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Abstract: Delay optimization with considering effective parame-
ters in the design, such as energy consumption, need an extra effort to
achieve quick solutions. In this paper, by taking the requirements of
current design processes into account for sake of simultaneously con-
sidering all of the effective parameters, in one hand, and also trying to
use the privilege of Logical Effort method’s extra speed, in the other
hand, a new method for solving the equations optimization problems
is represented. With providing an initial point based on Logical Effort
method by Geometric Programming, the convergence rate of optimiza-
tion algorithms can be greatly increased.

Keywords: low power design, VLSI, GGP!, NLP?
Classification: Integrated circuits

References

(1] H. Chou, Y.-H. Wang, and C. C.-P. Chen, “Fast and Effective Gate-
Sizing with Multiple-Vt Assignment using Generalized Lagrangian Re-
laxation,” Proc. Asia South Pacific — Design Autom. Conf., pp. 381-386,
2005.

[2] K. Agarwal, D. Sylvester, D. Blaauw, and A. Devgan, “Achieving Con-
tinuous Vt performance in a dual-Vt process,” Proc. Asia South Pacific
— Design Autom. Conf., pp. 393-398, 2005.

[3] T. Karnik, Y. Ye, J. Tschanz, L. Wei, S. M. Burns, V. Govindarajulu,
V. De, and S. Borkar, “Total Power Optimization by Simultaneous Dual-
Vt Allocation and Device Sizing in High Performance Microprocessors,”
Proc. Design Autom. Conf., pp. 486491, 2002.

[4] S. Shah, A. Srivastava, D. Sharma, D. Sylvester, D. Blaauw, and V.
Zolotov, “Discrete Vt Assignment and Gate Sizing Using a Self-Snapping
Continuous Formulation,” Proc. Asia South Pacific — Design Autom.
Conf., pp. 301-306, 2005.

[5] C. Chen, A. Srivastava, and M. Sarrafzadeh, “On gate level power op-
timization using dual-supply voltages,” IEEE Trans. VLSI Syst., vol. 9,
pp. 616-29, 2001.

!General Geometric Programming
2Non-Linear Programming

889




IEICE Electronics Express, Vol.6, No.13, 889-896

[6] Y. S. Dhillon, “Hierarchical Optimization of Digital CMOS Circuits for
Power, Performance and Reliability,” A Dissertation Presented to Geor-
gia Institute of Technology, 2005.

[7] S.Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on ge-
ometric programming,” Optimization and Engineering, Springer, vol. 8,
no. 1, pp. 67-127, 2007.

[8] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Univer-
sity Press, 2004.

[9] R. F. Sproull and I. E. Sutherland, “Logical Effort: Designing for Speed
on the Back of an Envelop,” IEEE Advanced Research in VLSI, C. Sequin
(editor), MIT Press, 1991.

[10] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast
CMOS Circuits, Morgan Kaufmann Publishers, San Francisco, CA, 1999.

[11] T. F. Coleman and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, vol. 67, no. 2, pp. 189-224, 1994.

[12] T.F. Coleman and Y. Li, “An Interior, Trust Region Approach for Non-
linear Minimization Subject to Bounds,” SIAM Journal on Optimization,
vol. 6, pp. 418-445, 1996.

[13] A. Mutapcic, K. Koh, S. Kim, and S. Boyd, A MATLAB® Toolbox for
Geometric Programming, February 2007, ggplab version 1.0 RC2, [On-
line] www.stanford.edu/_boyd/ggplab.html

[14] S. Boyd, S.-J. Kim, D. Patil, and M. Horowitz, Digital circuit optimiza-
tion via geometric programming, 2005,

[Online] www.stanford.edu/ boyd/ gp_digital_ckt.html

[15] M. Grant, S. Boyd, and Y. Ye, CVX Users’ Guide: for cvx version 1.2
(build 667), June 2008,

[Online] www.stanford.edu/ boyd/cvx/cvx_usrguide.pdf

1 Introduction

For much of the history of the CMOS design, power was a secondary consid-
eration behind speed and area for many chips. As transistor counts and clock
frequency increased, power consumption has increased and now is a primary
constraint.

Local solutions currently exist in the low power design in subjects such as
supply voltage [1, 2] and threshold voltage [3], exclusively, and some solutions
have been made by discrete optimization algorithms [4] or heuristics [5].
Their accuracy and speed are suffering from the algorithms, such as [5], and
most of these algorithms have been designed for special purposes [6].

But, Geometric Programming (GP), now, provides a general, efficient and
fast method for VLSI optimization problems [7] (and Convex Problems [8],
generally). Here, mathematical modeling of VLSI circuits in a GP problem
format can also be easily done. Nevertheless, GP is still a nonlinear program-
ming and so it needs some improvements which here are provided through
initial point improvements. Curves that are fitted on different initial points
patterns, help to achieve immediately initial points and lead the nonlinear
solution toward the optimum solution.

The rest of the paper is organized as follows: section 2 introduces the
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logical effort method to be used in modeling. Then, a curve fitting on so-
lution space of this problem’s format is made by the routine expressed in
section 3. Based on the results in section 4, this method can be used as a
quick and accurate solution for the problems. Finally this paper is concluded
in section 5.

2 Gate delay modeling using the Logical Effort

In general the propagation delay of a gate is modeled as a first degree equa-
tion. The complexity is represented by Logical Effort [9]. Logical effort of a
gate is defined as the ratio of the input capacitance of the gate to the input
capacitance of an inverter.

Assume a gate size is x times to its smallest size (with equal rise and fall
times) and its subsequent gate is y times, thus delay equation becomes D =
R/x(Cout + xCp) where Cyyy and C), are output and parasitic capacitances
of the gate, respectively. If C' is the gate size of a feature size transistor (in
which « = 1), then, for an inverter as an output or load gate with C}, = 0,
D = 3RC'. So equation is normalized as (lower-case letters for capacitances
indicate normalized values):

1 1 (xcin ycout wcp) Cin YCout | Cp
_D _ — — — _— = — —_ 1
3x (yeou + zey) T ( 3 xcin 3 3 xen + 3 (1)
PR . Czn o Cout _
where Cj, is input capacitance of the gate, o = Cin, - = Cout and
C
L0

. . . C
Ycout 18 exactly the capacitance on the gate output, that is, cf, = FL’ and

e, is the capacitance on the gate’s input, that is, ¢; = %

Assuming a circuit with n sequential gates, arbitrary and distinct branches
at each gate’s output, given load, Cr, and input, C7, capacitances, the main
problem is obtaining x in these n gates such that delay is minimized, and
then power consumption which has been applied as a constraint. It should
be considered that here the critical path in a multiple path circuit is dealt
with and the shared gates with other paths are involved automatically in the
branches. On this problem, it is assumed that the size of 0-th and n-th gate
is given and the objective is to obtain x1, x9, 3, ..., T, at situation in which
no gate has branches; and in general specifying z;;, that is the size of j-th
branch’s gate on output of (i-1)-th gate for 0 <i<n+1and 1<j <b;. b;
is the number of branches on i-th gate’s output and z;1, 0 < i < n+1, is the
size of i-th gate of the primary given n gates. By these definitions we have:

n 1 bit1
D = ;J (3371'1 (Z <xi+1j Cini+1j) + xilcpi)) (2)

J=1

where cipit1j, 0 <i<n+1,1 < j < bjqq, is also the size of j-th branch’s
input capacitance on i-th gate’s output of the n gates. Indeed in this sit-
uation, the given values of problem are ¢; = zg1cp, (S0 xo1 is given),
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CLj = Tnt1jCinntlj, (SO Tpy1j is given), cimip1; for 0 < 4 < n, and cp;
for 0 <7 < n. In minimizing D, because of independency assumption of x; ;
for 1 <7 <mnand2<j<biy tox; for 1 <i < n, obviously reducing z; ;
results in D reduction and hence the optimal value is x;; = 0. In [10], by
simple assumption of equality x;; = x;1 and simplifying of (2), D has been
minimized. Thus equation (2) becomes:

" 1 " b‘_|_1 Li+1 Cin; Cpi

=0 3.’1:1' =0 3:132' 3

For optimization we have:

Ty Cini — b lmz—l—l Cini+1
i+

Ti—1 3 €Ty 3

1<i<n

)

which can simply be solved analytically. If for some j and k, 2 < k, j < b;41,
x;; be different from wx;;, that is z; be different, there is no analytical solu-
tion for this generalized problem and numerical ways should be taken. The
method, stated in the following section using simplifying assumptions, deal
with this problem and can be similarly applied to the generalized problem.

3 Fitting routine

General equation (2) for considering power can be written as equation (4) in
which P is a power constraint:

n 1 bit1
min D = Z ($i+1j Cz‘niHj) + Ti1Cpi
— 3.’L’i1 _
n 1+1

subject to VDDZ Z (<$i+1j Cini+1j> + $i10pi> <P
=0 j=1

(4)

Like equality assumption in expression (3) we have equation system (5):

min D — Z( z+1$z+1cmz+1 n %)

n ()
Z i (Cinibi + cpi)) < ¢
i=1

P
where ¢y = vIoT (ZoCpo + Tn+1Cinnt+10n+1)-
DD

For simplicity it is considered that all the gates are inverters. Hence (5)
is converted to the following form:

mlnD—n—i-l—i-ZxH_l
i=0 Li

n (6)
s.t. 623;1' < ¢cs0

by replacing ¢s = ¢50/6 the solution of (6) is identical to the solution of the
following equation:

min D = Z Titl

szz
n

s.t. sz < cs
i=1
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This system’s solution can only be gotten by numerical solutions. To
present a faster solution for this Geometrical Programming problem with
respect to nonlinear algorithms, an approximation is made using curve fitting
on data experienced. After getting an (appropriate) approximation on the
initial points for the problem’s variables, we are now able to solve the problem
numerically.

Lagrange Multipliers method, gives following nonlinear equation system

made of n + 1 equations in n + 1 variables:
Tit+l T
z; Ty
T
Tn+l _ X1
Tn o __ A
Cs

=) 1<i<n

(8)

Having z,, and x; or z,, and z,_1, solves equation (8). Optimum curves,
fitted on these variables, are gained by minimizing sum of squares of various
fitted curves and experimental data differences at solution space. The least
square problem solving is done by using Trust-Region sub-space method and
based on Interior-Reflective Newton technique [11, 12].

By numerical solution of equation (7) using MATLAB® for different val-
ues xg, Tnt1, N, and cg, some experimental data is exploited. The algorithm
can be chosen among the convex problem solving algorithms, especially geo-
metric ones, because the programming problem is geometric and sparse [7].
For this purpose, the recently published algorithms in [13] have been used
to be applied to MATLAB ® software for upgrading the accuracy of results.
In GGP library, in fact, the equation (8) is used together with the KKT
(Karush-Kuhn-Tucker) method [13].

4 Results

Equation (9) exhibits the best fitting under the conclusions based on the
following results. Obviously more accurate fitted curves need more speed in
processing of instructions of nonlinear least square problem’s solution.

Ty = \/16_ (%xnﬂ + 7) (.02n +10)? x (6—2-“0—0-7 — %) + Tns1+23  (9)

Accuracy of this fitting can be inferred from figures (1) and (2) which
are exploited from simulations made by MATLAB® for different values as
follows. x, in solution space of equation (7) is related to four variables n,
Cs, Tp, and x,41, therefore in three dimensional plot a parameter would be
constant.

In the figures, n ranges from 50 to 150 gates, ¢s from 200 to 300, z¢ from
1 to 41 and x,,1 from 50 to 150 times of gates with minimum size transistors
and equal rise and fall times.

Points on net planes are resulted in solving respective equations systems
by GP algorithm and the net planes themselves are produced by their inter-
polation. Solid planes are obtained by formula (9). It is obvious that the
adjacency of solid and net planes is resulting from the accuracy of formula
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constant parameter is L =150

interpolated curve

I fitted curve (formula (97)

®  solution of equation (7)
[ interpolated cure

I fitted curve (formula (2))

)

)

®  solution of equation (7
[ TJinterpolated curve
[ fitted curve (farmula (9))
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Fig. 1. relation between z,, and three variables n, cs, and
xQ.

constant parameter is }{D=41
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Fig. 2. relation between z,, and three variables n, cs, and
Tn+41-

(9) which is one the fitted curves on table I. This adjacency has been exactly
explained using numerical errors in Table I.

Table I shows different curves fitted on data exploited from solving equa-
tion (7). Patterns of these functions have been selected to be exponential
because of using power constraint in optimization problem [14]. The preci-
sion of the calculations for GP solver is 1.1 x 107! [15] and for MATLAB
curve fitting is 1075, so values of the table have become rounded. It should
be noted that the least square errors, are sum of square of differences between
fitted pointes and actual points for x, and in fact squares of differences have
been added on the overall set of exploited points of x,. This error has not
unit because x,, has not unit. z,, is the ratio of gate’s size to feature size gate
and error is sum of square of differences between x,,.

Proximity of an initial point to the final solution is very effective on
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numerical solution process. Final solution precision and numerical solving
algorithm’s convergence rate are extremely dependent upon the initial point
selection [13]. In fact, number of iterations of GP algorithm for equation (7)
depends on how good the initial points are. Relative errors on the Table I
illustrate the accuracy of corresponding fitted curves. This error is the ratio
of sum of absolute errors to sum of absolute values.

Table I. fitting of different curves on data exploited.

0.170% {73759 |x, =(0.9¢, —0.07)*(0.69x,,, +7.21)(.02n +10)"* (>~ —%)+x +23

n+l n+l

1 1 27k 1
0.173% [48.6591 |, =F(Exn+1 +7)(02n+10) (7077 —)H % +23

x, =(0.35¢, —6)"*(0.05x,,, +6.48)(e"""** +0.0004)
(e 1 0.8)+0.3x,,, +7.2

x, =(0.77¢, —3.75)"*°(0.29x,,, +4.38)(e™***""* +0.202)
(€777 10.18)+0.3x,,, +4.73

0.178% [51.6752

0.187% [57.2496

n+l

3

x, = (0.54c, —4.34)2(0.07x,,, +6.54)(e™""**' +0.0007)
(et 10.97)+0.27x,,, +6.95

x, = (0.4c, —0.33n) " (2.23x,,, +0.04x,)
(1.45n+2.73)"" ("% —1.68) + 4.57x,,,""

x, =(0.99¢, —0.49) "7 (0.97x,,, +0.17x,)

(0231 +10.47)" (e>*% —0.35)+2.82x,,,""

x, = (1.004c, +3.01)*"*(1.28x,,, +0.012x,)**
(=0.99x.%% +0.92)(e*" """ +1.2) — 0.98x,,, —0.08x,
x, =(0.75¢, —0.01n) " (1.46x,,, +0.1x,)"*
(1.28x2%7)(e* ™" —0.92) +2.24x,,0.05x,

n+l

0.194% [61.4041

0.231% [87.2068

0.360% [211.5868

0.407% [270.1156

0.521% [443.4422

n+l

Another problem in numerical (even analytical) solving nonlinear prob-
lems is the locally optimal solutions which are not globally optimal. A com-
mon way to deal with this problem is using initial points that are close to
generally optimal solutions. Here low relative errors on the table show the
proximity of approximations to final solution and can help to get rid of this
problem.

5 Conclusion

Automated design of integrated circuits by algorithms with the ability of cre-
ating quick and low power circuits is inevitable. A technique was proposed
that uses the Logical Effort idea for low power design in order to increase
its performance. Generally speaking, simultaneously considering speed and
power parameters would be resulted in numerical solutions for known prob-
lems, that is, nonlinear geometric systems. This article tried to ease their
solutions using an almost accurate approximation of initial point to speed
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up the numerical solution. This method for solving GGP problems is consid-
ering effective parameters in VLSI designs and can improve the algorithms’
speed and convergence rate.
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