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Abstract: The state of charge (SOC) estimation for electric vehicles
(EVs) is important and helps to optimize the utilization of the bat-
tery energy storage in EVs. In this way, aging is also a key parameter
impacting the performance of batteries. In this paper, a hybrid neu-
ral model is proposed for the SOC estimation of ZEBRA (Zero Emis-
sion Battery Research Activities) battery considering the aging effect
through the state of health (SOH) and the discharge efficiency (DE)
parameters. The number of hidden nodes in neural modules is also op-
timized using particle swarm optimization (PSO) algorithm. The SOC
estimation error of the proposed system is 1.7% when compared with
the real SOC obtained from a discharge test.
Keywords: hybrid neural networks, state of charge, estimation, PSO
algorithm
Classification: Electron devices, circuits, and systems
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1 Introduction

Recently, using battery modules in either solar, electric or hybrid electric
vehicles is being further quested. There are several researches each of which
figuring out characteristics of different battery types, many of which unfortu-
nately lack the aging effect [1] to [5]. On the other hand, Ah counting is not
an acceptable method for the state of charge (SOC) estimation of a battery,
as the initial SOC and coulombic efficiency are difficult to measure [4]. Also,
offset and long term state divergence are the main problems of a traditional
SOC indicator. The SOC estimation has become an important research topic
in hybrid electric vehicle (HEV) industry, so the driving range cannot prevent
HEVs from stranding on the road and the performance of battery manage-
ment system will be optimized. Several methods have been proposed for SOC
estimation that most of them use artificial neural networks (ANNs) [1], [5]
to [8] or variants of Kalman filters [4, 9, 10]. In this paper, a hybrid neural
model is proposed for SOC estimation of a ZEBRA (Zero Emission Battery
Research Activities) battery in which the state of health (SOH) and the dis-
charge efficiency (DE), as two parameters that consider the aging effect, are
determined by two ANNs. The number of hidden layer nodes of multi-layer
perceptron (MLP) modules in the proposed hybrid ANN model is optimized
by particle swarm optimization (PSO) algorithm.

It is noted that determination of the optimal architecture of a neural
network is crucial, because it ensures good generalization by reducing the
occurrence of overfitting. Several studies have been done to develop pruning
algorithms for networks [11]. On the other hand, genetic algorithm (GA) and
PSO technique have attracted considerable attention among various modern
heuristic optimization techniques [12]. The drawback of the GA is its high
computational load. PSO has the same effectiveness (finding the true global
optimal solution) as the GA but with significantly better computational effi-
ciency (less function evaluations) [13, 14]. In other words, PSO arrives at its
final parameter values in fewer generations than the GA.

In this work, the standard 21.2 kWh ZEBRA battery (type Z5) with a
peak power of 32 kW and weight of 180 kg is used in the simulations. The
ZEBRA battery module has been utilized successfully in prototype HEVs,
because it exhibits high energy density; i.e. 3-4 times higher than lead-acid
and 2-3 times higher than Nickel Metal Hybrid (Ni-MH) batteries. The
pulse power capability is also adequate for typical HEVs acceleration profiles,
at around 50% further than the rated energy. The ZEBRA cells also offer
significantly increased cycle life ≈ 3500 nameplate cycles that is 7-8 times
higher than lead-acid batteries. It is noted that the proposed learning-based
method uses the ZEBRA battery data without loss of generality. In other
words, this method can work when using the data of other kinds of battery.

The paper is organized as follows. In Section 2, the battery aging effect is
discussed. The PSO algorithm is reviewed in Section 3. The proposed model
is introduced in Section 4. Simulation results are reported in Section 5 and
conclusions are provided in Section 6.
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2 Battery aging effect

Aging is also referred as battery memory effect or battery degradation, and
is measured in terms of SOH [15]:

SOH =
CINS

CREF
(1)

in which CINS is the instantaneous capacity and CREF is the battery ca-
pacity when it is recently installed. The inputs of battery SOC estimation
system are variables such as battery terminal voltage, discharge current and
battery temperature. Because of nonlinear dependency of SOC on the men-
tioned variables and respecting to Peukert equation [16], a successful SOC
estimation system can utilize ANN or other intelligent algorithms. The DE
is another key parameter for considering actual battery conditions. In this
way, the open circuit voltage (OCV) across battery terminals can be used to
determine SOH.

3 PSO algorithm

In PSO, there is a group of particles that look for the best solution within
the search area. If a particle finds a better value for the objective function,
the particle will communicate this result to the rest of the particles. In this
algorithm, each particle has a velocity and a position as follow [17]:

vi(k + 1) = vi(k) + γ1i(Pi − xi(k)) + γ2i(G − xi(k)) (2)

xi(k + 1) = xi(k) + vi(k + 1) (3)

where i is the particle index, k is the discrete time index, vi is the velocity
of ith particle, xi is position of ith particle, Pi is the best position found by
ith particle (personal best), G is the best position found by swarm (global
best) and γ1i and γ2i are random numbers in the interval [0,1] applied to ith
particle. In our simulations, the following equation is used for velocity [18]:

vi(k + 1) = ϕ(k)vi(k) + α1[γ1i(Pi − xi(k))] + α2[γ2i(G − xi(k))] (4)

in which ϕ is inertia function and α1 and α2 are the acceleration constants.

4 Proposed model

The SOH is measurable as the battery has been switched off sufficiently, and
it depends nonlinearly on the OCV and the battery residual capacity (BRC).
In this paper, the SOH is determined by a MLP, and the DE is determined by
another MLP and then the SOC is estimated through coloumetric algorithm
(CA) (Fig. 1). So, SOH is the intermediate parameter in this scheme and we
have an opportunity to monitor it.

The inputs to the CA module are DE, instantaneous current (i) and clock
information (clk) to calculate BRC and SOC due to the following equations:

BRC(N) = BRC(N − 1) − i × clk

3600 × DE
(5)
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Fig. 1. Structure of proposed PSO-optimized hybrid neu-
ral model for SOC estimation

SOC(N) =
BRC(N)

BNC
× 100 (6)

where clk is the system clock period in seconds, BNC stands for the battery
nominal capacity, N and N-1 refer to current and previous values, respec-
tively.

In Fig. 1, T, v and i are instantaneously detected temperature, voltage
and current from the battery cell, respectively. On the other hand, OCV is
measureable at least two hours after battery has been switched off. The role
of PSO algorithm in the proposed scheme is finding the optimum number of
hidden-layer nodes of two MLPs. It is obvious that an optimum-structure
neural-based estimator results in more generalization ability [19], and less
estimation error as compared to a non-optimized one.

5 Simulation results

The training data for the proposed model is acquired by sampling the Z5C
ZEBRA battery charge and discharge characteristics [20]. The training, val-
idation and test datasets consist of 1800, 600 and 600 samples, respectively.
The number of hidden-layer nodes of MLPs that estimate SOH and DE pa-
rameters is optimized using PSO algorithm. By setting the PSO parameters
as below, the number of hidden-layer nodes of two mentioned MLPs is ob-
tained as 8 and 37, respectively. So, the topology of two MLPs is set to [2 8
1] and [4 37 1] in our simulations, respectively:
Population size=20, Maximum particle velocity=4, Initial inertia weight=0.9,
Final inertia weight=0.2 and α1=α2=1

The ’sigmoid’ and ’linear’ functions have been selected as the transfer
functions of hidden layer and output layer, respectively. The resilient back-
propagation algorithm (RPROP) is used for training the MLPs [21], when the
minimum performance gradient and learning rate are set to 1E-6 and 0.01,
respectively. The number of epochs to reach MSE=1e-6 is 223 in training
MLP which estimates DE.
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The mean estimation error (MEE) is defined as follows:

MEE =
1
N

N∑

i=1

∣∣∣∣
SOCestimated(i) − SOCactual(i)

SOCactual(i)

∣∣∣∣ × 100% (7)

in which N=600 is the number of test samples or observation points that
are included to calculate error rate. The MEE of the proposed system is
compared to a non-hybrid PSO-optimized MLP model with [4 25 6 1] topol-
ogy when the actual SOC obtained from a discharge test of ZEBRA battery
and also recent researches using Ni-MH battery (Table I).

Table I. Performance comparison of some recent models in
SOC estimation

Research Battery Estimation MEE
group type algorithm (%)

Cheng et al. [8] Ni-MH Immune evolutionary 5.0
Wang et al. [4] Ni-MH Adaptive Kalman filtering 2.4
Xu et al. [10] Ni-MH Extended Kalman filtering 0.6

Hybrid neural model ZEBRA PSO-optimized hybrid 1.7
(proposed in this study) MLP-based
Non-hybrid neural model ZEBRA PSO-optimized non- 3.1
(simulated in this study) hybrid MLP-based

The battery efficiency (η), which is the ratio of terminal voltage to OCV,
is also determined for two conditions: SOH=100% and SOH=60% (Fig. 2).
As can be seen, the value of SOH has a significant impact on the efficiency
of battery, especially for large values of current.

Fig. 2. Dependence of efficiency on current and SOC: (a)
SOH = 100% (b) SOH = 60%
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6 Conclusions

The ability to determine SOC for EVs has become very important. The
proper estimation of SOC results in optimization of battery energy storage
utilization in modern EVs. On the other hand, aging is a lost but key com-
ponent in the analysis of most battery management systems that estimate
SOC. The relation between SOC estimation error and SOH, DE and other
parameters is complex. So, the proposed scheme in this paper is employed
to determine this complex and nonlinear behavior using hybrid swarm intel-
ligence (SI)-neural based learning machine. In this way, a PSO-optimized
hybrid neural model has been proposed to improve SOC estimation of ZE-
BRA battery considering the aging effect through SOH and DE parameters.
Experimental results have shown that the proposed model is superior to
the more traditional techniques with accuracy in estimating the SOC within
1.7%.
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