
American J. of Engineering and Applied Sciences 3 (1): 121-127, 2010
ISSN 1941-7020
© 2010 Science Publications

Corresponding Author: Walid M. Aly, Technical and Vocational Institute,
 Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt

121

Electronic Design Automation Using Object Oriented Electronics

1Walid M. Aly and 2Mohamed Said Abuelnasr

1Technical and Vocational Institute,
2Department of Computer Engineering, Faculty of Engineering,

Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt

Abstract: Problem statement: Electronic design automation is the usage of computer technology and
software tools for designing integrated electronic system and creating electrical schematics.
Approach: An approach is presented for modeling of various electronic and electric devices using
object oriented design, aiming on building a library of devices (classes) which can be used for
electronic design automation. Results: The presented library was implemented using Java
programming language to form an Electronic Application Programmer Interface (EAPI) that can be
easily utilized for electronic design automation. Conclusion: The proposed EAPI that implemented
these models in JAVA language can be used for simulation of real electronic circuits and for
educational purposes, as the proposed API was designed using object oriented design, adding more
new classes, attributes and behaviors to current classes can be done easily.

Key words: Modeling-electronics design automation-object oriented-java

INTRODUCTION

 Electronic Design Automation (EDA) (Rosenthal
and Damore, 1999) is the usage of computer technology
and software tools for designing integrated electronic
system and creating electrical schematics, with the
continuous growth of semiconductor technology, EDA
has become indispensable for modern circuit design.
 One of the well known EDA tools is SPICE
(Simulation Program with Integrated Circuits
Emphasis) (Taubin et al., 2007), which is a general-
purpose analog electronic circuit simulator program.
SPICE is a powerful program which is used in
integrated circuits and board-level design to check the
integrity of circuit designs and to predict circuit
behavior.
 For usage simplicity, SPICE is invoked using
ASCII text files containing lines of text, each of these
lines states a circuit component and how it is connected.
Many programs are based on different versions of
SPICE and are offering a convenient Graphical User
Interface (GUI).
 Specialized computer languages were developed to
create different software programs for designing and
simulating of electronic circuits, the programming
language VHDL (Very High Speed Integrated Circuit
Hardware Description Language) -defined in the mid
1980’s-is a well known programming language that can

be used to write programs that model and simulate
electronic circuits(Perry Douglas, 2002). VHDL is
commonly used as a design language for field-
programmable gate arrays and application-specific IC's
in electronic design automation of digital circuits.
 Object-Oriented Design (OOD) is the design of a
system as a group of interacting software objects. In
OOD, every entity in the system under consideration is
an object, these software objects mimics the real life
objects. Objects can be clients, bank accounts, data base
connections, stocks……etc.
 Each object is created from its class (Johnson,

1994), each class defines a certain concept by defining
the state and behavior that the created objects can
encounter. Each object has its unique state, this state
can be changed within the rules set by the behavior.
When programming, the state is coded into a number of
variables and the behavior is translated into a number of
methods, these variables and methods are known as
class members (Kortright, 1997). Object oriented
design is based upon a number of concrete principles,
these principles include- among others- abstraction,
encapsulation and inheritance, the following section
highlights these principles:

Abstraction: Abstraction is keeping a separating
distance between the idea and its details, the designer of
a class should not be carried away by representing all

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

122

the states and behavior details of the class, but rather
defining only the relevant state and behavior for the
concept under consideration. Furthermore a class
should be cohesive, representing only one abstraction.
We use abstraction every day when interacting with
technological objects such as a shift gear. A vehicle
driver simply understands its external behavior but have
no idea of its inner implementation details. A more
efficient design methodology is the one with increased
abstraction level.

Encapsulation: Encapsulation is as a protective
wrapper that prevents the code and data from being
misused by other code defined outside the wrapper,
encapsulating objects provides abstraction.
 The class is the mechanism by which encapsulation
is achieved, as you can use the class through its
methods without having to worry about the details of its
implementation. Access to the code and data inside the
wrapper is tightly controlled through well-defined
methods.
 Correct encapsulation enables the inner workings
of objects to be changed as needed as long as the
interface to the object is left unaltered.

Inheritance: Inheritance in object oriented is a relation
between two classes that represents the relation "is a",
for example a graduate student is a student. This means
that class graduate student inherits from class student,
inheritance concept embeds the concept of
specialization and generalization, the concept graduate
student is a specialization of concept student, and
concept student is a generalization of concept graduate
student.
 Using Java terminology (Herbert, 2006), the
inheriting class is called a subclass. The class from
which it inherits is called the superclass. When a class
inherits from another class, it means that all the non
private class members are inherited and can be used
directly from the sub class without needing to redefine
them again, thus emphasizing the concept of code
reuse.
 Inheritance also plays an important role in
polymorphism, where an object reference variable can
point to objects from the actual class of the reference or
any of its subclasses which makes the door wide open
for methods that is defined to receive one type of object
reference to handle different types of objects as long as
their classes are sub classes of the class of reference
defined as a method argument.
 This study aims on investigating the idea of using
OOD (Bahrami, 1998) in electronic circuit design as a
tool in electronic design automation.

MATERIALS AND METHODS

 The proposed electronic application programmer
interface (EAPI) defines the set of classes that model
the behavior of each electronic device, these classes are
to be used by a programmer for creating the objects of
various electronic circuits for simulation and testing.
The related classes are grouped together in a package,
EAPI defines three different main packages:

• Package electricDevices with two sub packages

digitalElectronicDevices and
analogElectronicDevices.

• Package circuits.
• Package powerSource.

 The following section highlights some of the
important classes in these packages:

Main classes in EAPI:
Class ElectricDevice:
Concept: Abstract class ElectricDevice is designed to
be the super class of all the devices and encapsulates
the concept of electric device.

State: Each ElectricDevice object has a symbol, a
variable representing the number of ports (terminals)
and an array of object from class Port that represents
the terminal of the device, and an object of reference
type class DeviceModel.

Behavior: the class provides accessor methods for the
member variables, another abstract method getNetList()
also is defined which should be implemented by the
subclasses to return netlist representation of the device.

Constructor: Objects from this class are created
according to a certain model which contains all the data
about the device, objects from the appropriate model is
created, then passed to the constructor of the required
device together with other required parameters, class
ElectronicDevice has only this constructor for creating
objects, this forces the subclasses to form a model
containing all the relevant information before creation
of objects of the actual device, the signature of the
constructor is: public ElectricDevice (int numOfPorts,
String symbol, DeviceModel model).

Class DeviceModel: Concept: Abstract class device
model represents an abstraction of a model for the
electric device, the model will store the important
information about the device, this information is
normally mentioned in the device data sheet.

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

123

 This class is abstract, sub classes from this class
are classes like class BJTModel and class
ResistanceModel.

Class BJT model:
Concept: This class defines the important information
about devices created from class BJT.

State: Information stored is the on characteristics
(hFE,VCE(sat)….), off characteristics and maximum
ratings. Well known BJTs devices like 2N3903 are
stored as final static BJT objects in this class and
created with the actual data from the data sheet for
immediate use.

Behavior: Accessor and mutator methods for all the
member variables.

Class port:
Concept: Class Port encapsulated the terminal of a
device.

State: Each port object has a title and the integer
number of the circuit node to which it is connected.

Behavior: Includes a number of useful methods, an
interesting one of them is method setNode which
receives an integer number representing the node
number to connect the terminal to it.
 Figure 1 shows class diagram for class
ElectronicDevice with its dependencies.

Class ElectronicCircuit:
Concept: The electronic circuit will be encapsulated
using this class.

State: the internal state of the class will be stored using
hash map data structure, the hash map stores objects
from class ElectronicDevice, a map cannot contain
duplicate keys; each key can map to at most one value,
the key used for each object will be its symbol, each
object in the map is a subclass of class
ElectronicDevice thus encapsulating all its information
including its ports and how they are connected.

Behavior: Includes a number of useful methods, an
interesting one of them is method addComponent
(ElectricDevice component) which add devices to the
circuit. This method demonstrates direct usage of
polymorphism as the mentioned method can accept
objects from any the subclasses of class ElectronicDevice.
Each Object is added with a certain key, Objects from
class ElectronicCircuit can call method getNetList () to
return the netlist description of the circuit for further
processing by any spice environment program.

Fig. 1: Class ElectricDevice

 One of the subclass of class ElectronicCircuit is
abstract class BiasCircuit, subclasses of class
BiasCircuit represent bias circuits like voltage divider
bias circuit, creating a biased transistor means creating
an instance of the required bias circuit and passing it as
a reference while calling the appropriate constructor
from class Transistor. Class ElectronicCircuit
implements the interface CircuitSolver which defines
the method required to acquire a complete numeric
solution for the circuit. Figure 2 shows the class
diagram of class ElectronicCircuit with two of its
subclasses.

Class transistor:
Concept: This abstract class encapsulates the concept
of transistor, as this class serves as a super class for all
types of transistors; transistor class hierarchy is shown
in Fig. 3.

State: The internal state of the class will be stored in
variables representing the values for voltage gain,
current gain, input resistance and output resistance.

Behavior: The class defines abstract methods for
calculating the variables defined in the state, as these
methods are abstract, sub classes from this class are
forced to implement them otherwise they would have to
be declared themselves abstract too.

Class BJT:
Concept: This abstract class encapsulates the concept
of bipolar junction transistor; this class also serves as a
super class for concepts common base, common emitter
and common collector transistors.

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

124

Fig. 2: Class ElectronicCircuit

Fig. 3: Transistor hierarchy

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

125

State: The state of the class is determined using
variables for all the currents and voltages of transistor
(DC and AC quantities).
 NPN and PNP are identified as types in class BJT
(represented by a final integer constant), they cannot be
defined as separate class because if so they will have to
be sub classes of all of the configuration classes and
multiple inheritance is not accepted in Java.
 The class has a reference of type class BiasCircuit
representing the circuit in which the BJT is connected.
Behavior: Accessor methods and mutator methods for
member variables, other methods exist for checking the
mode of the transistor, the class does not implement the
inherited methods from its super class and leaves the
implementation to the sub classes. Figure 4 shows the
class diagram of class BJT.

Fig. 4: Class BJT

RESULTS

 As the result of the current research, the electronic
application programming interface is developed, this
interface can be utilized for modeling different
electronic devices and creating various electronic
circuits. In the following demonstrations, the actual
code for using the proposed interface for creating an
electronic circuit and for checking the mode of a BJT
transistor is presented, the code is included with
comments for illustration and clarity.

Example of EAPI usage:
Creating an electronic circuit: The following java
code represents how an electronic circuit of a common
base bipolar junction transistor-shown in Fig. 5 can be
coded using the proposed EAPI:

public static void create_CB_BJT()
{
//create an object of class ElectronicCircuit
ElectronicCircuit circuit=new ElectronicCircuit();
// create a power device model to describe a fixed
power supply with 24 volts.
PowerDeviceModel model1=new
PowerDeviceModel(24,PowerDeviceModel.FIXE
D);
// create a dc source based on model1
DCSource e1=new DCSource(model1,"Vin");
//connect the power supply ports to node 0 and
node 1.
Port [] port_e1= e1.getPorts();
port_e1[0].setNode(1);
port_e1[1].setNode(0);
// add component to circuit
circuit.addComponent(e1);
// create a power device model to describe a
variable power //supply with range from 0-5 volt.
PowerDeviceModel model2=new
PowerDeviceModel(PowerDeviceModel.VARIAB
LE);
model2.setRange(0,5);
DCSource e2=new DCSource(model2,"Vsupply");
// connect second power supply to nodes 0 and 4
Port [] port_e2= e2.getPorts();
port_e2[0].setNode(0);
port_e2[1].setNode(4);
circuit.addComponent(e2);
// create a BJT Model with hFE=50
BJTModel model3=new BJTModel();
model3.sethFE(50);
// Craete a common base NPN BJT based on the
model

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

126

BJT q1=new
CommonBaseTransistor("Q1",BJT.NPN,model3);
// connect collector , base and collector to nodes
2,0 and 3 //respectively.
Port [] port_q1= q1.getPorts();
port_q1[0].setNode(2);
port_q1[1].setNode(0);
port_q1[2].setNode(3);
circuit.addComponent(q1);
// create a resistanse of 100 and connect it to nodes
3,4
ResistanceModel model4=new
ResistanceModel(100);
Resistance re=new Resistance("RE",model4);
Port [] port_re= re.getPorts();
port_re[0].setNode(3);
port_re[1].setNode(4);
circuit.addComponent(re);
// create a resistanse of 800 and connect it to nodes
1,2
ResistanceModel model5=new
ResistanceModel(800);
Resistance rc=new Resistance("RC",model5);
Port [] port_rc= rc.getPorts();
port_rc[0].setNode(1);
port_rc[1].setNode(2); circuit.addComponent(rc);
}

Fig. 5: Sample electronic circuit

Fig. 6: standard bias circuit

Checking the mode of a BJT transistor: The
following code creates a standard bias circuit with
certain value for dc supplies and resistance as shown in
Fig. 6 and then check if the transistor is in saturation
mode or not.

BJTModel model=new BJTModel();
model.setVCEsat(0.2);
model.sethFE(50);
//Create StandardBiasCircuit circuit:
(RB=10000,RC=1000,VBB=3,VCC=10)
BiasCircuit bs = new
StandardBiasCircuit(10000,1000,3,10);
BJT tr=new
CommonEmitterTransistor("Tr",bs,BJT.NPN,
model);
System.out.println(tr.isSaturated()); // prints true

DISCUSSION

 The use of object oriented modeling for electronic
design automation is presented, and as far as the authors
knowledge this is the pioneer attempt.
 Within the electronic application programming
interface, different classes exist to model electronic
devices and electronic circuits. Sample applications of
the presented API are demonstrated to prove the
efficiency of the models.
 the beauty of OOD is its natural reusability
capabilities, different states and behaviors can be added
to existing classes, even the behavior implementation
can be altered without any further problem in the code
that use it as long as the behavior interface is left
unaltered.

CONCLUSION

Object Oriented Design can be an important tool for
designing electronic circuits with various electronic
devices, all of the main devices and circuits can be
coded as classes with relevant state and behavior, and
the whole electronic circuit will be an interaction
between different created objects.
The proposed application programming interface that
implements these classes in JAVA language can be
used for simulation of real electronic circuits and for
educational purposes.

REFERENCES

Bahrami, A., 1998. Object Oriented Systems

Development. 1st Edn., McGraw-Hill, Irwin,
ISBN: 025625348X, pp: 432.

Am. J. Engg. & Applied Sci., 3 (1): 121-127, 2010

127

Herbert, S., 2006. Core Java, Advanced Features. 8th
Edn., Prentice Hall, ISBN: 0-07-226385-7, pp: 1056.

Johnson, R. and M. John, 1994. Design Patterns:
Elements of Reusable Object-Oriented Software.
1st Edn., Addison-Wesley Professional, ISBN:
0201633612, pp: 416.

Kortright, E., 1997, Modeling and simulation with
UML and Java. Proceeding of the Simulation
Symposium, Dec. 1997, IEEE Computer Society,
USA., pp. 43-48. DOI:
10.1109/SIMSYM.1997.586477

Perry, D., 2002. VHDL: Programming by Example. 4th
Edn., McGraw-Hill Professional, ISBN:
0071400702, pp: 476.

Rosenthal, C. and J. Damore, 1999. Hot topics in
electronic design automation. Computer, 32: 79-80.
DOI: 10.1109/MC.1999.10133

Taubin, A., J. Cortadella, L. Lavagno, A. Kondratyev
and A. Peeters, 2007. Design Automation of Real-
Life Asynchronous Devices and Systems. Found.
Trends Elect. Des. Autom., 2: 1-13. DOI:
10.1561/1000000006

