

© 2014 The Naeem Zafar Azeemi. This open access article is distributed under a Creative Commons Attribution (CC-BY)

3.0 license.

American Journal of Applied Sciences

Original Research Paper

Android Based Energy Aware Framework for Porting Legacy
Applications

Naeem Zafar Azeemi

College of Engineering and Information Technology, Al Ain Univeristy of Science and Technology, Al Ain, UAE

Article history

Received: 2014-09-24

Revised: 2014-12-15

Accepted: 2014-12-30

E-mail: naeem.hanif@aau.ac.ae

Abstract: Trend is growing towards using complex multimedia functions on
smaller devices. In this study, we explore the effect of migrating legacy signal
processing software applications algorithms from large form factor devices to the
smaller one such as handheld mobile devices known as Energy Conscious Mobile
Computing Systems (EConMCS). We concentrate on Source Code Volatility
(SCV), including inherent algorithm complexity and the developer implementation.
We identify code Transformation Steering Factors (TSF), such as loop unrolling
factor, decision tree grafting factor and their relation to SCV. The impact of TSF is
discussed for different multimedia applications in native Digital Signal Processor
(DSP) compiler optimization while switching between different transformation
schemes. Our results show that SCV can be minimized by using an architecture-
centric algorithm that both enables the effective use of underlying hardware
architectures and the memory access required to optimize energy consumption. The
coded spatial access is implicitly dependent on layout, content and location of
options and legibility that relates to a developer’s implementation of loops, code
blocks and decision trees. The compiler-centric transformation model minimizes the
effect of legacy code migration for multimedia applications. Results are exposed for
the transformation of typical DSP applications and a video transcodec MPEG-4.

Keywords: Multimedia Applications, Legacy Code, Embedded Systems, Source-to-
Source Transformation (StS), Source Code Volatility (SCV)

Introduction

Several factors contribute to make the multimedia

system a performance bottleneck. Increasing demand of

intensive multimedia functions in a small form factor

and pervasive computing has tightened the design space

(Ye et al., 2000; Mehta et al., 1996; Chen et al., 2012).

With the explosive growth of hand-held battery

operated embedded systems, the issue of their energy

consumption has gained importance. VLIW DSP

processors are the most lucrative choice to such an

application domain for their optimal performance delivery

in high data throughput at low power (Chang et al.,

2000; Klass et al., 2010; Mehta et al., 1987).
Hitherto energy dissipation has mostly been addressed

at hardware level (dynamic supply voltage scaling,
operating frequency control) but the current drive towards
ubiquitous computing shifted the focus to executing
software running on underlying system hardware.

Researchers (Esakkimuthu et al., 2000; Li and
Henkel, 1997; Cathoor et al., 2014; Tiwari et al., 2012)
have revealed that a large fraction of the computational
load imposed by applications is handled by the CPU and
it is the largest contributor to the overall energy budget.
In general, CPU energy consumption depends on the

type of workload imposed by applications. Therefore a
strong correlation between the application binary and
underlying hardware architecture leads to an efficient
Energy Conscious Mobile Computing System
EConMCS as shown in Fig. 1.1.

We define an energy-cycle cost model together with

a source-to-source transformation methodology,

suitable for embedded systems based on VLIW cores.

The system level methodology includes generalized

energy models for each module, composing the system

architecture (processing unit, on-chip/off-chip memory

units, address/data highway etc.) and SW application

parameters as shown in Fig. 1.2.

Unlike (Klass et al., 2010; Mehta et al., 1987;

Lee et al., 2011), we explore following aspects of

application expression as compared to conventional

techniques:

• The impact of algorithmic complexity and
developer’s implementation: These effects are
directly related to source code volatility and hence
the architecture-application performance

• Integration in DSP Native Compilation
Environment (NCE). That utilizes the conventional

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1981

Software Development Environment (SDE) to
produce battery efficient embedded applications

• Results are exposed for five optimization iteration
at a typical signal processing algorithm

The remainder of this study is organized as

follows. Relevant previous research on energy
estimation and optimization is summarized in the
next section. A detailed energy cost model and a
successive transformation methodology is proposed
in section 3. Experimental results are reported in
section 4, finally in section V we draw some
conclusions and outline extensions as well as
improvements to our future work.

Fig. 1.1. Correlation between software application and

hardware architecture

Fig. 1.2. A simplified methodology flow

Related Research

In recent years, numerous technique have evolved
to address the energy consumption issue at different
hardware specification layers (circuit, gate, register-
transfer or behavioral); an overview can be found in
(Ye et al., 2000). Many tools exist for power estimation
and optimization at these levels, more work is needed
in the area of energy analysis or optimizations at micro-
architecture, architecture or system level. Approaches
used in most of these tools can be broadly divided into
two categories; either simulation of functional units in a
processor or direct measurement of electrical
parameters on some target hardware.

 In simulation-based methods, energy consumption is
estimated by calculating the energy consumption of
various components in the target processor through
simulations at different levels. Simple Power concentrates
on modeling target architectures (Ye et al., 2000). A
functional unit based power profiler in (Mehta et al.,
1996) registers the history of previous states,
information about the current states of functional
units and correlated switching capacitance. Cycle-
level energy estimation is reported (Chen et al.,
2012), as an extension to (Mehta et al., 1996; Su et al.,
2013). A gate-level analysis tool is used to analyze
the effect of sequential execution of different
instructions in (Klass et al., 2010).

Numerous techniques have been discussed in (Li and
Henkel, 1997) to explore the impact of source code
transformations on families of hardware architectures
(Mehta et al., 1987). They used instruction-level
simulation to measure the effects of code transformation
on energy (Mehta et al., 1987; Esakkimuthu et al.,
2000). On the other hand, considering the processor as
the most energy-critical system component, other
approaches (Li and Henkel, 1997) focused instead on
the number of processor cycles. Thus, loop unrolling
and procedure in-lining were used to reduce the number
of processor cycles, while data locality was improved
by cache size optimization. Implicitly assuming data
memory access as the dominant factor for both energy
and performance researchers in (Cathoor et al., 2014)
applied extensive loop transformations to improve
locality and hence reduction in data accesses.

Direct measurement-based techniques are more
fine-grained approaches than the simulation based
methods. In these approaches software is
characterized by examining the energy consumption
obtained from real hardware.

A current measurement based technique is used in
(Tiwari et al., 2012). However, recording this inter-
instruction effect significantly enhance the table volume.
Attention has also been given to exploring architecture-
level models to be used with higher level tools or as part
of a simulation environment. Microprocessors
(Esakkimuthu et al., 2000; Gebotys and Gebotys,
2011), controllers (Su et al., 2013), instruction

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1982

registers, memory units, are prominent contributor to
power dissipation. Researchers have tried to
schedule operations (Su et al., 2013), or swap
operands (Tiwari et al., 2012) to reduce data bit
switching. Researchers have also employed parallel
instructions to improve performance which also
reduced energy such as using parallel data transfer
instructions (Lee et al., 2011).

Only a few researchers have verified these values
as actual physical savings in energy (Lee et al.,
2011; Gebotys and Gebotys, 2011). An
instantaneous power measurement model is
presented in (Russell and Jacome, 1998). There, a
software energy (Mehta et al., 1987) estimation
model is proposed by measuring electrical
parameters on a digitizing oscilloscope.

In contrast to above approaches (Gebotys et al.,
2000; Gebotys and Gebotys, 1998) used a regression
analysis to predict the energy consumption of software.
The prediction is used to minimize the energy
consumption with respect to the average current drawn.
Some researchers (Gebotys et al., 2000; Sami et al.,
2000) tried to model the complex energy behavior of
VLIW processors. The estimation of a given
transformation impact (Gebotys and Gebotys, 1998;
Tiwari et al., 2007; Loveman, 1976) on low energy is
the most critical part in code restructuring and this study
proposes a strategy to this issue in the next section.

Source Code Transformation Methodology

As discussed above, a SW application may be

subjected to real time performance constraints of time,

space and energy targeting execution on high

performance DSP processors. Constraint-driven

optimization to the application can be achieved by set

of rules for manipulating various representations of a

program. These rules allow exploitation of local or

global invariance within the program according to a

measured or a speculated performance cost function. In

this section we shall propose an energy-cycle cost

formulation for source-to-source transformation to

improve energy-cycle performance of an application.
We have assumed that any typical multimedia

algorithm can be coded as a tree-structured
representation of a program and that the source-to-
source transformations are expressible as pattern-
directed rearrangements of coded text.

Figure 3.1 depicts the methodology framework.
The VDF file contains instruction set operation code,
implicit latencies and their mnemonics, the
operations, opcodes, slot assignment schemes,
processor operating frequency, instruction cache
feature (associativity, block size, number of sets) and
main memory features (size, order, read/write
latencies). All naming conventions specific to VLIW
architecture we used here are followed in (TM1300
Data Book, 1999).

Fig. 3.1. Transformation methodology

The transformation space for steering parameter can
be represented in following vector notations:

, ,

,

,max ,

max ,

, ,

,

j

k

p

freq instructionCacheFeatures
w

dataCacheFeatures mainMemoryFeatures

codeSize UnrollingFactor
w

GraftingDepth cacheLineSize

executionTime Energy
w

slotUtiliztion schedulingFactor

θ

θ

θ

 
=  
 

 
=  
 

=

{ }, ,mw decisionTreeGrafting loopUnrolling loopBlocking
θ

 
 
 

=

where, (), ,j pk
w w w
θ θ θ are static and runtime parameters

and
m

w
θ are transformation operation.

A User Constraint File (UCF) holds the result of
transformed outcome that is the desired values for
code, execution time, energy and allowed percentage
cache miss.

If the transformation outcome is not sufficient to
satisfy the accuracy constraints (i.e., given in UCF file),
the quality of transformation controlling factor
(elaborated in section III.C) changed and verified
through simulation.

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1983

Additional benefits are gained by combining
traditional compiler optimization algorithm, such as
constant and variable propagation, dead code
elimination, strength reduction etc.

Transformation Cost Model

Our first goal is to simplify the complexity of the

processor energy model without sacrificing the accuracy

of the results. The second goal is to introduce a

methodology that automatically rebinds the instruction set

with respect to the average functional energy cost, in order

to converge to a highly effective design space.

For a given Mediabench application θ composed of
a finite number of code blocks, transformation space is
defined as:

()(), ,

mj pk
S w w w w

θθ θ θ

We obtain jw
θ from processor datasheet (TM1300

Data Book, 1999),
k

w
θ is acquired after the pre-compiler

and profiler stage in Figure 3.2. whereas pw
θ is an

outcome of the simulation at the target hardware.
For an MPEG-4 example these measured values are

shown in Table 1. The parameter
m

w
θ is processed in a

feedback loop where transformation cost is analyzed
followed by a transformation engine that decides
whether the code should be transformed as proposed.

We assume that the application θ can be broken down
into a set of blocks B e.g., decision blocks, data blocks,
computation blocks. The total application execution time
for the baseline version can be written as:

0 0 0 0 0

1 1

0

0
() (()) ,

m n

ij ij j ij ij

j i

z q B m nτ θ η ρ θ

= =

= + + ∀ ∈∑∑ (1)

Where:

0

i
z = Instruction cycle count,

0

i
q = Number of instructions in block 0

i
B ,

0

i
η and 0

i
ρ = Number of instruction and data cache stall

cycles respectively.

Fig. 3.2. Loop tiling-an ijk loop example; original loop (left), blocking for i loop (right) (Lam et al., 2011)

Table 1. Successive transformations for MPEG-4 example

Parameters Iter-1 (%) Iter-2 (%) Iter-3 (%) Iter-4 (%) Iter-5 (%)

Size of binary 0 11 -2 10 17
Time of execution 33 63 63 72 75
Energy 7 23 15 28 30
Slot utilization 10 12 41 32 53
Scheduling factor 0 0 1 32 95
Highway usage 46 170 179 266 303
Instruction cache miss 1 2 2 3 4
Data cache miss 0 2 2 2 4
Data cache conflict 0 -100 -100 -200 0
Data bank alignment -60 -240 -280 -540 -760

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1984

All of them are an outcome of the static and runtime
execution of application as shown in Table 1.

For any p-th transformation (iteration) with cycle

reduction function ϕp>0, the execution time can be
written as:

0

0() ()p

p p
τ θ ϕ τ θ=

And for optimization:

0

0() ()p

p
τ θ τ θ<

Similarly the energy dissipation for baseline version

can be written as:

0 / 1
0

1 1

0
()

0 0 0 0 0

()

(()) ,

mp q q

m n

j i

i i j i i

p p p

z q B m n

ε θ

η ρ θ

−

= =

= + +

+ + ∀ ∈

∑

∑ ∑
 (2)

Where
 p0 = Power consumption of the idle target processor.
pmp = Power consumption of the monitor program.
pq/q-1 = Power consumption of instruction q while q-1
has been executed.

For any p-th transformation (iteration) with energy

reduction function Ψp>0, the energy dissipation can be
written as:

0

0
() ()p

p p
ε θ ψ ε θ=

And for optimization:

0

0
() ()p

p
ε θ ε θ<

Convergence Criteria for Optimization

Now given an instance to optimize both execution
time and energy of application software, the
transformation space is very complex.

Finding solution to this is clearly NP-complete; as
parameters defined in space S have a large number of
possibilities to get optimal solution for our goal.

We solve this problem by defining 5-tuple
transformation rule as shown below:

{ }, , , ,r codeSize executionTime Energy cacheMiss slotUsage=

Each individual tuning parameter in r can have a

value from {1,0,-1},

For example in an idct example cycle driven rϕ

could be:

{ }1, 1,0, 1,1− −

It allows successive transformation steps to
increase code size, lower execution time, maintain
same level of energy as obtained in the previous
iteration, decrease cache miss and exploit more
parallelism with higher slot usage.

We shall discuss more formation of the rule tuple in
section III.D. Now we shall formulate steering factors

that control transformations in
m

w
θ .

Methodology Control Variables and Their

Relations

In this section, we describe the cost estimators of
the transformation techniques which determine when
to cease iterations in the transformation engine
shown in Fig. 3.2.

Loop unrolling (k), we propose a simple and novel
unrolling strategy to find the optimal unrolling factor
with a single set of profiling measurements. A
successive loop unrolling factor for the i-th iteration is
shown here:

()

()

.

/ . .

K loopSizeVLIWinstSizei

cacheBlockSize associativity noOfSets

=

In our case the instruction cache block size is 64,

associativity 8 and number of sets are 64. While
instruction cache hit ratio is obtained during simulation
as shown in Table 1.

Decision tree is the scheduling equivalent of an
extended basic block. It is a code region that has a
single entry point and zero or more exit edges leading
to other decision trees or function exits.

We compute the grafting depth ς in terms of code

size Ω, probability of execution edges in a tree ϑ and

number of execution counts ν. For a decision tree block
j, grafting depth is formulated as:

j
j j j

ς ν ϑ=Ω

Based on cache size we decide the maximum depth

factor ςmax. ςmax is the largest depth factor not to
increase the code size larger than the instruction cache
size that i.e.,:

max j instructionCacheSize /ς ς=

Thus, the optimal depth factor ςopt is the greatest

divisor of Ω but smaller than ςmax.
Block algorithms use data and computation

diagrams, rectangular parallelepipeds that shows the
iteration space of an algorithm with the operations
inside and the data on the faces.

A typical threefold nested counting loop (ijk-
loop) is shown in Figure 3.2. The arrows show the

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1985

order of operations and accesses to data. In this case
a block algorithm can be obtained by performing two
transformations to the algorithm. First, each of the
three original nested loops is partitioned into two
loops, an internal computation loop and an external
control loop.

We use two performance metrics closely related to
each other (Lam et al., 2011). On one side, we use
Cycle Per Instructions (CPI) that is computed from
number of execution cycle and code size both are
obtained from profiler. On the other side data cache
misses and data bank conflicts count. Both of them
show directly block algorithm performance in terms of
cache overhead.

Methodology Flow-Case Study

For a typical MPEG-4 example we obtain an initial
measurement after simulating the baseline code once.
This provides code size, execution time, both
instruction and data cache miss rate, data bank
conflicts, scheduling factor and energy. There are many
other parameters that are obtained directly or indirectly
from the profiler are not tabulated for e.g., foreground
memory (internal register) used, number of slot
assigned in individual cycle.

We will use them to refine our model to high
granularity in future. In the transformation cost
analyzer block all these measurements are used to
compute the unrolling factor K, grafting depth ς and
block performance metrics. At the transformation
engine they are further used to decide, whether the
current code should go for code conversion or not.

Example

If measured energy is higher, then the energy
constraints are set by the user in user constraint file
then further unrolling, tiling and grafting would be
required. In this case the energy driven
transformation rule for rΨ will be {1,0,-1,0,1}, that
can be interpreted as for next iteration code size shall
be increased, number of execution cycle shall
constant, energy count shall go lower, cache hit shall
remain same and slot usage will be increased further.
Each successive transformation shall bring all cost
factors close to the user constrained region as defined
in the user constrained file.

Experimental Platform

Typically, VLIW core based evaluation boards have
dual supply voltages, one for the core Vdd and other for
peripherals Vcc. Therefore, its power dissipation
contains two components of currents, i.e., Idd and Icc.

The core voltage in our target processor board
based on Star Core SC1100 is Vdd = 2.5V, whereas
Peripheral voltage Vcc is adjustable to 3.3V or 5.0V
(we set it to 3.3V).

Although traditional digital multimeter (e.g.,
FLUKE 85) can be used to measure processor currents
(Idd and Icc), switching activity between multitudes of
states in VLIW processors cannot be observed by these
dual-slope mode slow sampling measurement devices.

In order to record the impact of non-periodic
behavior of programs, we use HP54720 Hewlett
Packard Programmable digitizing oscilloscope,
HP54721A Hewlett Packard Amplifier plug-in and
PNX1302 evaluation board.

Results

In line with the proposed methodology described
above, we measured static and architecture driven
application parameters in different profiling stages
enlisted in Table 1.

There are several cogent observations that can be made
from our study to test applications, e.g., transformations
are not applied in random order; an attempt to
transformation is only made when transformation engine
decides controlling parameter (K, ς and block performance
metrics) are within limits and desired performance
variables (execution time, energy) are closely approached.

Table 1 shows results for successive transformations
applied to the baseline version of a typical MPEG-4
example. Note that the code size is increased in the
beginning due to loop unrolling but it does increase
processor functional unit utilization. Successive
application of transformation based on 5-tuple rules
improves instruction rebinding that increases
scheduling factor.

Note that scheduling factor is computed as a relative
measure, which is ration between the mappings at
available functional units (mentioned in VDF file) to
the infinite functional units (and ideal machine). This
gives us better cycle improvement upto 75% (shown as
executionTime) and lower energy consumption to 30%.

An inappropriate 5-tuple rule selection could lead to
underutilization of internal registers and hence adds an
offset to energy consumption in comparison to the
previous iteration; one such observation can be made as
from iter-2 to iter-3. The payoff for both energy and
cycle cost factors (Ψ, ϕ) in this particular case are
depicted in Figure 4.1.

Here, we summarize some interesting conclusions
from Figure 4.1.

First we have found that the most difficult problems
are concerned with transformation ordering and
information gathering.

Second, although a transformation may be applicable,
it may not win an improvement in the program.

Third, the distraction between machine-dependent
and machine-independent portions of our
transformation methodology is more subtle than it
appears. A transformation on a program may be
machine independent, in the usual sense, but the
reason for applying it may well depend on the target
machine architecture.

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1986

Fig. 4.1. Energy-cycle reduction factor versus Transformations (for MPEG-4 example)

Table 2. Energy-cycle cost factor for optimized applications

App/Transf. fir iir Dct idct nlivq m100

Size 1.76 1.38 0.99 1.54 1.03 2.32

Φ 0.90 0.67 0.55 0.98 1.01 0.74

Ψ 0.97 0.93 0.83 0.84 1.10 0.85

Fourth, a number of interesting transformations

were identified. In particular the concept that a variable
use may on occasion be replaced by an expression
representing an assertion about the value of the variable
is quite powerful.

We apply our technique to well know computational
intensive examples from Mediabench fir, iir, dct, idct
and two data intensive applications: Nonlinear vector
quantization (nlivq) for image zooming application and
matrix multiplication (m100).

Results energy/cycle cost factor for optimal
transformation are shown in Table 2.

Conclusion

In this study, we explore the effect of migrating
legacy signal processing software applications
algorithms from large form factor devices to the smaller
one such as handheld mobile devices. We concentrate
on source code volatility, including inherent algorithm
complexity and the developer implementation.
Successive transformations are steered by a set of rules,
generated in each iteration based on loop unrolling
factor, grafting depth and blocking factor.

The proposed methodology facilitates the
programmer to be the strategist. A goal-driven canned
set of transformations may improve the application
significantly. The approach is illustrated using
functional unit usage within a VLIW architecture and
identifies a new operation rebinding technique for low
power which improves energy dissipation for a MPEG-
4 example. This improvement is primarily achieved by
improving the number of CPU cycles (execution

time), cache memory access (both instruction and data
cache) and exploiting architectural usage especially
increasing slot utilization.

The approach is general and results are verified with
real power measurements at StarCore Media Processor.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Cathoor, F., S. Wuytack. E. De Greef, F. Balaaa and L.

Nachtergaele et al., 2014. Custom memory

management methodology: Exploration of memory

organisation for embedded multimedia system design.

Chang, N., K.H. Kim and H.G. Lee, 2000. Cycle-

accurate energy consumption measurement and

analysis: Case study of ARM7TDMI. Proceedings

of the International Symposium on Low Power

Electronics and Design, Jul. 25-27, Rapallo, Italy,

pp: 185-190. DOI: 10.1145/344166.344576

Chen, R.Y., M.J. Irwin and R.S. Bajwa, 2012. An

architectural level power estimator. Proceedings of

the Power-Driven Microarchitecture Workshop.

Esakkimuthu, G., N. Vijaykriehnan, M. Kandemir and

M. Irwin, 2000. Memory system energy: Influence

of hardware-software optimizations. Proceedings of

the International Symposium on Low Power

Electronics and Design, Jul. 25-27, Rapallo, Italy,

pp: 244-246. DOI: 10.1145/344166.344612

Gebotys, C. and R. Gebotys, 2011. Statistically based

prediction of power dissipation for complex

embedded DSP processors. Microproc. Microsyst. J.,

23: 135-144. DOI: 10.1016/S0141-9331(99)00030-7

Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987

DOI: 10.3844/ajassp.2014.1980.1987

1987

Gebotys, C., R. Gebotys and S. Wiratunga, 2000.

Power minimization derived from architectural-

usage of VLIW processors. Proceedings of the

Annual ACM IEEE Design Automation

Conference, Jun. 05-09, Los Angeles, CA, USA,

pp: 308-311. DOI: 10.1145/337292.337426

Gebotys, C.H. and R.J. Gebotys, 1998. An empirical

comparison of algorithmic, instruction and

architectural power prediction models for high

performance embedded DSP processors. Proceedings

of the International Symposium on Low Power

Electronics and Design, Aug. 10-12, Monterey, CA,

USA, pp: 121-123. DOI: 10.1145/280756.280824

Klass, B., D.E. Thomas, H. Schmit and D.F. Nagle,

2010. Modeling inter-instruction energy effects in a

digital signal processor. Proceedings of the Power-

Driven Microarchitecture Workshop.

Lam, M.S., E.E. Rothbcrg and M.E. Wolf, 2011. The

cache performance and optimizations of blocked

algorithms. Proceedings of the 4th International

Conference on Architectural Support for

Programming Languages and Operating Systems,

Apr. 08-11, Santa Clara, CA, USA, pp: 63-74.

DOI: 10.1145/106972.106981

Lee, M., V. Tiwari, S. Malik and M. Fujita, 2011.

Analysis and minimization techniques for embedded

DSP software. IEEE Trans VLSI Design.

Li, Y. and J. Henkel, 1997. A framework for

estimating and minimizing energy dissipation of

embedded HW/SW systems. Proceedings of the

35th annual Design Automation Conference, Jun.

15-19, San Francisco, CA, USA, pp: 188-193.
DOI: 10.1145/277044.277097

Loveman, D.B., 1976. Program improvement by

source to source transformation. Proceedings of

the 3rd ACM SIGACT-SIGPLAN Symposium on

Principles on Programming Languages, (PPL’

11), ACM New York, NY, USA, pp: 140-152.

DOI: 10.1145/800168.811548

Mehta, H., R. Owens, M. Trwin, R. Chen and D.
Ghosh, 1987. Techniques for low energy software.
Proceedings of the International Symposium on
Low Power Electronics and Design, Aug. 18-20,
IEEE Xplore Press, Monterey, CA, USA, pp: 72-
75. DOI: 10.1145/263272.263286

Mehta, H., R.M. Owens and M.J. Irwin, 1996.
Instruction level power profiling. Proceedings of
the International Conference on Acoustics,
Speech and Signal Processing, May 7-10, IEEE
Xplore Press, Atlanta, GA, pp: 3326-3329.
DOI: 10.1109/ICASSP.1996.550589

Russell, J.T. and M.F. Jacome, 1998. Software power
estimation and optimization for high performance,
32-bit embedded processors. Proceedings of the
International Conference on Computer Design:
VLSI in Computers and Processors, Oct. 5-7, IEEE
Xplore Press, Austin, TX, pp: 328-333.
DOI: 10.1109/ICCD.1998.727070

Sami, M., D. Sciuto, C. Silvano and V. Zaccaria,
2000. Instruction-level power estimation for
embedded VLIW cores. Proceedings of the 8th
International Workshop on Hardware/Software
Codesign, May 03-05, San Diego, CA, USA, pp:
34-38. DOI: 10.1145/334012.334019

Su, C.L., C.Y. Tsui and A.M. Despain, 2013. Saving
power in the control path of embedded processors.
IEEE Design Test Compute., 11: 24-31. DOI:
10.1109/54.329448

Tiwari, V., S. Malik and A. Wolfe, 2007. Compilation
techniques for low energy.

Tiwari, V., S. Malik and A. Wolfe, 2012. Power
analysis of embedded software: A First step
towards software power minimization. IEEE Trans.
VLSI Syst., 2: 437-445. DOI: 10.1109/92.335012

TM1300 Data Book, 1999. Philips Electronic, North
America Corporation.

Ye, W., N. Vijaykrishnan, M. Kandemir and M.J. Irwin,
2000. The design and use of SimplePower: A cycle-
accurate energy estimation tool. Proceedings of the
Annual ACM IEEE Design Automation Conference,
Jun. 5-9, IEEE Xplore Press, pp: 340-345.
DOI: 10.1109/DAC.2000.855333

