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ABSTRACT

The design of Substrate Integrated Waveguide (S8&Hnators is usually a cumbersome process, elpecia
due to the length “trial and error” procedure iweal in this task. In this study Support Vector Region
Machines (SVRMs) are employed to compensate theelingderrors associated to the design of SIW
rectangular cavity resonators. To validate the ged approach, we have compared the design optputded

by our method with the results provided by comnaértill wave software. The comparison between our
predictions and the full wave simulations validhie effectiveness of the proposed approach.
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1. INTRODUCTION

Substrate Integrated Waveguides (SIW) are devices
built in a board of laminate by realizing arrays of
metallic via holes to create a wave guiding chamomed
cavity. They are an effective alternative to mdtall
waveguides mainly due to their simplicity and resflic o7
costs of realization (Deslandes and Wu, 2001). &hes g
motivations make SIW devices suitable for massescal
production. Several SIW devices are based on SIW
resonators (Woet al., 2007).

In particular, SIW resonators are dielectric stuues
loaded by metal layers on the top and the bottoch an
having walls realized by cylindrical vias of a give
radius @ arranged each other by a fixed distance p,
known as pitch Kig. 1). An accurate design of these |n this study, following the approach proposed@ar(o
devices require a thorough understanding of theand Tringali, 2010) in the case of circular SIW
functional dependence of the operating resonantresonators, empirical design formulas for a sqE&iW
frequency from its geometrical and physical par@met  cavity resonator are combined in a loop of feedhaithk
But such dependence is not known explicitly, even i 5 gyRM trained to simulate the behavior of thisidev
dealing with standard-shaped structures. As a tresul ;, 4 way to compensate errors due to model

their design is usually cumbersome (Angiudti al., a P ; ; .
e L pproximations. The study is organized as follows:
2009). Angiulli et al. (2009) a characterization of started introducing the technique of evaluation of

SIW resonator using a computational intelligence resonances in a SIW resonator. recalled the basics
approach by means of Support Vector Regression '

Machines (SVRMs) has been given. Results shown inSVRM, then discussed our compensation procedure.
(Angiulli et al., 2009) demonstrated that the SVRM Finally numerical results and conclusions are given
models provide a meaningful reduction of the oJeral

computational burden due to numerical simulation 2. MATERIALSAND METHODS

of these devices associated with ancumte )

capability of modelling their  behavior.  2.1. Evaluation of SS'W Resonances

Fig. 1. A square SIW cavity resonator
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The analysis of a SIW waveguide through the
magnetic dyadic Green'’s function has been presanted
(Arnieri and Amendola, 2008; Amendodh al., 2008).
The application of the boundary conditions involwes
systems of algebraic linear equations, one forThe
scattering and the other for the TE scattering, ¢ha be
expressed in a matrix form as Eq. 1:

[L] TE, ™™ [A] TE,T™M :[ l] TE,T™M (1)

By the so called support vector regression estonati
function (Scholkopfet al., 1999; Martinez-Ramon and
Christodoulou, 2006):
f(x) =w® (x) +b 4)

In Eq. 4 w is a fixed vector of weights, b is alrea
number andp denotes a nonlinear mapping froMtR a
high dimensional space, called feature space. ©hkig
to search for the value of the parameters w andab t

Theoretically SIW resonances are the complex minimize the regression risk Eq. 5 (Scholkafal.,

frequencies f for which Eq. 2 (Angiulli, 2007;
Angiulli et al., 2007; 2009):
det( [L()]™™) =0 2)

However, from a practical point of view, the
singularity of the matrix operator [[§™ can be
efficiently tested only by means of the Singulariiéa
Decomposition (SVD) (Golub and Loan, 1996). To
explain this point, first of all we recall that tlsenallest
singular valuec, of [L]"™™™ represents the actual
distance between this matrix operator and the &atl o
matricial operators whose rank is less than or legua:

1. Hence, provided a thresholb0, we state that
[L] =™ s e-singular, wheneves,<¢. Starting from this
condition, the set of the complex resonant freqigsnt
= ftjfim for which the matrix operator [[f™ is e-
singular can be evaluated seeking for the minimthef
two variable functiono, (f., fin ) in an assigned band
[fmins fma Of frequencies. Angiulliet al. (2009) an

effective search strategy is discussed, essentiaIIQN

consisting of an approximate computationogfrather
than a direct complete SVD factorization. Fiogt(f.e,
fim) IS restricted to a real axis for locating its maa.

1999; Martinez-Ramon and Christodoulou, 2006):
1 m
R() = ZIWI +Cr((x)-v,) (5)
i=1

where, I' is the so-callede-insensitive loss function

(Scholkopf et al.,, 1999; Martinez-Ramon and
Christodoulou, 2006):
o 0 if [f(x) —y|<e
Fre) -y = {f(x) -y|-¢  otherwise

And C is a suitable constant that determines piesalt
to estimation errors. Higher penalties to errore ar
assigned by a large value of C so that SVM is &whito
minimize error loosing in generalization abilityhile a
small value of this parameter allows a far higher
generalization ability giving fewer penalties toraer
The approximation for nonlinear data set is caroed
ith the use of a suitable kernel function, which
implicitly defines the structure of the high dimemsal
feature space where a maximal margin hyperplane is
found (Scholkopfet al., 1999; Martinez-Ramon and

Then these are used as starting points of a MullefChristodoulou, 2006).

routine (Antia, 2002) for a spread seeking throtig
whole complex plane.

2.2. Support Vector Regression Machines

2.3. The Compensation Procedure

In Fig. 1 is shown a typical square SIW cavity
resonator. The dominant resonant mode in this tsireic

The Support Vector Machines (SVMs) are heuristic IS the TE101. The resonant frequency is evaluated
structures able to solve classification problems Modelling this device as a conventional metallivitya
(Scholkopfet al., 1999). SVMs can also be employed to resonator (Woet al., 2007):
solve regression problems, which is this case they
specialize as Support Vector Regression Machines; _ € 2
(SVRMSs). In what follows we just recall the main ** \/; 2L
theoretical issues on this topic, referring to '
(Scholkopf et al.,, 1999; Martinez-Ramon and
Christodoulou, 2006) for more details. In order to
explain the mathematical framework in which SVRMs
are defined, let us consider the problem to appnake
the set of input-output training data Eq. 3:

(6)

where, Ly is the effective length side of the SIW cavity,
€, is the relative dielectric permittivity of the thetric
substrate and c is the velocity of the light inwam. In
Eq. 6 Ly is related to the radiug af the metallic vias
and to the value of the pitch p by the followingpérical

(x,y)OR"xR,i=1,..,1 relations (Wocet al., 2007):

®)
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Table 1. Ranges of the considered input for the SVRM model

Step (1): Input: fio;. h. & L. p. ’ exploited in this study (all dimensions are in

a computation using Eq. 6-7 millimeters, the ranges of p and, are evaluated by
Equation 7 and not reported here)

L h er

2.0+15.0 0.318+0.50 2.5+10.0

—

Step (2): Input L, p, ay. h. &
computation of ;"™ by SVRM:
evaluation of Af= fi/™"™ -f}y,

Table2: Square Siw resonator designed using the
compensation. (¥, = 3.35 ** ¢, = 2.55)
Projectn,  fy:(GHz) L (mm) a(mm) p (mm)

No Use: fiy; + Af;
as new input

Tty gws 1> 10.00 11897  0.337 1.350
2* 11.25 10.342  0.293 1173

3* 9.75 12198 0.346 1.384

b il 4 11.22 12.640  0.368 1.227

B 12.10 11.365  0.281 1.125

Table 3: Maximum absolute erraverr%
f101 by our compens 161 by HFSS

Fig. 2. Flow diagram of the proposed compensation procedure

Projectn,  ation procedure (GHz0  code (GHz)derr%.
2a, ) A
Loy =L - %, p < °—*§ p<4a, 7N 7 10.00 10.13 13
P 2 11.25 11.42 15
The Eq. 6-7 allow to determinate the values of thei 1?;3 13%72 %)%
geometrical parameters,g and L so that the square ¢ 12.10 1234 20

SIW resonator works at an assigned resonant freguen
f101. But this design task, due to the empirical natfre  The jnputs of this machine were the dielectric
the above;] relatl(l)ns, 'rsl f}"f'"led odnly in an appn(:jate . permittivity of the dielectric substrag, its thickness t,
way so that a length “trial and error” procedure Is .o nitch . the via hole radiugand the side length L,
required to tune the device. To overcome this @bl hije jts output was the dominant mode resonant
we have e?<pI0|ted a computgtlonal mtglhgence frequency f37". In Table 1 are shown the ranges of
approach using SVRMs. In _part|cular starting from o fm;h Ut ) A training desd
the values of L, p and d, provided by Eq. 6-7 a VR Variation of thé inputs parameters. A training

trained to model square SIW resonators, has ben feWas obtained by numerical sim_ulations usipg a Mhatla
with these geometrical parameters in order to code based on the computational technique for the

evaluation of the SIW resonances discussed in the
section “Materials and Method”. Afterwards, diffate
square resonators have been designed using a Matlab
code implementing our compensation procedure
(Table 2). Each project thus obtained has been
checked re-computing its resonant frequency using
the commercial code HFSS.

In Table 3 are shown the comparison between the

calculate the “actual” resonance frequerfgy of the
structure at hand, possibly different from the dasi
frequency f,;. Afterwards, a comparison between
these frequencies is done and the design procesdure
iterated in automatic way through a loop of feedhac
until the value of the relative error Eq. 8:

of :fmlfflOl (8) full wave simulations and our predictions. The
101 maximum absolute error observed is about 2%, so
] suggesting the effectiveness of the proposed approa
Is reduced under a given threshold, selected by therjnally, it is notable that, once the SVRM has been
user, according to the flux diagram showifig. 2. trained (Angiulliet al., 2008), the compensation step is
almost immediate. This makes the approach espgciall
3. RESULTSAND DISCUSSION suitable for iterated applications.
A SVRM capable to model square SIW resonators, 4. CONCLUSION
exploiting a two degree polynomial kernel (C = 40 '
= 0.01) was implemented following the In this study, a procedure to compensate the
guidelines  given in  (Angiu#t al., 2008). modeling error in the design of square SIW cavity
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resonator by using the SVRM approach, is given. Arnieri,

Results have been compared with those obtainedlby f
wave simulations carried out by the commercial
software HFSS. The maximum absolute error obtained
is about 2%, confirming the effectiveness of the
proposed approach.
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