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Abstract: Trend is growing towards using complex multimedia functions on 
smaller devices. In this study, we explore the effect of migrating legacy signal 
processing software applications algorithms from large form factor devices to the 
smaller one such as handheld mobile devices known as Energy Conscious Mobile 
Computing Systems (EConMCS). We concentrate on Source Code Volatility 
(SCV), including inherent algorithm complexity and the developer implementation. 
We identify code Transformation Steering Factors (TSF), such as loop unrolling 
factor, decision tree grafting factor and their relation to SCV. The impact of TSF is 
discussed for different multimedia applications in native Digital Signal Processor 
(DSP) compiler optimization while switching between different transformation 
schemes. Our results show that SCV can be minimized by using an architecture-
centric algorithm that both enables the effective use of underlying hardware 
architectures and the memory access required to optimize energy consumption. The 
coded spatial access is implicitly dependent on layout, content and location of 
options and legibility that relates to a developer’s implementation of loops, code 
blocks and decision trees. The compiler-centric transformation model minimizes the 
effect of legacy code migration for multimedia applications. Results are exposed for 
the transformation of typical DSP applications and a video transcodec MPEG-4. 
 
Keywords: Multimedia Applications, Legacy Code, Embedded Systems, Source-to-
Source Transformation (StS), Source Code Volatility (SCV)  

 

Introduction 

Several factors contribute to make the multimedia 

system a performance bottleneck. Increasing demand of 

intensive multimedia functions in a small form factor 

and pervasive computing has tightened the design space 

(Ye et al., 2000; Mehta et al., 1996; Chen et al., 2012). 

With the explosive growth of hand-held battery 

operated embedded systems, the issue of their energy 

consumption has gained importance. VLIW DSP 

processors are the most lucrative choice to such an 

application domain for their optimal performance delivery 

in high data throughput at low power (Chang et al., 

2000; Klass et al., 2010; Mehta et al., 1987). 
Hitherto energy dissipation has mostly been addressed 

at hardware level (dynamic supply voltage scaling, 
operating frequency control) but the current drive towards 
ubiquitous computing shifted the focus to executing 
software running on underlying system hardware. 

Researchers (Esakkimuthu et al., 2000; Li and 
Henkel, 1997; Cathoor et al., 2014; Tiwari et al., 2012) 
have revealed that a large fraction of the computational 
load imposed by applications is handled by the CPU and 
it is the largest contributor to the overall energy budget. 
In general, CPU energy consumption depends on the 

type of workload imposed by applications. Therefore a 
strong correlation between the application binary and 
underlying hardware architecture leads to an efficient 
Energy Conscious Mobile Computing System 
EConMCS as shown in Fig. 1.1. 

We define an energy-cycle cost model together with 

a source-to-source transformation methodology, 

suitable for embedded systems based on VLIW cores. 

The system level methodology includes generalized 

energy models for each module, composing the system 

architecture (processing unit, on-chip/off-chip memory 

units, address/data highway etc.) and SW application 

parameters as shown in Fig. 1.2. 

Unlike (Klass et al., 2010; Mehta et al., 1987; 

Lee et al., 2011), we explore following aspects of 

application expression as compared to conventional 

techniques: 

 

• The impact of algorithmic complexity and 
developer’s implementation: These effects are 
directly related to source code volatility and hence 
the architecture-application performance 

• Integration in DSP Native Compilation 
Environment (NCE). That utilizes the conventional 
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Software Development Environment (SDE) to 
produce battery efficient embedded applications 

• Results are exposed for five optimization iteration 
at a typical signal processing algorithm 

 
The remainder of this study is organized as 

follows. Relevant previous research on energy 
estimation and optimization is summarized in the 
next section. A detailed energy cost model and a 
successive transformation methodology is proposed 
in section 3. Experimental results are reported in 
section 4, finally in section V we draw some 
conclusions and outline extensions as well as 
improvements to our future work. 
 

 
 
Fig. 1.1. Correlation between software application and 

hardware architecture 

 

 
 
Fig. 1.2. A simplified methodology flow 

Related Research 

In recent years, numerous technique have evolved 
to address the energy consumption issue at different 
hardware specification layers (circuit, gate, register-
transfer or behavioral); an overview can be found in 
(Ye et al., 2000). Many tools exist for power estimation 
and optimization at these levels, more work is needed 
in the area of energy analysis or optimizations at micro-
architecture, architecture or system level. Approaches 
used in most of these tools can be broadly divided into 
two categories; either simulation of functional units in a 
processor or direct measurement of electrical 
parameters on some target hardware. 

 In simulation-based methods, energy consumption is 
estimated by calculating the energy consumption of 
various components in the target processor through 
simulations at different levels. Simple Power concentrates 
on modeling target architectures (Ye et al., 2000). A 
functional unit based power profiler in (Mehta et al., 
1996) registers the history of previous states, 
information about the current states of functional 
units and correlated switching capacitance. Cycle-
level energy estimation is reported (Chen et al., 
2012), as an extension to (Mehta et al., 1996; Su et al., 
2013). A gate-level analysis tool is used to analyze 
the effect of sequential execution of different 
instructions in (Klass et al., 2010). 

Numerous techniques have been discussed in (Li and 
Henkel, 1997) to explore the impact of source code 
transformations on families of hardware architectures 
(Mehta et al., 1987). They used instruction-level 
simulation to measure the effects of code transformation 
on energy (Mehta et al., 1987; Esakkimuthu et al., 
2000). On the other hand, considering the processor as 
the most energy-critical system component, other 
approaches (Li and Henkel, 1997) focused instead on 
the number of processor cycles. Thus, loop unrolling 
and procedure in-lining were used to reduce the number 
of processor cycles, while data locality was improved 
by cache size optimization. Implicitly assuming data 
memory access as the dominant factor for both energy 
and performance researchers in (Cathoor et al., 2014) 
applied extensive loop transformations to improve 
locality and hence reduction in data accesses. 

Direct measurement-based techniques are more 
fine-grained approaches than the simulation based 
methods. In these approaches software is 
characterized by examining the energy consumption 
obtained from real hardware. 

A current measurement based technique is used in 
(Tiwari et al., 2012). However, recording this inter-
instruction effect significantly enhance the table volume. 
Attention has also been given to exploring architecture-
level models to be used with higher level tools or as part 
of a simulation environment. Microprocessors 
(Esakkimuthu et al., 2000; Gebotys and Gebotys, 
2011), controllers (Su et al., 2013), instruction 
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registers, memory units, are prominent contributor to 
power dissipation. Researchers have tried to 
schedule operations (Su et al., 2013), or swap 
operands (Tiwari et al., 2012) to reduce data bit 
switching. Researchers have also employed parallel 
instructions to improve performance which also 
reduced energy such as using parallel data transfer 
instructions (Lee et al., 2011). 

Only a few researchers have verified these values 
as actual physical savings in energy (Lee et al., 
2011; Gebotys and Gebotys, 2011). An 
instantaneous power measurement model is 
presented in (Russell and Jacome, 1998). There, a 
software energy (Mehta et al., 1987) estimation 
model is proposed by measuring electrical 
parameters on a digitizing oscilloscope. 

In contrast to above approaches (Gebotys et al., 
2000; Gebotys and Gebotys, 1998) used a regression 
analysis to predict the energy consumption of software. 
The prediction is used to minimize the energy 
consumption with respect to the average current drawn. 
Some researchers (Gebotys et al., 2000; Sami et al., 
2000) tried to model the complex energy behavior of 
VLIW processors. The estimation of a given 
transformation impact (Gebotys and Gebotys, 1998; 
Tiwari et al., 2007; Loveman, 1976) on low energy is 
the most critical part in code restructuring and this study 
proposes a strategy to this issue in the next section. 

Source Code Transformation Methodology 

As discussed above, a SW application may be 

subjected to real time performance constraints of time, 

space and energy targeting execution on high 

performance DSP processors. Constraint-driven 

optimization to the application can be achieved by set 

of rules for manipulating various representations of a 

program. These rules allow exploitation of local or 

global invariance within the program according to a 

measured or a speculated performance cost function. In 

this section we shall propose an energy-cycle cost 

formulation for source-to-source transformation to 

improve energy-cycle performance of an application. 
We have assumed that any typical multimedia 

algorithm can be coded as a tree-structured 
representation of a program and that the source-to-
source transformations are expressible as pattern-
directed rearrangements of coded text. 

Figure 3.1 depicts the methodology framework. 
The VDF file contains instruction set operation code, 
implicit latencies and their mnemonics, the 
operations, opcodes, slot assignment schemes, 
processor operating frequency, instruction cache 
feature (associativity, block size, number of sets) and 
main memory features (size, order, read/write 
latencies). All naming conventions specific to VLIW 
architecture we used here are followed in (TM1300 
Data Book, 1999). 

 

 
 
Fig. 3.1. Transformation methodology 
 

The transformation space for steering parameter can 
be represented in following vector notations: 
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where, ( ), ,j pk
w w w
θ θ θ are static and runtime parameters 

and
m

w
θ are transformation operation.  

A User Constraint File (UCF) holds the result of 
transformed outcome that is the desired values for 
code, execution time, energy and allowed percentage 
cache miss. 

If the transformation outcome is not sufficient to 
satisfy the accuracy constraints (i.e., given in UCF file), 
the quality of transformation controlling factor 
(elaborated in section III.C) changed and verified 
through simulation. 
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Additional benefits are gained by combining 
traditional compiler optimization algorithm, such as 
constant and variable propagation, dead code 
elimination, strength reduction etc. 

Transformation Cost Model 

Our first goal is to simplify the complexity of the 

processor energy model without sacrificing the accuracy 

of the results. The second goal is to introduce a 

methodology that automatically rebinds the instruction set 

with respect to the average functional energy cost, in order 

to converge to a highly effective design space. 

For a given Mediabench application θ composed of 
a finite number of code blocks, transformation space is 
defined as: 
 

( )( ), ,

mj pk
S w w w w

θθ θ θ  

 

We obtain jw
θ  from processor datasheet (TM1300 

Data Book, 1999), 
k

w
θ is acquired after the pre-compiler 

and profiler stage in Figure 3.2. whereas pw
θ is an 

outcome of the simulation at the target hardware. 
For an MPEG-4 example these measured values are 

shown in Table 1. The parameter 
m

w
θ is processed in a 

feedback loop where transformation cost is analyzed 
followed by a transformation engine that decides 
whether the code should be transformed as proposed. 

We assume that the application θ can be broken down 
into a set of blocks B e.g., decision blocks, data blocks, 
computation blocks. The total application execution time 
for the baseline version can be written as: 
 

0 0 0 0 0

1 1

0

0
( ) (( ) ) ,

m n

ij ij j ij ij

j i

z q B m nτ θ η ρ θ

= =

= + + ∀ ∈∑∑  (1) 

 
Where: 

0

i
z  = Instruction cycle count,  

0

i
q  = Number of instructions in block 0

i
B ,  

0

i
η and 0

i
ρ  = Number of instruction and data cache stall 

cycles respectively. 

 

 
 

Fig. 3.2. Loop tiling-an ijk loop example; original loop (left), blocking for i loop (right) (Lam et al., 2011) 

 
Table 1. Successive transformations for MPEG-4 example 

Parameters Iter-1 (%) Iter-2 (%) Iter-3 (%) Iter-4 (%) Iter-5 (%) 

Size of binary 0 11 -2 10 17 
Time of execution 33 63 63 72 75 
Energy 7 23 15 28 30 
Slot utilization 10 12 41 32 53 
Scheduling factor 0 0 1 32 95 
Highway usage 46 170 179 266 303 
Instruction cache miss 1 2 2 3 4 
Data cache miss 0 2 2 2 4 
Data cache conflict 0 -100 -100 -200 0 
Data bank alignment -60 -240 -280 -540 -760 
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All of them are an outcome of the static and runtime 
execution of application as shown in Table 1. 

For any p-th transformation (iteration) with cycle 

reduction function ϕp>0, the execution time can be 
written as: 
 

0

0( ) ( )p

p p
τ θ ϕ τ θ=  

 
And for optimization: 

 
0

0( ) ( )p

p
τ θ τ θ<  

 
Similarly the energy dissipation for baseline version 

can be written as: 
  

0 / 1
0

1 1

0
( )
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mp q q

m n

j i

i i j i i

p p p
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−
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= + +
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∑

∑ ∑
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Where 
 p0 = Power consumption of the idle target processor. 
pmp = Power consumption of the monitor program.  
pq/q-1 = Power consumption of instruction q while q-1 
has been executed. 
 

For any p-th transformation (iteration) with energy 

reduction function Ψp>0, the energy dissipation can be 
written as: 
 

0

0
( ) ( )p

p p
ε θ ψ ε θ=  

 
And for optimization: 

 
0

0
( ) ( )p

p
ε θ ε θ<  

 

Convergence Criteria for Optimization 

Now given an instance to optimize both execution 
time and energy of application software, the 
transformation space is very complex. 

Finding solution to this is clearly NP-complete; as 
parameters defined in space S have a large number of 
possibilities to get optimal solution for our goal. 

We solve this problem by defining 5-tuple 
transformation rule as shown below: 
 

{ }, , , ,r codeSize executionTime Energy cacheMiss slotUsage=  

 
Each individual tuning parameter in r can have a 

value from {1,0,-1}, 

For example in an idct example cycle driven rϕ 

could be: 
 

{ }1, 1,0, 1,1− −  

It allows successive transformation steps to 
increase code size, lower execution time, maintain 
same level of energy as obtained in the previous 
iteration, decrease cache miss and exploit more 
parallelism with higher slot usage. 

We shall discuss more formation of the rule tuple in 
section III.D. Now we shall formulate steering factors 

that control transformations in
m

w
θ . 

Methodology Control Variables and Their 

Relations 

In this section, we describe the cost estimators of 
the transformation techniques which determine when 
to cease iterations in the transformation engine 
shown in Fig. 3.2. 

Loop unrolling (k), we propose a simple and novel 
unrolling strategy to find the optimal unrolling factor 
with a single set of profiling measurements. A 
successive loop unrolling factor for the i-th iteration is 
shown here: 
 

( )

( )

.

/ . .

K loopSizeVLIWinstSizei

cacheBlockSize associativity noOfSets

=

 

 
In our case the instruction cache block size is 64, 

associativity 8 and number of sets are 64. While 
instruction cache hit ratio is obtained during simulation 
as shown in Table 1. 

Decision tree is the scheduling equivalent of an 
extended basic block. It is a code region that has a 
single entry point and zero or more exit edges leading 
to other decision trees or function exits. 

We compute the grafting depth ς in terms of code 

size Ω, probability of execution edges in a tree ϑ and 

number of execution counts ν. For a decision tree block 
j, grafting depth is formulated as: 
 

j  
j j j

ς ν ϑ=Ω  

 
Based on cache size we decide the maximum depth 

factor ςmax. ςmax is the largest depth factor not to 
increase the code size larger than the instruction cache 
size that i.e.,: 
 

max j  instructionCacheSize /ς ς=  

 

Thus, the optimal depth factor ςopt is the greatest 

divisor of Ω but smaller than ςmax.  
Block algorithms use data and computation 

diagrams, rectangular parallelepipeds that shows the 
iteration space of an algorithm with the operations 
inside and the data on the faces. 

A typical threefold nested counting loop (ijk-
loop) is shown in Figure 3.2. The arrows show the 



Naeem Zafar Azeemi / American Journal of Applied Sciences 2014, 11 (12): 1980-1987 

DOI: 10.3844/ajassp.2014.1980.1987 

 

1985 

order of operations and accesses to data. In this case 
a block algorithm can be obtained by performing two 
transformations to the algorithm. First, each of the 
three original nested loops is partitioned into two 
loops, an internal computation loop and an external 
control loop.  

We use two performance metrics closely related to 
each other (Lam et al., 2011). On one side, we use 
Cycle Per Instructions (CPI) that is computed from 
number of execution cycle and code size both are 
obtained from profiler. On the other side data cache 
misses and data bank conflicts count. Both of them 
show directly block algorithm performance in terms of 
cache overhead. 

Methodology Flow-Case Study 

For a typical MPEG-4 example we obtain an initial 
measurement after simulating the baseline code once. 
This provides code size, execution time, both 
instruction and data cache miss rate, data bank 
conflicts, scheduling factor and energy. There are many 
other parameters that are obtained directly or indirectly 
from the profiler are not tabulated for e.g., foreground 
memory (internal register) used, number of slot 
assigned in individual cycle. 

We will use them to refine our model to high 
granularity in future. In the transformation cost 
analyzer block all these measurements are used to 
compute the unrolling factor K, grafting depth ς and 
block performance metrics. At the transformation 
engine they are further used to decide, whether the 
current code should go for code conversion or not. 

Example 

If measured energy is higher, then the energy 
constraints are set by the user in user constraint file 
then further unrolling, tiling and grafting would be 
required. In this case the energy driven 
transformation rule for rΨ will be {1,0,-1,0,1}, that 
can be interpreted as for next iteration code size shall 
be increased, number of execution cycle shall 
constant, energy count shall go lower, cache hit shall 
remain same and slot usage will be increased further. 
Each successive transformation shall bring all cost 
factors close to the user constrained region as defined 
in the user constrained file. 

Experimental Platform 

Typically, VLIW core based evaluation boards have 
dual supply voltages, one for the core Vdd and other for 
peripherals Vcc. Therefore, its power dissipation 
contains two components of currents, i.e., Idd and Icc. 

The core voltage in our target processor board 
based on Star Core SC1100 is Vdd = 2.5V, whereas 
Peripheral voltage Vcc is adjustable to 3.3V or 5.0V 
(we set it to 3.3V). 

Although traditional digital multimeter (e.g., 
FLUKE 85) can be used to measure processor currents 
(Idd and Icc), switching activity between multitudes of 
states in VLIW processors cannot be observed by these 
dual-slope mode slow sampling measurement devices. 

In order to record the impact of non-periodic 
behavior of programs, we use HP54720 Hewlett 
Packard Programmable digitizing oscilloscope, 
HP54721A Hewlett Packard Amplifier plug-in and 
PNX1302 evaluation board. 

Results 

In line with the proposed methodology described 
above, we measured static and architecture driven 
application parameters in different profiling stages 
enlisted in Table 1. 

There are several cogent observations that can be made 
from our study to test applications, e.g., transformations 
are not applied in random order; an attempt to 
transformation is only made when transformation engine 
decides controlling parameter (K, ς and block performance 
metrics) are within limits and desired performance 
variables (execution time, energy) are closely approached. 

Table 1 shows results for successive transformations 
applied to the baseline version of a typical MPEG-4 
example. Note that the code size is increased in the 
beginning due to loop unrolling but it does increase 
processor functional unit utilization. Successive 
application of transformation based on 5-tuple rules 
improves instruction rebinding that increases 
scheduling factor. 

Note that scheduling factor is computed as a relative 
measure, which is ration between the mappings at 
available functional units (mentioned in VDF file) to 
the infinite functional units (and ideal machine). This 
gives us better cycle improvement upto 75% (shown as 
executionTime) and lower energy consumption to 30%. 

An inappropriate 5-tuple rule selection could lead to 
underutilization of internal registers and hence adds an 
offset to energy consumption in comparison to the 
previous iteration; one such observation can be made as 
from iter-2 to iter-3. The payoff for both energy and 
cycle cost factors (Ψ, ϕ) in this particular case are 
depicted in Figure 4.1. 

Here, we summarize some interesting conclusions 
from Figure 4.1. 

First we have found that the most difficult problems 
are concerned with transformation ordering and 
information gathering. 

Second, although a transformation may be applicable, 
it may not win an improvement in the program. 

Third, the distraction between machine-dependent 
and machine-independent portions of our 
transformation methodology is more subtle than it 
appears. A transformation on a program may be 
machine independent, in the usual sense, but the 
reason for applying it may well depend on the target 
machine architecture. 
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Fig. 4.1.  Energy-cycle reduction factor versus Transformations (for MPEG-4 example) 

 
Table 2.  Energy-cycle cost factor for optimized applications 

App/Transf. fir iir Dct idct nlivq m100 

Size 1.76 1.38 0.99 1.54 1.03 2.32 

Φ 0.90 0.67 0.55 0.98 1.01 0.74 

Ψ 0.97 0.93 0.83 0.84 1.10 0.85 

 
Fourth, a number of interesting transformations 

were identified. In particular the concept that a variable 
use may on occasion be replaced by an expression 
representing an assertion about the value of the variable 
is quite powerful. 

We apply our technique to well know computational 
intensive examples from Mediabench fir, iir, dct, idct 
and two data intensive applications: Nonlinear vector 
quantization (nlivq) for image zooming application and 
matrix multiplication (m100). 

Results energy/cycle cost factor for optimal 
transformation are shown in Table 2. 

Conclusion 

In this study, we explore the effect of migrating 
legacy signal processing software applications 
algorithms from large form factor devices to the smaller 
one such as handheld mobile devices. We concentrate 
on source code volatility, including inherent algorithm 
complexity and the developer implementation. 
Successive transformations are steered by a set of rules, 
generated in each iteration based on loop unrolling 
factor, grafting depth and blocking factor. 

The proposed methodology facilitates the 
programmer to be the strategist. A goal-driven canned 
set of transformations may improve the application 
significantly. The approach is illustrated using 
functional unit usage within a VLIW architecture and 
identifies a new operation rebinding technique for low 
power which improves energy dissipation for a MPEG-
4 example. This improvement is primarily achieved by 
improving the number of CPU cycles (execution 

time), cache memory access (both instruction and data 
cache) and exploiting architectural usage especially 
increasing slot utilization. 

The approach is general and results are verified with 
real power measurements at StarCore Media Processor. 
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