
Journal of Computer Science, 9 (2): 252-263, 2013
ISSN 1549-3636
© 2013 I.A. Mohialdeen, This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
doi:10.3844/jcssp.2013.252.263 Published Online 9 (2) 2013 (http://www.thescipub.com/jcs.toc)

252 Science Publications

JCS

COMPARATIVE STUDY OF SCHEDULING
AL-GORITHMS IN CLOUD COMPUTING ENVIRONMENT

Isam Azawi Mohialdeen

College of Information Technology, University Tenaga Nasional, Selangor, Malaysia

Received 2012-12-18, Revised 2013-03-16; Accepted 2013-04-11

ABSTRACT

An essential requirement in cloud computing environment is scheduling the current jobs to be executed with
the given constraints. The scheduler should order the jobs in a way where balance between improving the
quality of services and at the same time maintaining the efficiency and fairness among the jobs. Thus,
evaluating the performance of scheduling algorithms is crucial towards realizing large-scale distributed
systems. In spite of the various scheduling algorithms proposed for cloud environment, there is no
comprehensive performance study undertaken which provides a unified platform for comparing such
algorithms. Comparing these scheduling algorithms from different perspectives is an aspect that needs to be
addressed. This pa-per aims at achieving a practical comparison study among four common job scheduling
algorithms in cloud computing. These algorithms are Round Rubin (RR), Random Resource Selection,
Opportunistic Load Balancing and Minimum Completion Time. These algorithms have been evaluated in
terms of their ability to provide quality service for the tasks and guarantee fairness amongst the jobs served.
The three metrics for evaluating these job scheduling algorithms are throughput, makespan and the total
execution cost. Several experiments with various aims have been accomplished in this comparative study.

Keywords: Cloud Computing, Job Scheduling, Scheduling Algorithm

1. INTRODUCTION

 Nowadays, many companies offering services to the
customer based on the concept of “pay as a service”,
where each customer pays for the services obtained from
the provider. The cloud environment provides a different
platform by creating a virtual machine that assists users
in accomplishing their jobs within a reasonable time and
cost-effectively without sacrificing the quality of the
services. The huge growth in virtualization and cloud
computing technologies reflect the increasing number of
jobs that require the services of the virtual machine.
Various types of scheduling algorithms have been
applied on various data workloads and measured with
different performance metrics to evaluate the
performance. Most of the scheduling algorithms are
developed to accomplish two aims. The first is to
improve the quality of services in executing the jobs and
provide the expected output on time. The second is to
maintain efficiency and fairness for all jobs. Figure 1

illustrates the proposed cloud frame-work which consists
of three tiers, namely, the cloud provider, the internet
and the connected clients.
 The scheduler should order the jobs in a way where
balance between improving the quality of services and
at the same time maintaining the efficiency and fairness
among the jobs. Thus, evaluating the performance of
scheduling algorithms is crucial towards realizing
large-scale distributed systems. In spite of the various
scheduling algorithms proposed for cloud environment,
there is no comprehensive performance study
undertaken which provides a unified platform for
comparing such algorithms. Comparing these
scheduling algorithms in an Infrastructure as a Service
(IaaS) of cloud computing from different perspectives
is an aspect that needs to be addressed.
 There are numerous literatures which propose
scheduling algorithms. Some of these proposed
algorithms are particularly for serving jobs in a cloud
computing environment and some are tailored to fit the
cloud environment.

Isam Azawi Mohialdeen / Journal of Computer Science 9 (2): 252-263, 2013

253 Science Publications

JCS

Fig. 1. The proposed cloud framework

For the cloud environment, many adapted scheduling
algorithms are proposed to enhance the total system
performance such as throughput, make span and the cost.
However, the variety of scheduling algorithms increases
the complexity of selecting the best one for adoption.
 This study aims at analyze and investigate four job
scheduling algorithms under cloud environment, namely,
Round Robin (RR), Random Resource Selection,
Opportunistic Load Balancing and Minimum
Completion Time, in terms of their ability to provide
quality service for the tasks and guarantee fairness
amongst the jobs served. Furthermore, study the
behavior of these scheduling algorithms and determine
the most appropriate job scheduling algorithm for
running jobs under cloud environment.

1.1. Review of Related Works

 Job scheduling in cloud computing has attracted
great attention. Most research in job scheduling adopt a
paradigm in which a job in cloud computing system is
characterized by its workload, dead-line and the
corresponding utility obtained by its completion before
deadline, which are factors considered in devising an
effective scheduling algorithm. This paradigm is known
as Utility Accrual (UA) paradigm.
 Many researchers have proposed different
scheduling algorithms that run under cloud computing

environment. Most of the scheduling algorithms that
have been proposed attempt to achieve two main
objectives namely, to run the user task within the
deadline and to maintain efficiency (load balancing) and
fairness for all tasks (Li et al., 2010; Gupta and Rakesh,
2010; Yang et al., 2011). Here, we reviewed the most
relevant research works done in the literature for job
scheduling in cloud computing.
 Garg et al. (2009) addressed the issue of increases in
energy consumption by data centers in cloud computing.
A mathematical model for energy efficiency based on
various factors such as energy cost, CO2 emission rate,
HPC workload and CPU power efficiency was proposed.
In the model a near-optimal scheduling algorithm that
utilizes heterogeneity across multiple data centers for a
cloud provider was introduced.
 Li et al. (2009) introduced a novel approach named
EnaCloud, which enables application live placement
dynamically with consideration of energy efficiency in a
cloud platform. They use a VM to encapsulate the
application, which supports the applications scheduling
and live migration to minimize the number of running
machines to save energy.
 Furthermore, (Li et al., 2010) have addressed the
problem of job execution in parallel processing in the
cloud computing environment. To this end, they pro-
posed a task scheduling mechanism using a pre emptive

Isam Azawi Mohialdeen / Journal of Computer Science 9 (2): 252-263, 2013

254 Science Publications

JCS

mechanism that improves the utilization of resources in
the clouds. Two feedback dynamic scheduling
algorithms for this scheduling mechanism have been
introduced to generate scheduling with the shortest
average execution time of jobs.
 The study in (Yang et al., 2011) highlighted the
issue of job scheduling in cloud computing. They argued
that there is no well-defined job scheduling algorithm for
the cloud that considers the system state in the future.
The existing job scheduling algorithms under utility
computing paradigm do not take hardware/software
failure and recovery in the cloud into account. To tackle
this issue they proposed a Reinforcement Learning (RL)
based algorithm that helps the scheduler in making
scheduling decision with fault tolerable while
maximizing utilities attained in the long term.
 Li et al. (2011) introduced a hybrid energy-
efficient scheduling algorithm using dynamic
migration that handles job execution in private clouds.
The algorithm concentrates on reducing the response
time, con-serves more energy and performs higher
level of load balancing.
 In addition, the work in (Lin et al., 2011)
concentrated on the issue of power consumption in data
centers. They proposed a scheduling policy named
Dynamic Round-Robin (DRR) that effectively reduces
power consumption for virtual machine scheduling and
consolidation. The algorithm attempts to deploy the
virtual machines to servers and migrate virtual machines
among servers.
 The study in (Sindhu and Mukherjee, 2011)
presented two scheduling algorithms for scheduling tasks
in cloud computing, taking into account their
computational complexity and the computing capacity of
the processing elements. The algorithms are designed for
private cloud environment where the resources are
limited. The first algorithm is named Longest Cloudlet
Fastest Processing Element (LCFPE) which considers
the computational complexity of the cloudlets in the
process of making scheduling decisions. The second
algorithm is named Shortest Cloudlet Fastest Processing
Element (SCFP). In this algorithm, the shorter cloudlets
are mapped to Processing Elements (PEs) having high
computational power so as to reduce flow time while at
the same time taking into account that longer jobs are not
starved. Lastly, (Paul and Sanyal, 2011) discussed the
issue of how to utilize cloud computing resources
proficiently and gain maximum profits with the job

scheduling system. For this purpose, they proposed a
credit based scheduling algorithm to evaluate the entire
group of tasks in the task queue and find the minimal
completion time of all tasks. The proposed scheduling
method considers the scheduling problem as an
assignment problem in mathematics where the cost
matrix gives the cost of a task to be assigned to a re-
source. However, the algorithm does not consider the
processing time of a job, but other issues are
considered such as the probability of a resource to be
free soon after executing a task so that it will be
available for the next waiting job.

2. MATERIALS AND METHODS

2.1. The Selected Job Scheduling Algorithms

 In this study, four job scheduling policies in Cloud
computing were carefully selected for evaluation,
namely, Random, Round Robin (RR), Minimum
Completion Time and Opportunistic Load Balancing.
These algorithms are considered the most common and
frequently used algorithms for job scheduling in Cloud
computing. The aim of this study is to practically
compare these algorithms. In the following we explain
the details of each job scheduling algorithm.

2.2. Random Algorithm

 The idea of random algorithm is to randomly assign
the selected jobs to the available Virtual Machines (VM).
The algorithm does not take into considerations the
status of the VM, which will either be under heavy or
low load. Hence, this may result in the selection of a VM
under heavy load and the job requires a long waiting
time before service is obtained. The complexity of this
algorithm is quite low as it does not need any overhead
or pre-processing. Figure 2 demonstrates the process of
assigning jobs to available VMs.
 The detailed steps of random scheduling algorithm
are illustrated in Fig. 3. The algorithm input includes two
sets, namely cloudlets (i.e., jobs) and available VMs,
including cloudlet list and VML. These two sets are
measured by their sizes and are used by two variables
calculated in steps 1 and 2 in the algorithm that are
named Nocl and NoVM respectively. An index to the
nominated VM is initialized to zero. The simulation
process is done to handle the dynamic arrival of jobs.
The index of the selected VM for the current job is
computed randomly using Equation 1:

Isam Azawi Mohialdeen / Journal of Computer Science 9 (2): 252-263, 2013

255 Science Publications

JCS

Fig. 2. The process of random algorithm

Fig. 3. Random algorithm

Index = random() * (NoVM - 1) (1)

Where:
index = The index to the selected VM
random() = Function that returns a random value

between 0 and 1
NoVM = The total number of available VMs

2.3. Round Rubin Algorithm

 The Round Rubin (RR) job scheduling algorithm
considered in this study distributes the selected job over
the available VMs in a round order where each job is
equally handled. The idea of the RR algorithm is that it
attempts to sends the selected jobs to the available VMs
in a round form.

Isam Azawi Mohialdeen / Journal of Computer Science 9 (2): 252-263, 2013

256 Science Publications

JCS

Fig. 4. The process of Round Robin algorithm

Fig. 5. Round Rubin algorithm

Figure 4 depicts the mechanism of the Round Robin
(RR) job scheduling algorithm. The algorithm does not
require any preprocessing, overhead or scanning of the
VMs to nominate the job’s executor.
 The detailed steps of Round Rubin job scheduling
algorithm are illustrated in Fig. 5. The index of the

selected VM for the current job is computed by a round
robin fashion using Equation 2:

index (index+1) mod NoVM← (2)

Where:
index = The index to the selected VM

Isam Azawi Mohialdeen / Journal of Computer Science 9 (2): 252-263, 2013

257 Science Publications

JCS

Fig. 6. The process of minimum completion time

Fig. 7. The minimum completion time algorithm

Isam Azawi Mohialdeen / Journal of Computer Science 9 (2): 252-263, 2013

258 Science Publications

JCS

Fig. 8. The process of opportunistic load balancing

Fig. 9. The opportunistic load balancing algorithm

Isam Azawi Mohialdeen / Journal of Computer Science 9 (2): 252-263, 2013

259 Science Publications

JCS

NoVM = The total number of available VMs

2.4. Minimum Completion Time Algorithm

 The Minimum Completion Time job scheduling
algorithm attempts to allocate the selected job to the
avail-able VM that can offer the minimum completion
time taking into account its current load. The main
criterion to determine the VM in the minimum
completion time scheduling algorithm is the processor
speed and the cur-rent load on each VM. The algorithm
first scans the available VMs in order to determine the
most appropriate machine to perform the job.
Subsequently, it dispatches the job to the most suitable
VM and starts execution. Figure 6 illustrates the
process of job scheduling using the minimum
completion time algorithm. Notice that all the available
VMs (VM1, VM2 and VM3) are able to run the set of
jobs but with different response time. For that reason,
job J1 is send to VM1 as it is the fastest machine that
can run the job and return the results within a short
time, which is 2 sec. VM2 and VM3 can also run J1 but
with longer time consumption, namely 5 sec for VM2
and 8 sec for VM3.
 The detailed steps of the minimum completion time
scheduling algorithm are presented in Fig. 7 and are
repeated for each job. Formally, the index for the
selected VM that will execute the current cloudlet cl is
computed using formula (3) Equation 3:

index Min{v.getready()+cl.length/v.speed| v VML}← ∀ ∈ (3)

2.5. Opportunistic Load Balancing Algorithm

 This algorithm attempts to dispatch the selected job
to the available VMs which has the lowest load com-
pared to the other VMs. The idea is to scale the current
loads for each VM before sending the job. Then, the VM
that has the minimum load is selected to run the job.
Figure 8 illustrates how the opportunistic load balancing
algorithm works. Assume that there are three virtual
machines (VM1, VM2 and VM3) with different loads,
namely 10 sec for VM1, 80 sec for VM2 and 30 sec for
VM3. Let Ji be a new job that has been arrived for
execution. The scheduler should select one of the VMs to
run Ji. The scheduler will make a decision by selecting
the VM1 to run the new job Ji as it has the minimum
load, which is 10 sec. The meaning of load here is
indicated by the level of VM preoccupation with
current jobs. In other words, VM1 will finish the as-
signed jobs after 10 sec; VM2 will finish the as-signed
jobs after 80 sec and VM3 will finish the assigned jobs

after 30 sec. For that reason the scheduler selects VM1,
which has the lowest load. Basically, the opportunistic
scheduling algorithm is considered one of the best
choices in load balancing.
 Mathematically speaking, the index to the selected
VM that will execute the current cloudlet cl is calculated
using (4) Equation 4:

index Min{v.getready() | v VML}← ∀ ∈ (4)

 Figure 9 presents the detailed step of the
opportunistic load balancing job scheduling algorithm
that is repeated for each job.

3. RESULTS AND DISCUSSION

 The performances of the developed algorithms are
evaluated under different evaluation criteria. All
algorithms are implemented and tested using in
Cloudsim simulator. The implementation has been
accomplished by modifying the original source code of
the simulator that was written in the Java language. Net
beans 7.1, a Java editor was used for this purpose.

3.1. Performance Metrics

 Various performance metrics were taken into
consideration in order to measure and evaluate the
selected job scheduling algorithms. These metrics
include the make span, amount of throughput and total
cost. These performance metrics are the most important
and frequently used metrics in the previous works for
evaluating the scheduling algorithms in cloud computing
environment. These performance metrics are further
explained below.

3.2. Makespan

 The makespan represent the maximum finishing
time among all received jobs per time. This parameter
shows the quality of job assignment to resources from
the execution time perspective. The formal formula for
the Makespan is shown in Equation 5:

jMakespan Max {FT | j J}= ∀ ∈ (5)

Where:
FTj = The finishing time of job j belonging to the job

list J
j = Job from the list of jobs
J = List of jobs

Isam Azawi Mohialdeen / Journal of Computer Science 9 (2): 252-263, 2013

260 Science Publications

JCS

3.3. Throughput

 In this study, each job is assumed to have hard
dead-lines which represent the finishing time.
Therefore, the throughput is the number of executed
jobs, which is calculated to study its efficiency in
satisfying the jobs dead-lines. The throughput is
calculated using Equation 6:

j
j J

Throughput J X
∈

=∑ (6)

Where Xj is:

j

1, job j has finished execution
X

0, Otherwise

 =  
 

Where:
j = Job from the list of jobs
J = List of jobs

3.4. Total Cost

 If the basic concept of Could computing is renting
resources for customers, then the total cost needed for
executing the list of jobs is essential for evaluating sys-
tem performance. The total cost is calculated based on
the processing time and the amount of data transferred.
Equation 7 illustrates how the total cost is computed:

j j

j

f Fin f Fout

Total Cost (TC) P *PC

Size(f) Size(f) TrC
∈ ∈

= +

 
 + ×
 
 
∑ ∑

 (7)

Where:
f = Single file
TC = The total cost
Pj = The processing time of the job j
PC = The processing cost
TrC = The cost of transferring the input files (Finj) and

the output files (Fout j)

3.5. Dataset

 The Ligo real dataset (Brown et al., 2007) is used,
which are The Laser Interferometer Gravitational Wave
Observatory (LIGO) attempts to detect gravitational
waves produced by various events in the universe as per
Einstein’s theory of general relativity. The dataset was
represented by a set of XML files that vary in the
number of jobs. Each file contains a set of jobs and their

requirements such as job length, job ID, lists of input and
output files and their sizes. Set of six files has been taken
to be the workload of this research where the number of
jobs is 50, 100, 200, …, 1000. The missing parameters in
job’s characteristics such as the arrival time, file location
and the start and finish deadlines are completed
randomly based on the job’s length and data size found
in the XML files.

3.6. Simulation Results

 Three experiments were carried out in this study.
All experiments aim at analyzing several performance
metrics (throughput, makespan and total cost) using
the cloudsim simulation tool with respect to the
various number of jobs. For each of the experiments,
various numbers of scenarios with different
parameters values were taken into consideration
during simulation. Table 1 summarizes the simulation
parameters used in the experiments.

3.7. The Experiment Results of the Throughput
Percentage

 Figure 10 depicts the result of the throughput
percent-age for the jobs given for each scheduling
algorithm. From the figures, it can be concluded that the
throughput deteriorates for all cases when the number of
jobs were increased for all scheduling algorithms. This is
mainly due to the increasing number of jobs, resulting in
a high load for each VM that further leads to the failure
to exe-cute some jobs.
 From the figure, it can also be noted that the mini-
mum completion time steadily outperforms the other
scheduling algorithms in all cases. This is because the
minimum completion time assigns the job to the most
appropriate VM that is able to accomplish the job
within the given constraints. The throughput for the
minimum completion time reached up to 100% when
the number of jobs was at 50. The throughput was
reduced dramatically when the assigned jobs increased
and reached 30% when the number of jobs reached
1000 jobs.

Table 1. The parameters setting

Parameter Value

Number of VMs 100
Number of Jobs 50-1000
Transmission cost 0.10 USD
Processing cost 0.10 USD

Isam Azawi Mohialdeen / Journal of Computer Science 9 (2): 252-263, 2013

261 Science Publications

JCS

Fig. 10. Throughput percentage

Fig. 11. The makespan

The opportunistic load balancing algorithm performed
better than the Round Rubin and the random algorithms
in most of the cases. This is because the opportunistic
load balancing algorithm attempts to distribute the jobs
to the avail-able VM which had the lowest load
compared to the other VMs. Notice also that the
algorithm performance deteriorated when the number of
jobs increased. The throughput reached up to 100%
when the number of jobs was less than 100, while the
throughput decreased significantly when the number of
jobs reached 1000.
 However, the Round Robin algorithm performance
is low because it does not take into account the specific
VM‘s load and handled the jobs in sequence by giving

the same time portion for each job. Finally, the Random
algorithm performed the worst in most of the cases com-
pared to the other scheduling algorithms. This is because
the random algorithm randomly assigns the selected jobs
to the available (VM). The algorithm does not take into
considerations the VM status whether it was under high
or low load.

3.8. The Experiment Results of the Makespan

 This experiment focuses on the quality of job
assignment to resources from the perspective of the
execution time. Figure 11 illustrates the observation of
the makespan time with increasing numbers of assigned
jobs for each scheduling algorithm.

Isam Azawi Mohialdeen / Journal of Computer Science 9 (2): 252-263, 2013

262 Science Publications

JCS

Fig. 12. The total cost

From the figure it is clear that the minimum
completion time has achieved the lowest value of
makespan in all cases compared to the other
algorithms. This is mainly due to the fact that the
mini-mum completion time attempts to select the most
suitable VM that can rapidly respond and execute the
given job and generate the output to the user. Notice
that for the minimum completion time, the makespan
time is increased when the number of jobs increases.
The total makespan time that is required to run 50 jobs
is almost 5500 seconds, while the algorithm required
8800 seconds as a makespan time when the number of
jobs reach to 1000 jobs.
 The opportunistic load balancing algorithm achieved
better compared to the Round Rubin and Random
algorithms. Notice that the opportunistic load balancing
achieves the same with the minimum completion time
when the number of jobs is less than 200. This is because
the two algorithms have almost similar criteria in
deter-mining the most appropriate VM to run the job.
On the other hand, the Round Rubin algorithm
performed the worse compared to the minimum
completion time and the opportunistic load balancing
algorithms in all cases. This is because the Round
Rubin algorithm is not concerned with the given VM
specifications and loads the job in a circulatory form.
The Random algorithm is the worst among the other
algorithms for achieving the highest makespan time.
This is because the random algorithm attempts to
randomly distribute the set of jobs over the VM and
the job constraints is not taken into consideration.

3.9. The Experiment Result of the Total Cost

 In this experiment we aim to study the impact of the
number of jobs on the total cost when VMs execute their
assigned jobs. Figure 12 illustrates the experimental
results obtained for the total cost consumed by each set
of jobs fed to the four scheduling algorithms. It is clear
that the total cost is highly influenced by the number of
assigned jobs for every scheduling algorithm. Notice that
the minimum completion time produces the highest cost
in all cases compared to the other scheduling algorithms.
This is mainly due to the minimum completion time
accomplishing the largest number of received jobs. Thus,
the total cost will be more compared with the other
algorithms. The opportunistic load balancing scheduling
algorithm incurred higher cost compared with the
Random and Round Rubin algorithms. This is because
the opportunistic load balancing has the capability to run
more jobs at the same time, as the algorithm when the
jobs are dispatched over the available VM while taking
the VM load into account. Thus, many jobs can be run
and that will lead to an increase of cost. The Round
Rubin algorithm produced less cost compared to the
minimum completion time and the opportunistic load
balancing algorithms. The Random algorithm is the
superior in all cases in terms of the total cost compared
with the other algorithms. Nevertheless, the Random
algorithm has the same cost with the Round Rubin
algorithm when the number of jobs is up to 500, 600 and
700. Moreover, the Random algorithm possesses the
same cost with the opportunistic load balancing

Isam Azawi Mohialdeen / Journal of Computer Science 9 (2): 252-263, 2013

263 Science Publications

JCS

algorithm when the number of jobs is in range of 700-
800. From this experiment we can conclude that cost has
a strong relationship with the number of executed job
and the total amount of the cost highly dependent of the
executed jobs.

4. CONCLUSION

 In this study, the behavior of four job scheduling
algorithms, namely: Random, Round-Rubin (RR),
Opportunistic Load Balancing and Minimum
Completion Time have been investigated and examined
in a Cloud computing environment. These job scheduling
policies have been extensively evaluated by focusing on
the major characteristics of the cloud computing
environment. Based on the simulation results, it is shown
that some of the scheduling algorithms are beneficial to
be used in Cloud computing. Based on the results, it can
be also concluded that there is not a single scheduling
algorithm that provides superior performance with
respect to various types of quality services. This is
because job scheduling algorithms needs to be selected
based on its ability to ensure good quality of services
with reasonable cost and maintain fairness by fairly
distribute the available resources among all the jobs and
respond to the constraints of the users.

5. REFERENCES

Brown, D., P. Brady, A. Dietz, J. Cao and B. Johnson
et al., 2007. A case study on the use of workflow
technologies for scientific analysis: Gravitational
wave data analysis. Workflows E-Sci. DOI:
10.1007/978-1-84628-757-2_4

Garg, S.K., C.S. Yeo, A. Anandasivam and R. Buyya,
2009. Energy-efficient scheduling of HPC
applications in cloud computing environments.
Comput. Sci. Distributed, Parallel Cluster
Computing.

Gupta, P.K. and N. Rakesh, 2010. Different job
scheduling methodologies for web application and
web server in a cloud computing environment.
Proceedings of the 3rd International Conference on
Emerging Trends in Engineering and Technology,
Nov. 19-21, IEEE Xplore Press, Goa, pp: 569-572.
DOI: 10.1109/ICETET.2010.24

Li, B., J. Li, J. Huai, T. Wo and Q. Li et al., 2009.
EnaCloud: An energy-saving application live
placement approach for cloud computing
environments. Proceedings of the International
Conference on Cloud Computing, Sept. 21-25, IEEE
Xplore Press, Bangalore, pp: 17-24. DOI:
10.1109/CLOUD.2009.72

Li, J., J. Peng and W. Zhang, 2011. A scheduling
algorithm for private clouds. J. Convergence Inform.
Technol., 6: 1-9.

Li, J., M. Qiu, J. Niu, W. Gao and Z. Zong et al., 2010.
Feedback dynamic algorithms for preemptable job
scheduling in cloud systems. Proceedings of the
International Conference on Web Intelligence and
Intelligent Agent Technology, Aug. 31-Sep. 3, IEEE
Xplore Press, Toronto, ON, pp: 561-564. DOI:
10.1109/WI-IAT.2010.30

Lin, C.C., P. Liu and J.J. Wu, 2011. Energy-aware
virtual machine dynamic provision and scheduling
for cloud computing. Proceedings of the 4th
International Conference on Cloud Computing, Jul.
4-9, IEEE Xplore Press, Washington, DC., pp: 736-
737. DOI: 10.1109/CLOUD.2011.94

Paul, M. and G. Sanyal, 2011. Task-scheduling in cloud
computing using credit based assignment problem.
Int. J. Comput. Sci. Eng., 3: 3426-3430.

Sindhu, S. and S. Mukherjee, 2011. Efficient task
scheduling algorithms for cloud computing
environment. Commun. Comput. Inform. Sci., 169:
79-83. DOI: 10.1007/978-3-642-22577-2_11

Yang, B., X. Xu, F. Tan and D.H. Park, 2011. An utility-
based job scheduling algorithm for cloud computing
considering reliability factor. Proceedings of the
2011 International Conference on Cloud and Service
Computing, Dec. 12-14, IEEE Xplore Press, Hong
Kong, pp: 95-102. DOI:
10.1109/CSC.2011.6138559

