American J. of Engineering and Applied Science$)3121-127, 2010
ISSN 1941-7020
© 2010 Science Publications

Electronic Design Automation Using Object Oriented Electronics

'Walid M. Aly and°Mohamed Said Abuelnasr
Technical and Vocational Institute,
’Department of Computer Engineering, Faculty of Begring,
Arab Academy for Science, Technology and MaritimmariEport, Alexandria, Egypt

Abstract: Problem statement: Electronic design automation is the usage of caerpechnology and
software tools for designing integrated electromigstem and creating electrical schematics.
Approach: An approach is presented for modeling of varioleeteonic and electric devices using
object oriented design, aiming on building a ligraf devices (classes) which can be used for
electronic design automationResults: The presented library was implemented using Java
programming language to form an Electronic ApplamatProgrammer Interface (EAPI) that can be
easily utilized for electronic design automati@onclusion: The proposed EAPI that implemented
these models in JAVA language can be used for sitioml of real electronic circuits and for
educational purposes, as the proposed API was rdasbigsing object oriented design, adding more
new classes, attributes and behaviors to currassek can be done easily.

Key words: Modeling-electronics design automation-object miée-java

INTRODUCTION be used to write programs that model and simulate
electronic circuits(Perry Douglas, 2002). VHDL is
Electronic Design Automation (EDA) (Rosenthal commonly used as a design language for field-
and Damore, 1999) is the usage of computer tecgolo programmable gate arrays and application-spedils |
and software tools for designing integrated eledtro in electronic design automation of digital circuits
system and creating electrical schematics, with the Object-Oriented Design (OOD) is the design of a
continuous growth of semiconductor technology, EDAsystem as a group of interacting software objelcts.
has become indispensable for modern circuit design. OOD, every entity in the system under consideraigon
One of the well known EDA tools is SPICE an object, these software objects mimics the réal |
(Simulation Program with Integrated Circuits objects. Objects can be clients, bank accounts, lukde
Emphasis) (Taubiret al., 2007), which is a general- connections, stocks...... etc.
purpose analog electronic circuit simulator program Each object is created from its class (Johnson,
SPICE is a powerful program which is used in1994), each class defines a certain concept byidgfi
integrated circuits and board-level design to chiégk the state and behavior that the created objects can
integrity of circuit designs and to predict circuit encounter. Each object has its unique state, thie s
behavior. can be changed within the rules set by the behavior
For usage simplicity, SPICE is invoked using When programming, the state is coded into a nuraber
ASCII text files containing lines of text, each these variables and the behavior is translated into abrrof
lines states a circuit component and how it is ested. methods, these variables and methods are known as
Many programs are based on different versions otlass members (Kortright, 1997). Object oriented
SPICE and are offering a convenient Graphical Usedesign is based upon a number of concrete prirs;iple
Interface (GUI). these principles include- among others- abstraction
Specialized computer languages were developed tencapsulation and inheritance, the following sectio
create different software programs for designing an highlights these principles
simulating of electronic circuits, the programming
language VHDL (Very High Speed Integrated Circuit Abstraction: Abstraction is keeping a separating
Hardware Description Language) -defined in the middistance between the idea and its details, theydesbf
1980’s-is a well known programming language that ca a class should not be carried away by represeiting
Corresponding Author: Walid M. Aly, Technical and Vocational Institute,
Arab Academy for Science, Technology and MaritinnariEport, Alexandria, Egypt
121

Am. J. Engg. & Applied <ci., 3 (1): 121-127, 2010

the states and behavior details of the class, dther MATERIALSAND METHODS
defining only the relevant state and behavior toe t
concept under consideration. Furthermore a class The proposed electronic application programmer
should be cohesive, representing only one abstracti interface (EAPI) defines the set of classes thatleho
We use abstraction every day when interacting wittthe behavior of each electronic device, these etaase
technological objects such as a shift gear. A Vehic to be used by a programmer for creating the objefcts
driver simply understands its external behaviortiaste various electronic circuits for simulation and iegt
no idea of its inner implementation details. A moreThe related classes are grouped together in a gacka
efficient design methodology is the one with incexd EAPI defines three different main packages:
abstraction level.

« Package electricDevices with two sub packages
Encapsulation: Encapsulation is as a protective digitalElectronicDevices and
wrapper that prevents the code and data from being analogElectronicDevices.
misused by other code defined outside the wrappes, Package circuits.
encapsulating objects provides abstraction. « Package powerSource.

The class is the mechanism by which encapsulation

is achieved, as you can use the class through its The following section highlights some of the
methods without haVing to worry about the detaflgo important classes in these packages:
implementation. Access to the code and data irtside
wrapper is tightly controlled through well-defined \jain classesin EAPI:

methods. _ . _ ClassElectricDevice:
Correct encapsulation enables the inner workinggoncept: Abstract class ElectricDevice is designed to

of objects to be changed as needed as long as thg the super class of all the devices and encapsula
interface to the object is left unaltered. the concept of electric device.

Inheritance: Inheritance in object oriented is a relation State: Each ElectricDevice object has a symbol, a
between two classes that represents the relat®oa™i variable representing the number of ports (ternsinal
for example a graduate student is a student. T and an array of object from class Port that remisse
that class graduate student inherits from clasdestty the terminal of the device, and an object of refeee
inheritance concept embeds the concept Ofype class DeviceModel.

specialization and generalization, the concept watel

student is a specialization of concept student, an@ehavior: the class provides accessor methods for the
concept student is a generalization of conceptug®d member variables, another abstract method getNétLis
student. also is defined which should be implemented by the
Using Java terminology (Herbert, 2006), thesybclasses to return netlist representation ofiévice.
inheriting class is called a subclass. The classnfr
which it inherits is called the superclass. Whecless ~ Constructor: Objects from this class are created
inherits from another class, it means that all i@ according to a certain model which contains alldha&
private class members are inherited and can be useghout the device, objects from the appropriate misde
directly from the sub class without needing to fete created, then passed to the constructor of theirestju
them again, thus emphasizing the concept of codgevice together with other required parameterssscla
reuse. ElectronicDevice has only this constructor for tiren
Inheritance also plays an important role ingpjects, this forces the subclasses to form a model
polymorphism, where an object reference variable cacontaining all the relevant information before tiea
point to objects from the actual class of the iee or of objects of the actual device, the signature haf t
any of its subclasses which makes the door wide opeconstructor is: public ElectricDevice (int numOfEr
for methods that is defined to receive one typelgéct String symbol, DeviceModel model).
reference to handle different types of objectsoag las
their classes are sub classes of the class oferefer Class DeviceModel: Concept: Abstract class device
defined as a method argument. model represents an abstraction of a model for the
This study aims on investigating the idea of usingelectric device, the model will store the important
OOD (Bahrami, 1998) in electronic circuit designaas information about the device, this information is
tool in electronic design automation. normally mentioned in the device data sheet.
122

Am. J. Engg. & Applied <ci., 3 (1): 121-127, 2010

This class is abstract, sub classes from thissclas (i ElectricalDevice
are classes like class BJTModel and class |, i numomons Attributes
ResistanceModel. private String symbal

Operations

public Stnng getSymbol()

Class BJT model: public Port]0.."] getPorts()
public ElectricDevice{ int numOfPons, String symbael, DevicaModel modal)

Concept: This class defines the important information | pueiic pevicemodel getbevicemodsi()

about devices created from class BJT. b Sing; SutMutie) -
State: Information stored is the on characteristics m/
(Nee,Veegsay--), Off characteristics and maximum = Domt
ratings. Well known BJTs devices like 2N3903 are Attributes
stored as final static BJT objects in this classl an |huat m node
created with the actual data from the data sheet fo Operations
immediate use. L e
public String getTitle(int node)
public Port{ String title)

Behavior: Accessor and mutator methods for all the
member variables.

Fig. 1: Class ElectricDevice
Classport:
Concept: Class Port encapsulated the terminal of a

3 One of the subclass of class ElectronicCircuit is
device.

abstract class BiasCircuit, subclasses of class
rBiasCircuit represent bias circuits like voltageidiéer
bias circuit, creating a biased transistor meapsatirg

an instance of the required bias circuit and pasisias
Behavior: Includes a number of useful methods, ana reference while calling the appropriate constmuct
interesting one of them is method setNode whicHrom class Transistor. Class ElectronicCircuit
receives an integer number representing the nodéplements the interface CircuitSolver which degine

State: Each port object has a title and the intege
number of the circuit node to which it is connected

number to connect the terminal to it. the method required to acquire a complete numeric
Figure 1 shows class diagram for classsolution for the circuit. Figure 2 shows the class
ElectronicDevice with its dependencies. diagram of class ElectronicCircuit with two of its
subclasses.

Class ElectronicCir cuit:
Concept: The electronic circuit will be encapsulated Class transistor:

using this class. Concept: This abstract class encapsulates the concept

State: the internal state of the class will be storechgsi of transistor, as th's_ class.serves as a sups td."’m”
hash map data structure, the hash map stores sbje&'pefs of transistors; transistor class hierarchghiswn
from class ElectronicDevice, a map cannot contaid” Fig. 3.
duplicate keys; each key can map to at most ongeyal
the key used for each object will be its symboghea State: The internal state of the class will be stored in
object in the map is a subclass of classvariables representing the values for voltage gain,
ElectronicDevice thus encapsulating all its infotima current gain, input resistance and output resistanc
including its ports and how they are connected.
Behavior: The class defines abstract methods for

Behavior: Includes a number of useful methods, ancalculating the variables defined in the statefhase
interesting one of them is method addComponenmethods are abstract, sub classes from this class a
(ElectricDevice component) which add devices to theforced to implement them otherwise they would hiave
circuit. This method demonstrates direct usage obe declared themselves abstract too
polymorphism as the mentioned method can accept
objects from any the subclasses of class Elecbmvice. ClassBJT:
Each Object is added with a certain key, Objeaisnfr Concept: This abstract class encapsulates the concept
class ElectronicCircuit can call method getNetl(itto of bipolar junction transistor; this class alsovesras a
return the netlist description of the circuit famrther super class for concepts common base, common emitte
processing by any spice environment program. and common collector transistors.

123

Am. J. Engg. & Applied i, 3 (1): 121-127, 2010

|5 ElectronicCircuit

Attributes

<<interface, interface, interfaces»

public vaid addCompanent(ElectricDevice companent)

public ElectricDevice getComponent(String symbol)

public File getNetlist()

public Hashtable getConnactedComponents()

public boolean ContainsComponenet(String symbol)

public doublz(0..*] getValtages()

public double get¥oltage(int node)

public double[0..*] getConsumedPower(ElectricDevice device)

T

EiBiasCircuit

Attributes
package doublz VCC
package double RC

Operations
public BiasCircuit()
public BiasCircuit(double VCC, double RC)
public double getVCC()
public double getRC()

N\

private Hashtable components H) CircuitSolver
Operations Attributes
public ElectronicCircuit{) 7 Operations

public double]0.."] getVoltages()
public double getVoltage{ int node)
public doublef0..*] getConsumedPover ElectricDevice device)

ElVoltageDividerBias
Attributes
private double R1
private doublz R2
private double RE
private double ratio
Operations

public ValtageDividerBias(doublz R1, doublz R2, dauble RE, double RC, double VCC)

public double getRatiof)
public double getRE()

Fig. 2: Class ElectronicCircuit

= CommonBase Transistor

E] Transistor

El CommonCollector Transistor

E| CommonEmitter Transistor

EIDMOSFE

Fig. 3: Transistor hierarchy

124

EIEMOSFE

Am. J. Engg. & Applied <ci., 3 (1): 121-127, 2010

State: The state of the class is determined using RESULTS
variables for all the currents and voltages of distor
(DC and AC quantities). As the result of the current research, the eleatro

NPN and PNP are identified as types in class BJPPlication programming interface is developeds thi
(represented by a final integer constant), theynotbe mterface_ can. be - utilized fo_r mode_lmg d|fferent_
defined as separate class because if so they avit o electronic devices and creating various electronic

b b ol £ all of th f i | circuits. In the following demonstrations, the adtu
€ Sub classes of all of the configuration cla code for using the proposed interface for creating

multiple inheritance is not accepted inJava. gjectronic circuit and for checking the mode of 4TB
The class has a reference of type class Bias€ircUjransistor is presented, the code is included with
representing the circuit in which the BJT is coriadc comments for illustration and clarity.

Behavior: Accessor methods and mutator methods for

member variables, other methods exist for checitieg Example of EAPI usage:

mode of the transistor, the class does not implétten Creating an electronic circuit: The following java
inherited methods from its super class and leakies t code represents how an electronic circuit of a comm
implementation to the sub classes. Figure 4 shiws t base bipolar junction transistor-shown in Fig. & te

class diagram of class BJT. coded using the proposed EAPI:
= public static void create_CB_BJT()
Attributes {
e /lcreate an object of class ElectronicCircuit
public int PHP =2 N X 3 N N 3 N)
prvete double 18 ElectronicCircuit circuit=new ElectronicCircuit();
e S /I create a power device model to describe a fixed
priate double VB power supply with 24 volts.
E:::: e PowerDeviceModel modell=new
private couble s PowerDeviceModel(24,PowerDeviceModel.FIXE
private doubile & D)
private double [!
prvats doubls Vi Il create a dc source based on modell
Wﬂ:e SDUE:E\\;E DCSource el=new DCSource(modell,"Vin");
private double Ve
prvet double 08t Wit /lconnect the power supply ports to node 0 and
private circuit Attributes node 1
ivate boolzan biased
private boolean hiase package double VCC POI’t [] port el= el.getPOI‘tS();
Operations package double RC —
public BJT(Sting symbol, int type, BJTModsl model) | circut S port_el[O].SetNOde(l);
R BRI public BiasCicut() port_el[1].setNode(0);
public double getVCE() . — N .
aulic dols geVCB() e /l add component to circuit
Bl n ey) publc fouhle gelRCH) circuit.addComponent(el);
public boolean getBiased() . .
publc couble caleulateBetanc() /I create a power device model to describe a
e e R variable power //supply with range from 0-5 volt.
public void s&tiB{ double B) . _
public vid sailc(doubls IC) PowerDeviceModel model2=new
public void sellE(doukle IE) PowerDeviceModel(PowerDeviceModel.VARIAB
public boolean isSaturated() ;
public boolzan isActive() LE):
nug:wc :oo‘;an ﬁCuItOffI(E) model2.setRange(0,5);
t n "
A DCSource e2=new DCSource(model2,"Vsupply");
public double. calculatslB) Il connect second power supply to nodes 0 and 4
public double caleulatelC() _ .
public doubls gelaL) Port [] port_e2= e2.getPorts();
public double get) port_e2[0].setNode(0);
public double getlE() .
public double getAV() port_ez[l]setNOd6(4),
public void setBiasCircuit(BiasCircutt circuit) C|rCU|t.addC0 mpone nt(eZ),
E:E}:E 2;3:‘;‘ff;gtriz‘(53asc"°““() Il create a BJT Model with hFE=50
public void setVC{ doubla VC) BJTModel model3=new BJTMOdel(),
Pl enukle SoVRL 3 model3.sethFE(50);
) /I Craete a common base NPN BJT based on the
Fig. 4: Class BJT model

125

Am. J. Engg. & Applied <ci., 3 (1): 121-127, 2010

BJT ql=new
CommonBaseTransistor("Q1",BJT.NPN,model3);

Checking the mode of a BJT transistor: The
following code creates a standard bias circuit with

/I connect collector , base and collector to nodegertain value for dc supplies and resistance aw/shio

2,0 and 3 /lrespectively.

Port [] port_ql= ql.getPorts();
port_gl1[0].setNode(2);

port_qgl1[1].setNode(0);

port_gl[2].setNode(3);

circuit.addComponent(ql);

/I create a resistanse of 100 and connect it tesod
3,4

ResistanceModel
ResistanceModel(100);
Resistance re=new Resistance("RE",model4);
Port [] port_re= re.getPorts();
port_re[0].setNode(3);

port_re[1].setNode(4);

circuit.addComponent(re);

/I create a resistanse of 800 and connect it tesod
1,2

ResistanceModel
ResistanceModel(800);
Resistance rc=new Resistance("RC",model5);
Port [] port_rc= rc.getPorts();
port_rc[0].setNode(1);

port_rc[1].setNode(2); circuit.addComponent(rc);
}

model4=new

model5=new

3 L_[2
R, <100Q _ R, <800Q
in Vupply
| | | F
4 A 0 " 1
05V 4V
Fig. 5: Sample electronic circuit
-
- 4‘# Q1 = love
= v
= BB
= L] -

Fig. 6: standard bias circuit

126

Fig. 6 and then check if the transistor is in safon
mode or not.

BJTModel model=new BJTModel();
model.setVCEsat(0.2);
model.sethFE(50);

/[Create StandardBiasCircuit circuit:
(Rg=10000,R=1000,\s5=3,Vcc=10

BiasCircuit bs = new
StandardBiasCircuit(10000,1000,3,10);

BJT tr=new
CommonEmitterTransistor("Tr",bs,BJT.NPN,
model);

System.out.printin(tr.isSaturated()); // printsetru

DISCUSSION

The use of object oriented modeling for electronic
design automation is presented, and as far asuthera
knowledge this is the pioneer attempt.

Within the electronic application programming
interface, different classes exist to model eledtro
devices and electronic circuits. Sample applicatioh
the presented APl are demonstrated to prove the
efficiency of the models.

the beauty of OOD is its natural reusability
capabilities, different states and behaviors caaduoed
to existing classes, even the behavior implemeantati
can be altered without any further problem in thdec
that use it as long as the behavior interface fs le
unaltered.

CONCLUSION

Object Oriented Design can be an important tool for
designing electronic circuits with various elecioon
devices, all of the main devices and circuits can b
coded as classes with relevant state and behauiar,
the whole electronic circuit will be an interaction
between different created objects.

The proposed application programming interface that
implements these classes in JAVA language can be
used for simulation of real electronic circuits afad
educational purposes.

REFERENCES
Bahrami, A., 1998. Object

Development. 1st Edn.,
ISBN: 025625348X, pp: 432.

Oriented Systems
McGraw-Hill, Irwin,

Am. J. Engg. & Applied <ci., 3 (1): 121-127, 2010

Herbert, S., 2006. Core Java, Advanced Featurbs. 8Rosenthal, C. and J. Damore, 1999. Hot topics in
Edn., Prentice Hall, ISBN: 0-07-8285-7, pp: 1056. electronic design automatio@omputer, 32: 79-80.
Johnson, R. and M. John, 1994. Design Patterns: DOI: 10.1109/MC.1999.10133
Elements of Reusable Object-Oriented SoftwareTaubin, A., J. Cortadella, L. Lavagno, A. Kondratye
1st Edn., Addison-Wesley ProfessiondEBN: and A. Peeters, 2007. Design Automation of Real-
0201633612, pp: 416. Life Asynchronous Devices and Systems. Found.
Kortright, E., 1997, Modeling and simulation with Trends Elect. Des. Autom., 2: 1-13. DO
UML and Java. Proceeding of the Simulation 10.1561/1000000006
Symposium, Dec. 1997, IEEE Computer Society,
USA., pp. 43-48. DOI:
10.1109/SIMSYM.1997.586477

Perry, D., 2002. VHDL: Programming by Example. 4th
Edn., McGraw-Hill Professional, ISBN:
0071400702, pp: 476.

127

