Journal of Computer Science, 9 (2): 252-263, 2013

ISSN 1549-3636

© 2013 I.A. Mohialdeen, This open access articidistributed under a Creative Commons Attribution
(CC-BY) 3.0 license

doi:10.3844/jcssp.2013.252.263 Published Onlin2)2013 (http://www.thescipub.com/jcs.toc)

COMPARATIVE STUDY OF SCHEDULING
AL-GORITHMSIN CLOUD COMPUTING ENVIRONMENT

Isam Azawi Mohialdeen
College of Information Technology, University Tenddasional, Selangor, Malaysia

Received 2012-12-18, Revised 2013-03-16; Accepte@-Ddil1l
ABSTRACT

An essential requirement in cloud computing envinent is scheduling the current jobs to be execwidd

the given constraints. The scheduler should ofteljdbs in a way where balance between improvieg th
quality of services and at the same time maintgiritre efficiency and fairness among the jobs. Thus,
evaluating the performance of scheduling algorithm&rucial towards realizing large-scale distrédaut
systems. In spite of the various scheduling algoré proposed for cloud environment, there is no
comprehensive performance study undertaken whidviges a unified platform for comparing such
algorithms. Comparing these scheduling algorithromfdifferent perspectives is an aspect that ntete
addressed. This pa-per aims at achieving a practieaparison study among four common job scheduling
algorithms in cloud computing. These algorithms Re@und Rubin (RR), Random Resource Selection,
Opportunistic Load Balancing and Minimum Completibime. These algorithms have been evaluated in
terms of their ability to provide quality servioer fthe tasks and guarantee fairness amongst teesgred.
The three metrics for evaluating these job schadudilgorithms are throughput, makespan and thé tota
execution cost. Several experiments with varioassaiave been accomplished in this comparative study

Keywords: Cloud Computing, Job Scheduling, Scheduling Alponi

1. INTRODUCTION iIIustrates_the proposed cloud frame-wo_rk Whichs_isns
of three tiers, namely, the cloud provider, theeiinet
Nowadays, many companies offering services to the@nd the connected clients. S
customer based on the concept of “pay as a seyvice” 1he scheduler should order the jobs in a way where
where each customer pays for the services obtdined ~ Palance between improving the quality of serviced a
the provider. The cloud environment provides aedéht &t the S?rTe _tlrl?e r_r;_amtalnlngl tht? eﬁ't‘;]'ency ?nm‘ims .
platform by creating a virtual machine that assigers ~ 2Mong the Jobs. 1hus, evaluating the periormance o
in accomplishing their jobs within a reasonableetiand Ischedulmlg dalgtqgﬂlmds 'St crucu’I;\I toytvardfsthr_eallzmg
: ; e . arge-scale distributed systems. In spite of theous
cost-effectively without sacrificing the quality dhe : : :
services Theyhu e growth in vi?tualiza?ion :anudlo scheduling algorithms proposed for cloud environtnen
. g€ g ; . there is no comprehensive performance study
computing technologies reflect the increasing nunue

. . .) - undertaken which provides a unified platform for
jobs that require the services of the virtual maehi comparing such algorithms. Comparing these

Various types of scheduling algorithms have beengscnheduling algorithms in an Infrastructure as aviser

a_pplied on various data Workl_oads and measured With(|aas) of cloud computing from different perspeesiv
different performance metrics to evaluate the jsan aspect that needs to be addressed.

performance. Most of the scheduling algorithms are There are numerous literatures which propose
developed to accomplish two aims. The first is to scheduling algorithms. Some of these proposed
improve the quality of services in executing theg@nd algorithms are particularly for serving jobs in lud
provide the expected output on time. The seconi is computing environment and some are tailored tohtt
maintain efficiency and fairness for all jodsigure 1 cloud environment.

,///// Science Publications 252 JCS

Isam Azawi Mohialdeen / Journal of Computer Scieh¢2): 252-263, 2013

&

Client

3

1Client

d-y

Client

Cloud conlroller

Internet

Cloud provider

Fig. 1. The proposed cloud framework

For the cloud environment, many adapted schedulingenvironment. Most of the scheduling algorithms that
algorithms are proposed to enhance the total systenhave been proposed attempt to achieve two main
performance such as throughput, make span and#te ¢ objectives namely, to run the user task within the
However, the variety of scheduling algorithms irses deadline and to maintain efficiency (load balangiagd
the complexity of selecting the best one for adopti fairness for all tasks (Lét al., 2010; Gupta and Rakesh,
This study aims at analyze and investigate fobr jo 2010; Yanget al., 2011). Here, we reviewed the most
scheduling algorithms under cloud environment, Hgme relevant research works done in the literature jédr
Round Robin (RR), Random Resource Selection,scheduling in cloud computing.
Opportunistic Load Balancing and Minimum Garget al. (2009) addressed the issue of increases in
Completion Time, in terms of their ability to proei energy consumption by data centers in cloud comguti
quality service for the tasks and guarantee fagnes A mathematical model for energy efficiency based on
amongst the jobs served. Furthermore, study thevarious factors such as energy cost, CO2 emissita) r
behavior of these scheduling algorithms and detegemi HPC workload and CPU power efficiency was proposed.
the most appropriate job scheduling algorithm for In the model a near-optimal scheduling algorithrat th
running jobs under cloud environment. utilizes heterogeneity across multiple data cenfersa
. cloud provider was introduced.
1.1. Review of Related Works Li et al. (2009) introduced a novel approach named
Job scheduling in cloud computing has attractedEnaCloud, which enables application live placement
great attention. Most research in job schedulingpad dynamically with consideration of energy efficienicya
paradigm in which a job in cloud computing systeam i cloud platform. They use a VM to encapsulate the
characterized by its workload, dead-line and the application, which supports the applications sckiadu
corresponding utility obtained by its completionfdre and live migration to minimize the number of rurgin
deadline, which are factors considered in devisimg machines to save energy.
effective scheduling algorithm. This paradigm ioWm Furthermore, (Liet al., 2010) have addressed the
as Utility Accrual (UA) paradigm. problem of job execution in parallel processingthie
Many researchers have proposed differentcloud computing environment. To this end, they pro-
scheduling algorithms that run under cloud compmutin posed a task scheduling mechanism using a pre \npti

////4 Science Publications 253 JCS

Isam Azawi Mohialdeen / Journal of Computer Scieh¢2): 252-263, 2013

mechanism that improves the utilization of resosrice scheduling system. For this purpose, they propased
the clouds. Two feedback dynamic scheduling credit based scheduling algorithm to evaluate th@ee
algorithms for this scheduling mechanism have beengroup of tasks in the task queue and find the mahim
introduced to generate scheduling with the shortestcompletion time of all tasks. The proposed schexuli
average execution time of jobs. method considers the scheduling problem as an
The study in (Yanget al., 2011) highlighted the assignment problem in mathematics where the cost
issue of job scheduling in cloud computing. Theyuad matrix gives the cost of a task to be assigned te-a
that there is no well-defined job scheduling alfori for source. However, the algorithm does not consider th
the cloud that considers the system state in therdfu processing time of a job, but other issues are
The existing job scheduling algorithms under ufilit considered such as the probability of a resourceeto

computing paradigm do not take hardware/softwarefree soon after executing a task so that it will be
failure and recovery in the cloud into account.t@ickle available for the next waiting job.

this issue they proposed a Reinforcement Learriig (

based algorithm that helps the scheduler in making 2. MATERIALSAND METHODS

scheduling decision with fault tolerable while

maximizing utilities attained in the long term. 2.1. The Selected Job Scheduling Algorithms
Li et al. (2011) introduced a hybrid energy-

efficient scheduling algorithm using dynamic In this study, four job scheduling policies in Gib

: : : A . computing were carefully selected for evaluation,
migration that handles job execution in privateucls. X .
'gratl) xecution In priv gamely, Random, Round Robin (RR), Minimum

The algorithm concentrates on reducing the respons . . - .
. . Completion Time and Opportunistic Load Balancing.
time, con-serves more energy and performs higher. : .
) These algorithms are considered the most common and
level of load balancing, frequently used algorithms for job scheduling iro@i
In addition, the work in (Linet al., 2011) quently 9 J 9

concentrated on the issue of power consumptiorata d computing. The aim of this study is to practically
P P compare these algorithms. In the following we eixpla

centers. They proposed a scheduling policy namedth detai . . .
tails of h job schedul Igorithm.
Dynamic Round-Robin (DRR) that effectively reduces © delalls ot each Job schedllling aigorithm

power consumption for virtual machine schedulingl an 2.2. Random Algorithm
consolidation. The algorithm attempts to deploy the
virtual machines to servers and migrate virtual iInnaes

among servers. _ _ The algorithm does not take into considerations the
The study in (Sindhu and Mukherjee, 2011) giar,s of the VM, which will either be under heawy
presented two scheduling algorithms for scheduliss |5,y |0ad. Hence, this may result in the selectiba ¥M
in cloud computing, taking into account their ynger heavy load and the job requires a long vaitin
computational complexity and the computing capaefty time before service is obtained. The complexitytiog
the processing elements. The algorithms are desiffme zigorithm is quite low as it does not need any bead
private cloud environment where the resources aregr pre-processingrigure 2 demonstrates the process of
limited. The first algorithm is named Longest Cltetd assigning jobs to available VMs.
Fastest Processing Element (LCFPE) which considers The detailed steps of random scheduling algorithm
the computational complexity of the cloudlets ire th are illustrated irFig. 3. The algorithm input includes two
process of making scheduling decisions. The secondsets, namely cloudlets (i.e., jobs) and availabMsy
algorithm is named Shortest Cloudlet Fastest Peitgs including cloudlet listand VML. These two sets are
Element (SCFP). In this algorithm, the shorter dlets measured by their sizes and are used by two vasabl
are mapped to Processing Elements (PEs) having higlealculated in steps 1 and 2 in the algorithm that a
computational power so as to reduce flow time while named Nocland NoVM respectively. An index to the
the same time taking into account that longer gregsnot nominated VM is initialized to zero. The simulation
starved. Lastly, (Paul and Sanyal, 2011) discugsked process is done to handle the dynamic arrival b8jo
issue of how to utilize cloud computing resources The index of the selected VM for the current job is
proficiently and gain maximum profits with the job computed randomly using Equation 1:

The idea of random algorithm is to randomly assign
the selected jobs to the available Virtual Machif\dgl).

% Science Publications 254 JCS

Isam Azawi Mohialdeen / Journal of Computer Scieh¢2): 252-263, 2013

o

I1]2 I3 J4 I5 J6 I7

Fig. 2. The process of random algorithm

Input: cloudletlist : The list of cloudlets (i.e. jobs), FML: The list of
available VMs
Output: Map each cloudlet to a VM

Steps

1 Noel « cloudletlist.size();

2 NoVM «— VML.size();

3 ndex «— 0;

4 forj — 0 to Nocl do

5 el «— cloudletlist.gei(});

6 mdex — random() *x (NoVM — 1);
T v «— VML.get(index):

8 stagein «— TransferTime(cl, v, mn);

9 stageout +— TransferTime(cl, v, out);
10 exec «— ExecuteTime(cl, v):

11 if (¢l AT + stagein + exec + stageout +~ v.RT < cl.DL) then
12 sendjob(cl, v):

13 update(v):
14 else
15 Drop(cl):
16 FailedJobs:
17 endif
Fig. 3. Random algorithm
Index = random() * (NoVM - 1 1) 2.3. Round Rubin Algorithm
The Round Rubin (RR) job scheduling algorithm
Where: _ considered in this study distributes the selectédgver
index = The index to the selected VM the available VMs in a round order where each j®b i
random() = Function that returns a random value equally handled. The idea of the RR algorithm &t tih
between 0 and 1 attempts to sends the selected jobs to the availdbls
NoVM = The total number of available VMs in a round form.

% Science Publications 255 JCS

Isam Azawi Mohialdeen / Journal of Computer Scied¢2): 252-263, 2013

Fig. 4. The process of Round Robin algorithm

Input: cloudletlist : The list of cloudlets (1.e. jobs), ¥’ML: The List of
available VMs
OQutput: Map each cloudlet to a VM

Steps

1 Noel +— cloudletlist.size():

2 NoVM «— VML.size():

3 index «— 0;

4 for j < 0 to Nocl do

5 ol = cloudletlist.get(f):

6 index «— (index+1) mod No VAL,

7 v+ VML.get(index):

8 stagein < TransferTime(cl, v, in);

9 stageout «— TransferTime(cl, v, out):
10 exec — ExecuteTime(cl, v):

11 if (¢l AT + stagein + exec + stageout + v.RT < ¢l DL) then
12 sendjob(cl, v);

13 update(v):

14 else

15 Drop(el):

16 FailedJobs:

17 end

Fig. 5. Round Rubin algorithm

Figure 4 depicts the mechanism of the Round Robin selected VM for the current job is computed by ana
(RR) job scheduling algorithm. The algorithm does n robin fashion using Equation 2:
require any preprocessing, overhead or scannintpeof
VMs to nominate the job’s executor.

The detailed steps of Round Rubin job schedulingWhere:
algorithm are illustrated irFig. 5. The index of the index = The index to the selected VM

index — (index+1) mod NoVA (2)

////4 Science Publications 256 JCS

Isam Azawi Mohialdeen / Journal of Computer Scied¢2): 252-263, 2013

VM1 VM2 VM3
Il J2 I3 J4 J5
VM1 need 2 sec VM1 need 5 zec VM1 need 5 zec VM1 need 2 sec VM1 need 4 zec
VM2 need 5 sec VM2 need 3 sec VM2 need 8 sec VM2 peed 6 sec VM2 need 1 sec
VM3 need § sec VM3 need 9 sec VM3 need 4 sec VM3 need § sec VM3 need 3 sec

,///4 Science Publications

Fig. 6. The process of minimum completion time

Input: cloudietlist . The list of cloudlets (i.e. jobs), FML: The list of
available VMs
Output: Map each cloudlet to a VM

1 mitialization:

2 Nocl + cloudletlist.size();

3 NoVM «— VML.size():

4 index «— 0

5 forj «— 0 to Nocl do

6 ol «— cloudletiist.get(f):

T min — +wo;

8 for i — 0 te NolM do

9 v e FML.get(i):

10 if min = (v.getready() + cl.getlengih()/v.speed) then
11 min «— v.gefready() + cl.getlengih(}/v.speed.
12 index «— 1;

13 end

14 end

15 v « VML .get(index);

16 stagein «— TrangferTime(cl, v, in);

17 stageout «— TransferTime(cl, v, ouf);

18 exec «— Execurelime(ci, v);

19 if (el AT + stagein + evec + stageour + v.RT = ¢l.DL) then
20 sendjob(cl, v);

21 updare(v):

22 else

23 Drop(cl):

24 FailedJobs:

25 end

Fig. 7. The minimum completion time algorithm

257

JCS

,///4 Science Publications

Isam Azawi Mohialdeen / Journal of Computer Scied¢2): 252-263, 2013

Load= 10 Load= 80 Load= 30

VM1 VM2 VM3

J2 J3

J1

Fig. 8. The process of opportunistic load balancing

Input: cloudletlist : The list of cloudlets (i.e. jobs), PML: The list
of available VMs
Output: Map each cloudlet to a VM

1 initialization;

2 Nocl «— cloudletlist.size():

3 NoVM « VML.size():

4 index «— 0;

5 forj < 0 to Nocl do

6 ¢l — cloudletlist.ger(f):

7 min «— +=0;

8 for i — 0 to NoVM do

9 v — VML.ger(i):

10 if min > (v.gerready()) then

11 min ~— v.getready();

12 index — i:

13 end

14 end

15 v «— FML.get(index);

16 stagein «<— TransferTime(cl, v, in);
17 stageout «— TransferTime(cl, v, out);
18 exec < ExecuteTime(e, v):

19if (¢l AT + stagein + exec + stageour + v.RT < ¢l.DL) then
20 sendjobl(cl, v):

21 update(v):

22 else

23 Drop(cl):

24 FailedJobs;

25 end

Fig. 9. The opportunistic load balancing algorithm

258

JCS

Isam Azawi Mohialdeen / Journal of Computer Scied¢2): 252-263, 2013

NoVM = The total number of available VMs after 30 sec. For that reason the scheduler selédis
. . . . which has the lowest load. Basically, the oppostiai
2.4. Minimum Completion Time Algorithm scheduling algorithm is considered one of the best
The Minimum Completion Time job scheduling choices in load balancing. _
algorithm attempts to allocate the selected jobthie Mathematically speaking, the index to the selected

VM that will execute the current cloudletislcalculated

avail-able VM that can offer the minimum completion ' -
using (4) Equation 4:

time taking into account its current load. The main
criterion to determine the VM in the minimum

completion time scheduling algorithm is the prooess index — Min{v.getready()[] { VML} (4)
speed and the cur-rent load on each VM. The algorit
first scans the available VMs in order to determine Figure 9 presents the detailed step of the

most appropriate machine to perform the job. onoartinistic load balancing job scheduling algorit
Subsequently, it dispatches the job to the mosaisie that is repeated for each job.

VM and starts executionFigure 6 illustrates the

process of job scheduling using the minimum 3. RESULTSAND DISCUSSION
completion time algorithm. Notice that all the dahbie
VMs (VM1, VM2 and VM3) are able to run the set of The performances of the developed algorithms are

jobs but with different response time. For thats®8 evaluated under different evaluation criteria. Al
job J1is send to VM1 as it is the fastest machhe gzigorithms are implemented and tested using in

can run the job and return the results within arsho cjoudsim simulator. The implementation has been
time, which is 2 sec. VM2 and VM3 can also run 81 b accomplished by modifying the original source cade
with longer time consumption, namely 5 sec for VM2 he simulator that was written in the Java languag

and 8 sec for VM3. o _ . beans 7.1, a Java editor was used for this purpose.
The detailed steps of the minimum completion time

scheduling algorithm are presented Fig. 7 and are 3.1. Performance Metrics

repeated for each_job. Formally, the index for the Various performance metrics were taken into
selected VM that will execute the current cloudiets consideration in order to measure and evaluate the

computed using formula (3) Equation 3: selected job scheduling algorithms. These metrics

. . include the make span, amount of throughput aral tot
index .- Min{v.getready()+cl length/v.speft I VML (3) cost. These perforrr?ance metrics are thegm%st irprt

2.5. Opportunistic Load Balancing Algorithm and frequently used metrics in the previous woids f
evaluating the scheduling algorithms in cloud cotimuu

This algorithm attempts to dispatch the selecel j enyironment. These performance metrics are further
to the available VMs which has the lowest load com- explained below.

pared to the other VMs. The idea is to scale tireeat

loads for each VM before sending the job. ThenMhe 3.2. Makespan
that has the minimum load is selected to run the jo Th K t th . finishi
Figure 8 illustrates how the opportunistic load balancing . € makespan represent the maximum Hnishing
algorithm works. Assume that there are three virtua M€ @mong all received jobs per time. This paramet
machines (VM1, VM2 and VM3) with different loads, shows the.qua!lty of job asglgnment to resourcemfr
namely 10 sec for VM1, 80 sec for VM2 and 30 sec fo the execution time perspective. The formal formiala
VM3. Let Ji be a new job that has been arrived for the Makespan is shown in Equation 5:

execution. The scheduler should select one of e ¥

run Ji. The scheduler will make a decision by selecting Makespar= Max{FT [§ J] ®)

the VM1 to run the new job Js it has the minimum

load, which is 10 sec. The meaning of load here isWhere:

indicated by the level of VM preoccupation with FTj = The finishing time of job j belonging to theb
current jobs. In other words, VM1 will finish thes-a list J

signed jobs after 10 sec; VM2 will finish the agreéd | Job from the list of jobs

jobs after 80 sec and VM3 will finish the assigreds J List of jobs

% Science Publications 259 JCS

Isam Azawi Mohialdeen / Journal of Computer Scied¢2): 252-263, 2013

3.3. Throughput

requirements such as job length, job ID, listsngiut and
output files and their sizes. Set of six files bagn taken

In this study, each job is assumed to have hardy, pe the workload of this research where the nurobe
dead-lines which represent the finishing time. jops is 50, 100, 200, ..., 1000. The missing pararaéte
Therefore, the throughput is the number of executedjoh’s characteristics such as the arrival time liication

jobs, which is calculated to study its efficienay i

and the start and finish deadlines are completed

satisfying the jobs dead-lines. The throughput israndomly based on the job’s length and data simedo

calculated using Equation 6:

Throughput F3>' X

00

(6)

Where Xjis:

1
-

0,
Where:

j = Job from the list of jobs
J = List of jobs

3.4. Total Cost

If the basic concept of Could computing is renting
resources for customers, then the total cost neéated
executing the list of jobs is essential for evahmtsys-
tem performance. The total cost is calculated based
the processing time and the amount of data tramsfer
Equation 7 illustrates how the total cost is cotadu

job jhas finished executign
Otherwise

Total Cost (TCFE P *PG

> Size(f)+ Y Size(f)[x TrC %

fOFin; fOFout

Where:

f = Single file

TC = The total cost

Pj = The processing time of the job |
PC = The processing cost

TrC = The cost of transferring the input files (friand
the output files (Fout j)

3.5. Dataset

The Ligo real dataset (Browat al., 2007) is used,
which are The Laser Interferometer Gravitationalvé/a
Observatory (LIGO) attempts to detect gravitational
waves produced by various events in the univergeeas
Einstein’s theory of general relativity. The datas@as
represented by a set of XML files that vary in the
number of jobs. Each file contains a set of jobd eir

% Science Publications

in the XML files.
3.6. Simulation Results

Three experiments were carried out in this study.
All experiments aim at analyzing several performanc
metrics (throughput, makespan and total cost) using
the cloudsim simulation tool with respect to the
various humber of jobs. For each of the experiments
various numbers of scenarios with different
parameters values were taken into consideration
during simulationTable 1 summarizes the simulation
parameters used in the experiments.

3.7. The Experiment Results of the Throughput
Per centage

Figure 10 depicts the result of the throughput
percent-age for the jobs given for each scheduling
algorithm. From the figures, it can be concludeat the
throughput deteriorates for all cases when the rumb
jobs were increased for all scheduling algorithiiigs is
mainly due to the increasing number of jobs, rasylin
a high load for each VM that further leads to thdufe
to exe-cute some jobs.

From the figure, it can also be noted that theimin
mum completion time steadily outperforms the other
scheduling algorithms in all cases. This is becahse
minimum completion time assigns the job to the most
appropriate VM that is able to accomplish the job
within the given constraints. The throughput foe th
minimum completion time reached up to 100% when
the number of jobs was at 50. The throughput was
reduced dramatically when the assigned jobs ineas
and reached 30% when the number of jobs reached
1000 jobs.

Table 1. The parameters setting

260

Parameter Value
Number of VMs 100
Number of Jobs 50-1000
Transmission cost 0.10 USD
Processing cost 0.10 USD
JCS

Isam Azawi Mohialdeen / Journal of Computer Scied¢2): 252-263, 2013

100 g 1
.\ hY
; 90 \ | ——Random
w80 { —=—Round Rubin
2 70 \\ ‘- | Opportunistic load balancing
oo \ Minimum completion time
5 60 . .
5 50 \\w !
T 40 -~ =
£ 3 e -
= 20 :
710
0 . . - - - - . . - - .
50 100 200 300 400 500 600 700 800 %00 1000
Number of jobs
Fig. 10. Throughput percentage
The makespan
~ 12000 =
3
Z
= 10000
2. —— Random
5 3000 5
o 4 —=— Round Rubin
o] 0 —
= Sl Opportunistic load balancing
; S Minimum completion time
2 2000
50 200 400 600 800 10060
Numberof jobs

Fig. 11. The makespan

The opportunistic load balancing algorithm perfodme the same time portion for each job. Finally, thenékam
better than the Round Rubin and the random algosth algorithm performed the worst in most of the casa®-
in most of the cases. This is because the oppsticni pared to the other scheduling algorithms. Thiseisaise
load balancing algorithm attempts to distribute jibles the random algorithm randomly assigns the selgctesl
to the avail-able VM which had the lowest load to the available (VM). The algorithm does not take
compared to the other VMs. Notice also that the considerations the VM status whether it was undgi h
algorithm performance deteriorated when the nunatber or low load.
jobs increased. The throughput reached up to 100% .
when the number of jobs was less than 100, whige th 38.The Experiment Results of the M akespan
throughput decreased significantly when the nundfer This experiment focuses on the quality of job
jobs reached 1000. assignment to resources from the perspective of the
However, the Round Robin algorithm performance execution timeFigure 11 illustrates the observation of
is low because it does not take into account tleeifip the makespan time with increasing numbers of aesdign
VM's load and handled the jobs in sequence by givin jobs for each scheduling algorithm.

/////4 Science Publications 261 JCS

Isam Azawi Mohialdeen / Journal of Computer Scied¢2): 252-263, 2013

The cost
1200 4

1000 =z

3 ‘//
800 -

—+—Random
-../ =— Round Rubin
600 -— Opportunistic load balancing

Minimum completion time

The cost in USD

400

200

50 100 200 300 400 500 600 700 800 900 1000
Number of jobs

Fig. 12. The total cost

From the figure it is clear that the minimum 3.9. The Experiment Result of the Total Cost
completion time has achieved the lowest value of . . : .
makespan in all cases compared to the other In this experiment we aim to study the mpacth@‘t
algorithms. This is mainly due to the fact that the number of jobs on the total cost when VMs exechieért

mini-mum completion time attempts to select the mos assigned Jo_bsFlgure 12 illustrates the experimental
. . results obtained for the total cost consumed by ezt
suitable VM that can rapidly respond and execute th [~ . :
iven job and generate the output to the user.ddoti of jobs fed to the four_ schedulmg algorithms.dtciear
?hat for the minimum completion time, the mal'<es an that the total cost is highly influenced by the iemof
. . P v ; P assigned jobs for every scheduling algorithm. Notltat
time is increased when the number of jobs increases

. . . . the minimum completion time produces the highest co
The total makespan time that is required to ru']'dﬁ]&_ in all cases compared to the other scheduling ilgos.
is almost 5500 seconds, while the algorithm reqlire This is mainly due to the minimum completion time

,8800 seconds as a-makespan time when the number %Iccomplishing the largest number of received jolbsis,
jobs reach to 1000 jobs.

The opportunistic load balancing algorithm achieve the total cost will be more compared with the other
better compared to the Round Rubin and Ra“‘]domalgonthms. The opportunistic load balancing schiedu

laorith Notice that th tunistic load bal algorithm incurred higher cost compared with the
algorthms. Notice that the opportunistic load balag — pangom and Round Rubin algorithms. This is because
achieves the same with the minimum completion time

when the number of jobs is less than 200. Thigtahse the op_pcl;rtunlstrgc load bal_ancmg ha;\s th? ca_phatttht;:]m

the two algorithms have almost similar criteria in more Jobs at the same time, as the algorithm when t
deter-mining the most appropriate VM to run the.job jobs are d|sp§1tched over the available \./M whilerigk
On the other hand, the Round Rubin algorithm e VM load into account. Thus, many jobs can be ru
performed the worse compared to the minimum and_that W|I_I lead to an increase of cost. The Roun
completion time and the opportunistic load balagcin Rubin algorithm produced less cost compared to the
algorithms in all cases. This is because the RoundMnimum completion time and the opportunistic load
Rubin algorithm is not concerned with the given VM balancing algorithms. The Random algorithm is the
specifications and loads the job in a circulatosyni. ~ Superior in all cases in terms of the total coshpared
The Random algorithm is the worst among the otherWith the other algorithms. Nevertheless, the Random
algorithms for achieving the highest makespan time.algorithm has the same cost with the Round Rubin
This is because the random algorithm attempts toalgorithm when the number of jobs is up to 500, &0@
randomly distribute the set of jobs over the VM and 700. Moreover, the Random algorithm possesses the
the job constraints is not taken into consideration same cost with the opportunistic load balancing

% Science Publications 262 JCS

Isam Azawi Mohialdeen / Journal of Computer Scied¢2): 252-263, 2013

algorithm when the number of jobs is in range 00-70
800. From this experiment we can conclude that lcast
a strong relationship with the number of executeld j
and the total amount of the cost highly dependéthe
executed jobs.

4. CONCLUSION

In this study, the behavior of four job scheduling
algorithms, namely: Random, Round-Rubin (RR),
Opportunistic Load Balancing and

in a Cloud computing environment. These job schirdul
policies have been extensively evaluated by focusim
the major characteristics of the cloud computing
environment. Based on the simulation results, sthigwn
that some of the scheduling algorithms are berafioi

be used in Cloud computing. Based on the resultsn

be also concluded that there is not a single sdimedu
algorithm that provides superior performance with
respect to various types of quality services. Tisis
because job scheduling algorithms needs to betedlec
based on its ability to ensure good quality of E@mwy
with reasonable cost and maintain fairness by yfairl
distribute the available resources among all thos jand
respond to the constraints of the users.

5. REFERENCES

Brown, D., P. Brady, A. Dietz, J. Cao and B. Jolmso

Li, B., J. Li, J. Huai, T. Wo and Q. Lét al., 2009.
EnaCloud: An energy-saving application live
placement approach for cloud computing
environments. Proceedings of the International
Conference on Cloud Computing, Sept. 21-25, IEEE
Xplore Press, Bangalore, pp: 17-24. DOIL:
10.1109/CLOUD.2009.72

Li, J., J. Peng and W. Zhang, 2011. A scheduling
algorithm for private clouds. J. Convergence Inform
Technol., 6: 1-9.

nistic . . Minimum | j 3. M. Qiu, J. Niu, W. Gao and Z. Zomgal., 2010.
Completion Time have been investigated and examined

Feedback dynamic algorithms for preemptable job

scheduling in cloud systems. Proceedings of the

International Conference on Web Intelligence and

Intelligent Agent Technology, Aug. 31-Sep. 3, IEEE

Xplore Press, Toronto, ON, pp: 561-564. DOI:

10.1109/WI-IAT.2010.30

Lin, C.C., P. Liu and J.J. Wu, 2011. Energy-aware
virtual machine dynamic provision and scheduling
for cloud computing. Proceedings of the 4th
International Conference on Cloud Computing, Jul.
4-9, IEEE Xplore Press, Washington, DC., pp: 736-
737. DOI: 10.1109/CLOUD.2011.94

Paul, M. and G. Sanyal, 2011. Task-scheduling duat!
computing using credit based assignment problem.
Int. J. Comput. Sci. Eng., 3: 3426-3430.

Sindhu, S. and S. Mukherjee, 2011. Efficient task

scheduling algorithms for cloud computing

environment. Commun. Comput. Inform. Sci., 169:

79-83. DOI: 10.1007/978-3-642-22577-2_11

et al., 2007. A case study on the use of workflow Yang, B., X. Xu, F. Tan and D.H. Park, 2011. Arlitti

technologies for scientific analysis: Gravitational
wave data analysis. Workflows E-Sci. DOI:
10.1007/978-1-84628-757-2_4

Garg, S.K., C.S. Yeo, A. Anandasivam and R. Buyya,
2009. Energy-efficient scheduling of HPC
applications in cloud computing environments.
Comput. Sci. Distributed, Parallel Cluster
Computing.

Gupta, P.K. and N. Rakesh, 2010. Different job
scheduling methodologies for web application and
web server in a cloud computing environment.
Proceedings of the 3rd International Conference on
Emerging Trends in Engineering and Technology,
Nov. 19-21, IEEE Xplore Press, Goa, pp: 569-572.
DOI: 10.1109/ICETET.2010.24

% Science Publications 263

based job scheduling algorithm for cloud computing
considering reliability factor. Proceedings of the
2011 International Conference on Cloud and Service
Computing, Dec. 12-14, IEEE Xplore Press, Hong
Kong, pp: 95-102. DOLI:
10.1109/CSC.2011.6138559

JCS

