WSSV. Here, we use a systematic approach
to detect a WSSV gene/protein that is more highly ex-
pressed than any structural gene/protein, and which
should therefore be a good candidate for improved
RNA-based and immuno-based diagnostic tests.

In this study, we used both microarray and expressed
sequence tag (EST) analysis of the mRNA profiles of
WSSV-infected cells to identify WSSV genes that are
very strongly expressed at the transcription level. Two-
dimensional electrophoresis (2-DE) gel analysis and
liquid chromatography-nano-electrospray ionization
tandem mass spectrometry (LC-nanoESI-MS/MS) pro-
tein identification were then used to confirm that high
expression levels are also found for one of these genes
at the translation level. Western blotting was used to
compare the relative abundance of this candidate pro-
tein and VP28 in gill tissues, as well as in other organs,
such as pleopods, which can be safely and easily col-
lected from shrimps for screening purposes. We con-
clude that a non-structural protein, ICP11, is likely to
be a better indicator of WSSV infection than VP28. We
consider the potential of this gene/protein in the devel-
opment of RNA-based or rapid immuno-based detec-
tion systems for WSSV.

MATERIALS AND METHODS

Virus, virus inoculum and experimental shrimp.
The virus used in this study was WSSV T-1 isolate
(GenBank Accession Number AF440570) (Wang et al.
1995, Lo et al. 1999, Chen et al. 2002). WSSV inoculum
was prepared as described previously and stored at
–80°C until use (Tsai et al. 1999). The experimental
inoculum was then prepared from the supernatant of
this stock after centrifugation at 400 × g for 10 min at
4°C and further dilution (10–2) with phosphate-
buffered saline (PBS).

The experimental shrimp used in the study were
adult Penaeus monodon (mean weight: 20 g) and
Litopenaeus vannamei (mean weight: 2.6 g). Challenge
with WSSV inoculum (100 µl shrimp–1) was by intra-
muscular injection following Tsai et al. (1999). Shrimp
injected with PBS vehicle only were used as controls. At
24, 36 and 48 hpi (hours post-infection), the gills and
other tissues of the challenged and control shrimps
were collected and frozen using liquid nitrogen.

WSSV gene DNA microarray chip preparation, tar-
get preparation, hybridization, scanning and statisti-
cal analysis. Duplicate sets of WSSV DNA microarray
chips were prepared as described previously, with 532
WSSV open reading frames (ORFs) plus a shrimp
(Penaeus monodon) beta-actin gene, each represented
by 3 spots (Tsai et al. 2004, Wang et al. 2004, Liu et al.
2005). For the cDNA targets, total RNA was extracted
from gill tissues of control and WSSV-challenged P.
monodon shrimp at 0 and 24 hpi, respectively. A post-
infection time of 24 h was chosen because pilot studies
produced well-differentiated results at this time,
whereas at 36 hpi the signal intensities of most spots
were already saturated. These RNA samples (20 µg for
each reaction) were reverse-transcribed and fluores-
cently labeled with Cy3-dUTP using a CyScribe First-
Strand cDNA-labeling kit (Amersham Biosciences).
After the Cy3-labeled cDNA targets had been con-
densed, the unincorporated nucleotides were removed
using Microcon YM-30 columns (Amicon), and the
samples were subjected to hybridization with all of the
DNA spots in the WSSV DNA microarray chip. The
microarrays were scanned with a confocal laser (Scan-
Array 3000 system), and the fluorescence intensities in
each spot were quantified by Imagen 4.0 (Biodiscov-
ery). The signal intensities were normalized across the
slides by using the beta-actin gene as the normaliza-
tion factor. For each WSSV gene transcript in the
infected shrimp gill tissues, the mean (n = 3) fluores-
cence intensity results are expressed as percentages
relative to the signal intensity of the shrimp beta-actin
gene on the same chip.

Construction of a WSSV-infected Penaeus monodon
postlarvae cDNA library and EST database. For this
study, we used a single cDNA library, PmTwI, which had
been constructed previously from WSSV-infected P.
monodon postlarvae (PL20) using a λ-Zap II vector con-
struction kit (Stratagene), followed by conversion to the
pBluescript plasmid by mass excision, according to the
manufacturer’s instructions. From this library, a total of
7632 ESTs were obtained by subjecting randomly se-
lected clones to 3’ sequencing. Phred (Q > 13), the
‘Cross_match’ package with default parameters (mini-
match 12, penalty –2, miniscore 20) and the Prap assem-
bly program were run to yield a total of 2237 unique
sequences in PmTwI. These sequences were examined
for matches in the GenBank nr (non-redundant) peptide
sequence database and SWISS PROT using BlastX and
InterPro Scan with default parameters.

Two-dimensional electrophoresis. The experimen-
tal shrimp used in this assay were the offspring (mean
body weight: 2.6 g) of Litopenaeus vannamei brooders
purchased from High Health Aquaculture. For each
2-DE, the frozen gills taken at 48 hpi from 3 WSSV-
challenged and 3 control (PBS-only) shrimp were
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ground to a fine powder at –80°C. The powder was
then suspended in a 3-fold dilution of PBS buffer con-
taining protease inhibitor cocktail (applied according
to the manufacturer’s protocol, Roche Diagnostics).
After centrifugation at 3000 × g (30 min, 4°C), the
supernatant was collected and a trichloroacetic acid/
dithiothreitol (TCA/DTT) mixture was added (final
concentration: 10% w/v trichloroacetic acid and 0.1%
dithiothreitol). After standing on ice for 30 min and
another procedure of centrifugation (10 000 × g,
30 min, 4°C), the supernatant was discarded and the
pellet resuspended in acetone containing 0.1% DTT.
The sample was spun again (10 000 × g, 30 min, 4°C),
and the pellet was dried under vacuum and then dis-
solved in rehydration buffer (9.8 M urea, 2% CHAPS,
20 mM DTT, 0.5% immobilized pH gradient [IPG]
buffer [pH 3 to 10; Amersham Biosciences]). After a
final centrifugation (10 000 × g, 30 min, 15°C), the
supernatant, which contained the soluble protein frac-
tion, was used as a 2-DE sample. Protein concentration
of 2-DE samples was estimated using a 2-D Quant Kit
(Amersham Biosciences).

The first dimension of the 2-DE, isoelectric focusing
(IEF), was performed in 13 cm Immobiline DryStrip gel
(Amersham Biosciences) using an integrated system,
the Ettan IPGphor (Amersham Biosciences), whereby
rehydration with the sample and IEF are performed
automatically. Linear pH 3 to 10 gradient strips were
used. Each sample (250 µg protein) was dissolved in
250 µl rehydration buffer with a trace of bromophenol
blue and placed in the base well of an IPGphor strip-
holder. An IPG strip was then placed on the top of the
sample, and, after rehydration in the IPGphor (16 h at
50 V), automatic IEF was performed using the follow-
ing step voltage focusing protocol: 1 h at 300 V, 1 h at
500 V, 2 h at 1000 V, 2 h at 4000 V and 10 h at 8000 V.
All the above procedures were carried out at 20°C.
After the first dimensional IEF, the IPG strips were
equilibrated in a sodium dodecyl sulfate (SDS) equili-
bration buffer (6 M urea, 2% SDS, 30% glycerol,
50 mM Tris-HCl, pH 8.8) containing 1% DTT for 15 min.
The IPG gel strips were then removed to another equi-
libration buffer containing 2.5% iodoacetamide and
equilibrated for a further 15 min. The equilibrated IPG
strips were then placed onto a polyacylamide gel that
consisted of 14% acylamide, pH 8.8, for the separating
gel, and 4% acylamide, pH 6.8, for the stacking gel.
The second dimensional separation was run at 20 mA
per gel at 15°C for 5 to 6 h. At the end of each run, the
gels were stained with sypro ruby, and the protein pat-
terns of the gels were scanned using a Typhoon 9400
scanner (Amersham Biosciences). Gel image matching
was done using PDQuest software (Bio-Rad).

In-gel protein digestion and protein identification.
Protein spots of interest were manually excised from

the gels, washed twice with 25 mM ammonium bicar-
bonate buffer (pH 8.5) in 50% acetonitrile, for 15 min
each time, dehydrated with 100% acetonitrile for 5 min,
vacuum dried and rehydrated with 100 ng of se-
quencing-grade, modified trypsin (Promega) in 25 mM
ammonium bicarbonate, pH 8.5, at 37°C for 16 h. Fol-
lowing digestion, tryptic peptides were extracted twice
with 5% formic acid in 50% acetonitrile for 15 min
each time with sonication. The extracted solutions
were pooled and evaporated to dryness under vacuum.
Samples were dissolved in 0.1% formic acid in 50%
acetonitrile and analyzed by LC-nanoESI-MS/MS.
Proteins were identified by MS/MS ion search using
the search program Mascot. For MS/MS ion search,
the mass tolerance parameter was 0.25 Da, MS/MS ion
mass tolerance was 0.25 Da, and up to 1 missed cleav-
age was allowed. Variable modifications considered
were methionine oxidation and cysteine carboxyamido-
methylation. Significant hits (as defined by Mascot
probability analysis) were regarded as positive identi-
fication.

Mapping the 5’ and 3’ termini of the WSSV icp11
transcript. At 36 h after WSSV infection almost every
WSSV gene is expressed (Wang et al. 2004), so at this
time, RNA samples were taken from WSSV-infected
Penaeus monodon shrimp. From these samples, the
5’ and 3’ untranslated regions of the WSSV icp11
transcript were obtained by rapid amplification of the
cDNA 5’/3’ ends using a commercial 5’ and 3’ rapid
amplification of cDNA ends (RACE; Roche Molecular
Biochemicals). The 5’ RACE protocol was slightly
modified for WSSV icp11 because the 5’ untranslated
region incorporates long stretches of thymidines, which
may cause non-specific binding of the oligo(dT)-
anchor primer to the cDNA. Accordingly, the cDNA
of WSSV icp11 was 3’-tailed, with dCTPs rather than
dATPs, and the oligo(dG)-anchor primer was used in
the PCR reaction. The PCR products were cloned in a
pGEM-T Easy vector and sequenced.

Purification of the native form of rICP11. An WSSV
ICP11 expression construct was formed by digesting
the amplified WSSV ICP11 fragment using Nde I and
XhoI and ligating it between the NdeI and XhoI sites
of pET28b. An excess of recombinant WSSV ICP11
protein (rICP11) was produced in Escherichia coli
strain BL21(DE3) codon plus, with 0.1 mM isopropyl-
thiogalactoside at 37°C for 3 h. Following centrifuga-
tion, E. coli cell pellets were resuspended in lysis
buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM immi-
dazole, pH 8.0) and sonicated on ice. The cell debris
was removed by centrifugation. The supernatant was
loaded onto a HisPrep™ FF 16/10 column (Amersham
Biosciences) and washed with washing buffer (50 mM
NaH2PO4, 300 mM NaCl, 20 mM immidazole, pH 8.0),
and then rICP11 was eluted with elution buffer (50 mM
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NaH2PO4, 300 mM NaCl, 500 mM immidazole, pH 8.0).
The fractions were collected, pooled and dialyzed
against PBS. This protein was used for antibody pro-
duction and multimerization assay.

Western blot analysis and protein dot-blot analysis
to detect WSSV ICP11 in shrimp tissue. Although pre-
liminary assays showed that Western blotting could
detect ICP11 as early as 18 hpi, the WSSV protein used
for comparison (VP28) could not be detected in the 24
or 40 µg samples until 48 hpi. Therefore, for this assay,
tissue samples were taken from the lymphoid organ,
stomach, midgut, heart, gill, epidermis, pleopod, he-
patopancreas and nervous tissue of WSSV-infected
shrimp (Penaeus monodon) at 48 hpi. The tissue sam-
ples were homogenized in lysis-PBS buffer (PBS diluted
3 × in ddH2O at 4°C) and centrifuged (10 000 × g;
15 min), and the supernatants were collected. Samples
(24 µg total protein) were mixed with SDS-sample
buffer (1% SDS, 15% glycerol, 10 mM Tris-HCl
[pH 6.8], 10% beta-mercaptoethanol), separated on
17.5% SDS-PAGE (sodium dodecyl sulfate polyacryl-
amide gel electrophoresis) and transferred onto a PVDF
(polyvinylidene difluoride) membrane by semidry blot-
ting. The membrane was blocked using blocking buffer
(5% skim milk and 3% normal goat serum in TBST
[0.5% Tween 20, 200 mM NaCl, 50 mM Tris-HCl, pH
7.5]) for 16 h at 4°C, and was then incubated with pri-
mary antibody at a dilution of 1/5000 in blocking buffer
for 1 h at room temperature. After washing twice in
TBST, the membrane was incubated with secondary
antibody conjugated with horseradish peroxidase
(HRP) at a concentration of 1/5000 in TBST. Lastly, the
membrane was washed twice more with TBST, and an
enhanced chemiluminescence system (NEN Life Pro-
ducts) was used for detection.

Some of the gill tissue samples prepared as described
above were also subjected to protein dot-blot analysis.
For this analysis, the total protein lysates were serially
diluted (200 to 0.05 µg) and vacuum blotted directly
without SDS sample buffer onto PVDF membrane that
had been cut, soaked in methanol for 5 min and
mounted into a dot-blot hybridization instrument (Mini-
fold I 96-well dot-blot system, Schleicher-Schuell).
Incubation, antibody reaction and detection were the
same as described above for Western blotting.

Indirect immunofluorescence assay of WSSV ICP11
in shrimp hemocytes. Hemolymph was collected from
healthy Penaeus monodon shrimp and from WSSV-in-
fected shrimp at 24 hpi using a syringe that contained
cold modified Alsever solution (Lin et al. 2002). Hemo-
cytes were placed on glass coverslips, washed with PBS
and fixed in 4% paraformaldehyde for 10 min at 4°C. Af-
ter acetone treatment (3 min on ice), the hemocytes were
incubated with 3% normal goat serum for 16 h at 4°C to
prevent non-specific antibody adsorption. After this

blocking, the hemocytes were incubated for 3 to 4 h at
room temperature with a 1/500 dilution of rICP11-spe-
cific rabbit antiserum. Following 2 washes, each for
15 min in PBST (PBS containing 0.3% Tween-20), the
cells were incubated for 1 h with a 1/200 dilution of
fluorescein isothiocyanate (FITC)-conjugated polyclonal
goat anti-rabbit IgG. Following extensive washing with
PBST, the cells were mounted and viewed using an
Olympus microscope. Then, 4’,6-diamidino-2-phenyl-
indole (DAPI) was used to counterstain the nucleus.

Analysis of the multimeric nature of native WSSV
rICP11. Since the functionality of some proteins is
affected by multimerization, here we used a chemical
cross-linking assay to investigate the multimeric
nature of rICP11 (Kaukinen et al. 2001). Briefly, 10 µl
samples of rICP11 (1 µg µl–1) were incubated with
0.01 to ca. 1 mM BS3 (bis[sulfosuccinimidyl] suberate;
Pierce) in PBS (30 min, room temperature). The
samples were treated with reducing sample buffer
(0.125 M Tris, pH 6.8, 4% SDS, 20% glycerol,
10% beta-mercaptoethanol, 0.01% bromophenol blue),
heated (100°C, 5 min) and then separated on SDS
–17.5% acrylamide gels. Immunoblotting was per-
formed with WSSV ICP11-specific polyclonal antibody
with HRP-conjugated goat anti-rabbit serum. The
reactions were detected using an enhanced chemi-
luminescence system (NEN Life Products).

In addition, the recombinant protein was also re-
suspended in sample buffer (1% SDS, 15% glycerol,
10 mM Tris-HCl [pH 6.8]) with or without 1% beta-
mercaptoethanol, and with or without heating at 100°C
for 5 min (Hassan & Roy 1999). Samples (20 µg protein)
were then loaded onto acrylamide gels (17.5%) and
subjected to electrophoresis followed by Western blot-
ting with WSSV ICP11-specific antibodies.

RESULTS

Microarray and EST screening for highly expressed
WSSV genes

A total of 48 WSSV genes were identified from the
2237 unique sequences in the PmTwI library, and the
20 genes with the highest in silico expression profile
are listed in Table 1. Since the cDNA clones selected
for sequencing were chosen at random, their relative
abundance in an unamplified library (i.e. their in silico
expression profile in Table 1) should reflect the corre-
sponding transcript levels (Yu et al. 2003). The data in
Table 1 therefore suggest that icp11 (EST redundancy
= 29) was the most strongly expressed WSSV gene,
with expression levels nearly 3 × greater than vp35
(EST redundancy = 11) and more than 3 × greater than
the WSSV major envelope protein gene vp28 (EST
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redundancy = 8). Other strongly expressed WSSV
genes included several other WSSV structural genes
(vp19, vp28, vp15, vp26, vp12b, vp38a), the immediate
gene (ie1) and other genes with unknown functions.

In support of these results, the expression profiles
obtained from the WSSV microarray chips (Table 1,
last column) were broadly consistent with the in silico
expression profiles.

Identification of expressed WSSV proteins in
WSSV-infected shrimp gill using 2-DE

The 2-DE protein expression profiles (Fig. 1) show
that WSSV ICP11 was highly expressed at the protein
level in the WSSV-infected gill tissue at 48 hpi. The
identification of the ICP11 protein was confirmed by
LC-nanoESI-MS/MS. The sequence coverage was
52%, and matching peptides are shown underlined in
Fig. 2. Similar results were found in our previous study,

which showed that ICP11 protein expression levels
were also elevated in stomach cells after WSSV infec-
tion (Wang et al. 2007). The expression levels of the
control/normalizing protein, beta-actin, and of shrimp
arginine kinase did not vary significantly after infec-
tion, and confirmed the comparability of the gels.
These 2-DE results for WSSV ICP11 were in good
agreement with the EST database and DNA microar-
ray results (Table 1), and suggest that ICP11 is highly
expressed at both the transcription and translation
levels. We note too that no other viral protein was
detected in any of the 2-DE gels.

Nucleotide and amino acid sequence of the 
icp11 cDNA coding sequence

The icp11 ORF (wssv285 in the Taiwan isolate) com-
prises only 249 nuceotides (nt), with the potential to
encode a putative protein of 82 amino acids with a
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Table 1. Comparison of 20 highly expressed genes of white spot syndrome virus (WSSV) as determined by expressed sequence tags (ESTs) 
and DNA microarrays. ORF: open reading frame

WSSV gene Domain and signature scan result In silico DNA microarray 
or ORFa Entry name Database/accession no. Inferred function expression profilec relative intensityd

icp11 29 57.7
vp35 Calx-beta domain Pfam/PF03160 Miscellaneous, virion 11 61.1

component
vp19 ASP_RICH InterPro WSSV virion component 10 41.6
wssv108 8 50.6
vp28 WSSV virion component 8 36.6
vp15 WSSV virion component 8 25
wssv351 ASP_RICH InterPro 7 42.2
wssv355 Proline-rich extensin InterPro/IPR002965 6 12.3
wssv378 ABC transporter InterPro/IPR003439 6 55.6
wssv183b erythrocyte binding protein GenBank/EAA18109.1 (1) Virulence/host range

(2) Virion component
wssv184b Senescence marker protein-30 Pfam/PF03758 Cell growth and death 5 13

Hepatitis delta virus delta Pfam/PF01517 Protein synthesis, modifi-
antigen cation and degradation

wssv366 5 13.4
wssv023 4 21
wssv388 Immunoglobulin/major InterPro/IPR003006 Miscellaneous 4 10.3

histocompatibility
vp26 Virion component 4 23.5
wssv077 3 3.9
wssv254 Zn-finger, ring InterPro/IPR001841 Transcription 3 2.2

Superfamily II DNA/RNA Pfam/PF00097
helicases

ie1 WSSV immediate-early gene 3 26.7
vp12B Virion component 3 18
wssv006 GLU_RICH 3 12.5
wssv033 3 ND
beta-actin 100
aBased on the genome of the WSSV Taiwan isolate; GenBank Accession No. AF440570
bThe wssv183 and wssv184 ORFs are on the same strand of the WSSV genome and almost completely overlap with each other.
Consequently, our EST and microarray analysis cannot distinguish between these 2 genes. Their data have therefore been summed
and are presented in the table as if there were only a single gene

cEST redundancy for each EST clone was derived from the WSSV-infected postlarvae EST database, PmTWI
dAfter global normalization, the relative fluorescence intensity of each WSSV gene was calculated as a percentage of the beta-actin
standard
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predicted molecular mass of 9.2 kDa. The protein is
predicted to have an isoelectric point (pI) of 4.2.
Observed values based on 2-DE image analysis (11.3
and 3.4, respectively; Fig. 1) were in good agreement
with these predictions. The sequence of WSSV icp11
mRNA, as determined by 5’/3’ RACE, is shown in
Fig. 2. The transcriptional initiation site of WSSV
icp11 was located 63 nt (T) upstream of the putative
ATG initiation codon. The nucleotides around and

upstream of the transcriptional initiation site did not
include a putative TATA box (TATAAA) or initiator
motif (CAGT), indicating that WSSV icp11 could be a
late gene. Sequence analysis of the cloned 3’RACE
products indicated that poly (A) was added at a site
15 nt downstream of the AATAAA polyadenylation
signal (Fig. 2).

A computer search of the SWISS-PROT and Inter-
Pro and Pfam databases revealed no significant
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Fig. 1. Two-dimensional gel electrophoresis profiles of cytoplasmic proteins in Litopenaeus vannamei gills at 48 hpi. (A)
Phosphate-buffered saline control and (B) white spot syndrom virus (WSSV)-infected. Circled spots contain the indicated virus 
or shrimp proteins, as determined by liquid chromatography-nano-electrospray ionization tandem mass spectrometry 

(LC-nanoESI-MS/MS). pI: isoelectric point

-120 ACTTTTTGTCACCCTCATGAATACAATTTGTAAAGGTGCTGAAATGTACTTGTTTTTTAT-61
-60 CCAAATTTCCTGTACTGAAGAATATTGAAAGAAGACTTCTTGAAGAGGACCGATAAAAAA -1

1 ATGGCCACCTTCCAGACTGACGCCGATTTCTTGCTGGTGGGGGATGATACTAGTAGATAT 60
M  A  T  F  Q  T  D  A  D  F  L  L  V  G  D  D  T  S  R  Y

61 GAAGAAGTGATGAAGACTTTTGATACTGTTGAGGCAGTCAGGAAGAGTGATCTAGATGAC 120
E  E  V  M  K  T  F  D  T  Y  E  A  V  R  K  S  D  L  D  D

121 CGTGTTTACATGGTGTGCCTAAAGCAGGGATCTACTTTTGTCCTCAATGGAGGCATCGAA 180
R  V  Y  M  V  C  L  K  Q  G  S  T  F  Y  L  N  G  G  I  E

181 GAATTGCGTCTTTTGACTGGAGATTCAACGCTGGAGATTCAACCCATGATTGTGCCAACA 240
E  L  R  L  L  T  G  D  S  T  L  E  I  Q  P  M  I  V  P  T

241 ACAGAATAAAATAAAGACGGTGACGGGAGACTAATATCTTTCTTAGTTTCCCGTCACGGT
T  E  *
GAAAATGTTGGTTATTTCTTCCCTATGTTTAAAAATTTGTCTTGGTTAAAAAAATAAAAC
GAAAACTGTCAATATATTGTTTTATTGATATACAATATCCCTTTTTACACAGAAATGGCA

301
361

300

360
420

Fig. 2. WSSV icp11 gene and deduced amino acid sequence. Bent arrow indicates the transcriptional initiation site. The
polyadenylation signal (AATAAA) is in bold print. Straight arrow indicates the poly (A) addition site. Underlined amino acids 

indicate the sequence identified by LC-nanoESI-MS/MS data. *: stop codon



Wang et al.: The most highly expressed gene of WSSV

similarity to any known protein sequence (Altschul
et al. 1990, Bateman et al. 2002, Mulder et al. 2003).
No sequence that was associated with subcellular
localization or protein targeting, such as a trans-
membrane domain or signal peptide, was ob-
served, which suggests that the protein may be solu-
ble and localized in either the cytoplasm or the
nucleus.

Expression of WSSV ICP11 in WSSV-infected shrimp

WSSV ICP11-specific antibody detected native
WSSV ICP11 in lysate from WSSV-infected Penaeus
monodon shrimp stomach at 48 hpi. The molecular
mass of WSSV ICP11 was 11 kDa, which is approxi-
mately 2 kDa greater than the computed mass (9 kDa)
(Fig. 3A). Western blotting failed to confirm the pres-
ence of WSSV ICP11 in the WSSV virion
(Fig. 3A), suggesting that WSSV ICP11 is
a non-structural protein that does not
exist in the WSSV virion particle. By con-
trast, Western blotting with a WSSV
VP28-specific antibody on the same
PVDF membrane detected a 28 kDa band
in both the virion and the stomach tissue
lysate (Fig. 3A). The tissue tropism analy-
sis (Fig. 3B) demonstrates that, while
VP28 could be detected in all but 2 of the
tested organs, WSSV ICP11 was present
in every tested organ, including the
hepatopancreas and nervous tissue, and
also that it was expressed more strongly
than VP28.

Fig. 4 shows the results of protein dot-
blot analysis that used WSSV VP28-
and WSSV ICP11-specific antibodies to
screen for WSSV, not only in healthy and

experimentally infected Penaeus monodon, but also in
naturally infected P. monodon that were collected from
a shrimp culture farm and diagnosed as 1-step WSSV
positive by PCR (Hsu et al. 1999). The WSSV ICP11-
specific antibody was capable of clearly detecting
WSSV infection in, respectively, 2.5 and 1 µg of total
protein in gill tissue lysate from the naturally and
experimentally WSSV-infected shrimp. In the same
samples, and using the same exposure time, the detec-
tion results for VP28 were much fainter.

WSSV ICP11 in the cytoplasm and nucleus of shrimp
hemocyte cells

To determine the subcellular localization of ICP11
during WSSV infection, shrimp hemocytes were col-
lected at 24 hpi, cultured on slides for 2 h, fixed with
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Fig. 3. (A) Western blot expression analysis of WSSV ICP11 and VP28 at the protein level in the purified WSSV virion, and in
shrimp stomachs before (0 hpi) and after (48 hpi) WSSV infection. (B) Protein expression levels of ICP11 and VP28 in 9 WSSV-
infected shrimp organs at 48 hpi: lymphoid organ (Lym), stomach (Stm), midgut (Mg), heart, gill, epidermis (Epi), pleopod (PL), 

hepatopancreas (Hp) and nervous tissue (Ner)

Fig. 4. Protein dot-blot detection for different quantities of gill tissue lysate
extracted from healthy (–), naturally WSSV-infected (N), and experimentally
WSSV-infected (E) Penaeus monodon using antisera of ICP11 and VP28
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paraformaldehyde and examined by fluorescence
microscopy. As Fig. 5 shows, ICP11 was observed
both in the cytoplasm and the nucleus. Since ICP11
does not have a nuclear localization signal, its local-
ization in the nucleus may require the involvement of
other viral components or host factors. In Fig. 5, posi-
tive signals are only seen in WSSV-infected cells,
which suggests that there was no non-specific cross
reaction with host proteins. This was confirmed by the

absence of any cross reaction when healthy shrimp
hemocytes were incubated with anti-rICP11 (data not
shown).

Multimeric nature of rICP11

To study the multimerization of rICP11, we used a
chemical cross-linking assay followed by analysis with
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DAPI FITC Merge

Fig. 5. Localization of WSSV ICP11. Light micrographs of hemocytes collected from WSSV-infected shrimp that were reacted first
with antibodies specific to WSSV ICP11, and then with fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit im-
munoglobulin G (IgG) antibody; 4’,6-diamidino-2-phenylindole (DAPI) was used to counterstain (blue fluorescence) the nuclear 

DNA of the shrimp hemocytes. Scale bars = 10 µm

Fig. 6. Multimeric nature of rICP11. (A) Chemical cross-linking was performed for 30 min by applying the indicated amounts
of bis(sulfosuccinimidyl) suberate (BS3) to purified rICP11. Visible bands represent the monomer (12 kDa), dimer (24 kDa)
and tetramer (48 kDa) forms. (B) Purified rICP11 was analyzed by Western blotting in the presence (+) or absence (–) of 1% beta-

mercaptoethanol (ME), either with (+) or without (–) heat treatment

kDa

kDa
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SDS-PAGE and immunoblotting (Fig. 6A). In the
absence of the BS3 cross-linker, rICP11 appeared to be
in monomeric form (with molecular mass ~1 kDa
greater than the native ICP11 band because of the
additional His-tag).

However, in the presence of BS3, which acts to stabi-
lize multimers by forming covalent bonds between
amino groups in the target proteins, SDS-PAGE fol-
lowed by immunoblotting revealed 3 additional major
products. The first band migrated just slightly more
slowly than the untreated proteins. We follow Song et
al. (2004) and interpret this band to be the result of
intramolecular cross-linking between rICP11 and BS3.
Two other bands migrated with apparent molecular
weights of 24 and 48 kDa. The intensity of all 3 of these
bands increased with increasing concentrations of BS3,
and we interpret the 2 higher mass bands as evidence
of the presence of rICP11 dimers and tetramers,
respectively. These 2 multimer bands were not found
after treatment with the reducing agent beta-mercap-
toethanol (Fig. 6B), but were still detected after heat
treatment alone (Fig. 6B, Lanes 2 and 4; the 48 kDa
bands are very faint). These data suggest that at least
the dimerization of rICP11 is mediated by a disulfide
bond.

DISCUSSION

In the present study, we used global methods to
show that the non-structural protein ICP11 is the most
highly expressed WSSV gene at both transcriptional
and translational levels (Table 1, Fig. 1). The protein
sequence of ICP11 is very unique, and its function will
need to be further elucidated. However, the present
finding is already a very significant contribution to the
study of WSSV genomics.

For several viruses, such as the varicella-zoster virus,
even though some pathogenesis-related, non-struc-
tural proteins are highly expressed (Kennedy et al.
2005), the most abundant virus transcripts expressed
during virus propagation are associated with the
membrane structure or capsid assemblies (Cohrs et
al. 2003). In other viruses, such as vaccinia virus and
Amsacta moorei entomopoxvirus (AmEPV), the most
highly expressed genes, ORF A26L and spheroidin,
respectively, are necessary for the formation of in-
clusion/occlusion bodies (Tartaglia et al. 1992, Li et
al. 1998). In AmEPV-infected cells, spheroidin alone
accounts for up to 30–40% of the total protein of
infected insect cells (Winter et al. 1995). WSSV also has
several highly expressed structural genes/proteins,
and, to date, the major structural protein VP28 has
been the most commonly used WSSV target for
immuno-based detection (Liu et al. 2002, Yoganand-

han et al. 2004). Here, however, we have shown
that the transcription expression levels of ICP11 are
approximately 3 × greater than those of VP28. Fig. 1
also shows that ICP11 was expressed at 48 hpi, and, at
this time, VP28 was still not detectable in the 2-DE gels
(data not shown). ICP11 is evidently not a structural
protein (see Fig. 3A), and, although its function re-
mains unknown, we conclude that this non-structural
protein is the most highly expressed viral protein in
WSSV-infected cells.

The ability of ICP11 to form multimers (Fig. 6) may
help to account for its localization in both the nucleus
and cytoplasm of most of the WSSV-infected cells
(Fig. 5). Self-association is known to affect the nucle-
ocytoplasmic transport of many proteins, such as
human Class II transactivator (CIITA) and p53
(Stommel et al. 1999, Kretsovali et al. 2001). Thus, al-
though CIITA has 2 nuclear localization signal (NLS)
motifs, sequence mutation data have shown that self-
association is necessary for CIITA to be recognized
by the nuclear import machinery (Kretsovali et al.
2001). Conversely, only the monomeric or dimeric
forms of p53 are able to use the protein’s intrinsic
nuclear export signal (NES) to mediate its export
from the nucleus to the cytoplasm, because when
p53 occurs as a tetramer, the NES is masked (Stom-
mel et al. 1999). In the case of ICP11, more work will
be needed to establish the functional significance (if
any) of its ability to form dimers and tetramers. Our
data suggest that the dimerization of ICP11 is the re-
sult of disulfide bond formation, but, as there is only
1 cysteine residue (Cys 46) in the ICP11 monomer, it
follows that disulfide bonding can only occur be-
tween pairs of monomers. A different mechanism
must therefore be involved in the formation of the
ICP11 tetramers. The most likely mechanism would
be via a noncovalent (ionic, hydrophobic) interaction
(Kang et al. 2003), and we note that other multimers,
such as those of the protein–arginine methyltrans-
ferases, are also formed by a combination of covalent
and noncovalent associations (Rho et al. 2001).

In summary, WSSV ICP11 is a novel, infected cell
protein of unknown function that is the most highly
expressed viral protein at transcriptional and trans-
lational levels. Apart from suggesting that ICP11 may
play an important role during viral infection, in this
study we found that the levels of this gene/protein in
infected shrimp are much higher than the most highly
expressed structural gene/protein, VP28. This makes
ICP11 potentially a very good target for developing
RNA-based and immuno-based detection methods.
ICP11 is present throughout the body of infected
shrimp and even in hemolymph, which is very conve-
nient when preparing samples for diagnosis. The pro-
tein is also very small (molecular weight [MW] =
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11 kDa) and acidic (pI = 4.2), which means that a
specific column could easily be used to optimize the
sample for immuno-detection and to decrease inter-
ference from non-specific cross-reactions. Taken
together, all of these properties suggest that it should
be relatively straightforward to use ICP11 as the basis
of an easy-to-use, commercial, pond-side diagnostic
kit. Currently, most of the available WSSV diagnostic
kits are PCR based, and, although these kits are effec-
tive and widely used in research laboratories, they are
cumbersome and difficult to use in the field. An easily
performed, immuno-based ICP11 detection method
would therefore be a very welcome technology for the
shrimp culture industry.
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