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NUMERICAL ANALYSIS OF FOOTING SETTLEMENT PROBLEM
BY SUBLOADING SURFACE MODEL
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ABSTRACT

This article addresses the numerical analysis of the load-settlement relation of footing on a soil ground by the ˆnite
diŠerence method incorporating the subloading surface model. The subloading surface model is the elastoplastic con-
stitutive model describing most pertinently the plastic strain rate due to the rate of stress inside the yield surface so as to
fulˆll the continuity and the smoothness conditions. For the ˆnite diŠerence program FLAC3D is used, which adopts
the explicit dynamic relaxation method without solving the total stiŠness matrix equation and thus has the capability
for the remarkable reduction of calculation time. The relevance of the present approach to the description of the load-
settlement curve exhibiting the ultimate load is demonstrated by the numerical experiments. Further, the applicability
to the prediction of real behavior of footing-settlement is veriˆed by comparison with the test data for sand grounds
with a high friction property.

Key words: bearing capacity, constitutive equation, elastoplasticity, (footing-settlement), numerical analysis, (sub-
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INTRODUCTION

The most fundamental issue in soil mechanics is the
prediction of bearing capacity of soil ground. In this con-
text, the slip-line method has been used most widely for a
long time in the history of soil mechanics. However, it
has the serious limitations due to the premise of the rigid-
perfectly plasticity, i.e., the disregard of the elastic defor-
mation and the hardening/softening behavior. There-
fore, it predicts merely the ultimate load but is incapable
of predicting a deformation at all. On the other hand, a
big research eŠort has been made so far to develop the
elastoplastic constitutive equation of soils and the numer-
ical method for the analyses of boundary-value problems
on the deformation behavior of soil structures, especially
the footing-settlement problem (cf. de Borst and Ver-
meer, 1984; Pietruszczak and Niu, 1993; de Borst and
Groen, 1999; Borja et al., 1990, 1991, 1998, 2001, 2004;
Siddiquee et al., 2001; Potts, 2003; Smith and Gri‹th,
2004). Notwithstanding, it has not been advanced to the
level to take the place of the slip-line method for the
mechanical design of soil structures in practice so far. On
this background there exists the di‹culty in the large
deformation analysis of soil structures observed typically
by the settlement of footing on the soil ground with a
high friction property. The di‹culty would be caused by
the following facts:
1) Soils are frictional materials exhibiting the pressure

dependence and the plastic-volumetric change giving

rise to the volumetric (dilatancy) locking behavior in
the ˆnite element analysis (cf. de Borst et al., 1993; de
Borst and Groen, 1999),

2) Soils in the neighborhood of ground surface are in the
heavily over-consolidated state and thus yield con-
siderable softening behavior as the footing-settlement
proceeds,

3) Soils undergo a large deformation leading to localiza-
tion, i.e., shear banding when the load approaches the
ultimate value.
In order to overcome these problems, the elaborated

constitutive relation and numerical method would have
to be adopted. The subloading surface model
(Hashiguchi and Ueno, 1977; Hashiguchi, 1978, 1980,
1989) falling within the framework of unconventional
plasticity (Drucker, 1988) has been proposed and devel-
oped to describe pertinently the plastic strain rate induced
by the rate of stress inside the yield surface, fulˆlling the
continuity and the smoothness conditions (Hashiguchi,
1993a, b, 1997, 2000). In addition, it possesses the con-
siderable advantages in numerical analyses: it is not re-
quired to incorporate the algorithm for judgment
whether or not a stress reaches the yield surface and is
equipped intrinsically with the controlling function so as
to attract the stress to the yield surface so that it is not re-
quired to incorporate a return-mapping algorithm in the
yield state. It has been extended so as to describe the
deformation of soils in the negative range of pressure
(Hashiguchi and Mase, 2007), while the past constitutive
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equation of soils based on the subloading surface model
was limited to the positive range of pressure and has in-
volved the singular point of plastic modulus in the null
stress state in which the yield and the subloading surfaces
having diŠerent sizes contact with each other. Here, the
Jaumann rate is incorporated as a corotational rate for
sake of simplicity and thus the objectivity of constitutive
equation is furnished so as not to be in‰uenced by the
rigid body rotation for the shear strain up to one hundred
and several ten percents in anisotropic plastic constitutive
equations involving the second-order tensor describing
the kinematic or rotational hardening, while the strain is
less than 10z even in the post-peak behavior of the
present problem of footing settlement as will be shown in
the later section.

For the ˆnite element analysis, suitable selections of
elements and integration method are required, where the
popular rectangular element with 2×2 integration points
causes often the shear-locking problem (cf. the compre-
hensive overview of de Borst et al. (1993)). The following
various improvements have been proposed, while the ex-
planation is given here for the plane strain condition.
1. The triangle elements with ˆfteen integration points is

adopted by Sloan and Randolph (1982) and de Borst
et al. (1984, 1999) in which only the over-consolidated
soil ground is studied adopting the Coulomb or
Drucker-Prager yield condition.

2. The rectangular elements with the reduced integration
(one) point incorporating an hourglass prevention al-
gorithm is adopted by some researchers, e.g., Smith
and Gri‹th (2004) and Potts (2003), while their ana-
lyses are also limited to the over-consolidated soil
ground without the plastic volumetric contraction.

3. The consistent return mapping method (Simo and
Hughes, 1998) is adopted by Borja et al. (1990, 1991,
1998, 2001, 2004), Simo and Meschke (1993) and
Yamakawa (2003). It is formulated so as to describe
the ˆnite deformation based on the multiplicative
decomposition (Lee, 1969), the Hencky strain and the
hyper-elastic constitutive equation. It has a quite high
e‹ciency and accuracy in calculation. However, it is
limited to the isotropy at present and the enhancement
towards the description of anisotropic deformation
behavior is one of the di‹cult problems remained in
the ˆnite strain theory for the general elastoplastic
materials.

4. The rectangular elements with reduced (one point) in-
tegration and the hour-glass prevention algorithm in-
corporating the explicit dynamic-relaxation method is
adopted by Tanaka (Tanaka and Kawamoto, 1988;
Siddiquee et al., 1999, 2001). The time required for
calculation can be reduced drastically since the solu-
tion of total stiŠness matrix equation between the
forces and the displacements of whole nodal points is
not required.

The ultimate load was calculated by Noda et al. (2007) in
the numerical experiment incorporating the super/sub-
loading surface model in which the superloading surface
is introduced in addition to the subloading surface in ord-

er to describe the eŠect of structures in soils. The
relevance of the structure in soils to the appearance of ul-
timate load in the footing settlement behavior would re-
quire further study.

In this article the settlement behavior of footing on a
soil ground is analyzed by incorporating the subloading
surface model into the ˆnite diŠerence code FLAC3D
(Cundall and Board, 1988; Itasca Consulting Group,
2006) which adopts the explicit dynamic-relaxation
method without solving the total stiŠness matrix equation
and thus has the capability for the remarkable reduction
of calculation time. Then, it is veriˆed by comparison
with test data for the rigid footings on sand grounds with
a high friction property, that the present approach is
capable of describing the footing settlement behavior
rigorously and realistically up to the ultimate load.

The signs of a stress (rate) and a strain rate (a symmet-
ric part of velocity gradient) components are taken to be
positive for tension, and the stress for soils means the
eŠective stress, i.e., the stress excluded a pore pressure
from a total stress throughout this article.

OUTLINE OF SUBLOADING SURFACE MODEL

The subloading surface model (Hashiguchi and Ueno,
1977; Hashiguchi, 1978, 1980, 1989) is reviewed brie‰y in
this section.

Denoting the current conˆguration of the material par-
ticle as x and the current velocity as v, the velocity
gradient is described as L＝&v/&x. The strain rate and the
continuum spin are deˆned as Dø(L＋LT)/2 and Wø(L
－LT)/2, respectively, ( )T standing for the transpose.
Limiting to the inˆnitesimal strain, let the strain rate D be
additively decomposed into the elastic strain rate De and
the plastic strain rate Dp as follows:

D＝De＋Dp. (1)

First, let De be given simply by the hypoelastic equa-
tion, i.e.,

De＝E－1s, (2)

where E is the fourth-order elastic modulus tensor, ( )－1

denoting the inverse operation, and s is the Cauchy
stress. () stipulates the proper (objective) corotational
rate, while let it be given by the following Jaumann rate
(Jaumann, 1911) for sake of simplicity.

s＝s－Ws＋sW, (3)

where () stands for the material-time derivative. It
should be noted that the strain rate has to be decomposed
to the elastic and the plastic parts by the multiplicative
decomposition (cf. Hashiguchi, 2008) and the elastic part
has to be formulated as the hyper-elastic constitutive
equation in the description of ˆnite deformation. There-
fore, the present theory is limited to the inˆnitesimal
strain, while it holds for the ˆnite rotation.

Let the following isotropic yield condition be assumed
for sake of simplicity.
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Fig. 1. Stress-controlling function equipped in the subloading surface
model: The stress is automatically attracted to the normal-yield sur-
face in the plastic loading process Dp»0
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f(s)＝F(H ), (4)

where F is the hardening function of isotropic hardening/
softening variable H. Here, for sake of simplicity in for-
mulation let it be assumed that f(s) is the homogeneous
function of s in degree-one. Further, the subloading sur-
face is described by

f(s)＝RF(H ). (5)

The material-time derivative of Eq. (5) leads to

tr Ø&f(s)
&s

s»＝RF＋RF?
H, (6)

where

F?ødF/dH. (7)

Hereinafter, let H be given by
H＝h(s, H, Dp), (8)

while h is the homogeneous function of Dp in degree-one
since the time-independent deformation is concerned.
The direct transformation of the material-time derivative
to the corotational derivative used in Eq. (6) is veriˆed for
the general scalar-valued tensor function (Hashiguchi,
2007).

The following evolution equation of the normal-yield
ratio R is given by

R＝U(R)¿Dp¿ for Dp»0, (9)

where U is a monotonically decreasing function of R, ful-
ˆlling the following conditions

U(R)＝







/
À0
0

(À0

for R＝0,
for 0ºRº1,
for R＝1,
for RÀ1).

(10)

Let the function U satisfying Eq. (10) be simply given
by

U＝－u ln R, (11)

where u is a material constant. By virtue of incorporation
of Eq. (9), a stress is automatically drawn back to the
normal-yield surface even if it goes out from that surface
since it is formulated that RÀ0 for Rº1 (subyield state)
and Rº0 for RÀ1 (over normal-yield state) in Eq. (11)
with the condition ( see Fig. 1). Thus, a stable calculation
is executed even by rough loading steps compared with
the conventional models when the Euler method is adopt-
ed in numerical calculations as will be shown explicitly in
the following section.

Substitution of Eq. (9) into Eq. (6) leads to the con-
sistency condition for the subloading surface:

tr Ø&f(s)
&s

s»＝U¿Dp¿F＋RF?
H. (12)

Here, adopt the associated ‰ow rule

Dp＝lN, (13)

where l is a positive proportionality factor, and N is the

normalized outward-normal of the subloading surface at
the current stress point, i.e.,

N＝
&f(s)
&s /¿&f(s)

&s ¿. (14)

The substitution of Eq. (13) into the consistency condi-
tion (12) leads to

l＝
tr (Ns)

M p , (15)

and thus the plastic strain rate is given by

Dp＝
tr (Ns)

M p N, Nø
&f(s)
&s /¿&f(s)

&s ¿ (16)

where the plastic modulus M p is given by

M pøØF?

F
h＋

U
R » tr (Ns), (17)

and h is the homogeneous function of N in degree-one
which is related to H as

H＝lh(s, H, N). (18)

The strain rate is given from Eqs. (1), (2) and (16) as
follows:

D＝E－1s＋
tr (Ns)

M p N (19)

from which the positive proportionality factor in terms of
strain rate, rewriting by L, is described as

L＝
tr (NED)

M p＋tr (NEN)
. (20)

The stress rate is given from Eqs. (15), (19) and (20) as

s＝ED－E
tr (NED)

M p＋tr (NEN)
N. (21)

The loading criterion is given as follows (Hill, 1967;
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Fig. 2. Normal-yield surface of soils in the (p, q) plane
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Hashiguchi, 2000):

DP»0: LÀ0,
DP＝0: LÃ0.} (22)

The bounding surface model with the radial-mapping
(Dafalias and Herrmann, 1982) has a similar structure as
the subloading surface model (Hashiguchi and Ueno,
1977) outlined in this section. However, it is impertinent-
ly formulated without any consistency condition because
it does not incorporate the subloading surface. Then, it is
not guaranteed for the stress to be attracted to the yield
surface in the plastic deformation process. Furthermore,
it cannot be adopted to describe the cyclic loading behav-
ior, predicting the open hysteresis loop leading to the ex-
cessive strain accumulation, while the subloading surface
model has been extended to describe pertinently the cyclic
loading behavior as the extended subloading surface
model (Hashiguchi, 1989).

MATERIAL FUNCTIONS FOR SOILS

The subloading surface is indeterminate at the null
stress state for the past normal-yield surface passing
through the zero stress at which the normal-yield and the
subloading surfaces contact with each other at one point,
resulting in the singularity of plastic modulus. In order to
avoid this defect the following normal-yield surface is
proposed by Hashiguchi and Mase (2007), which exhibits
the ellipsoid translated to the direction of negative pres-
sure by －jF (j: material constant) as shown in Fig. 2.

f (p, x)＝F, f (p, x)＝







ps1＋(x/p)2t for j＝0,

1
Âj

(px－j̃p) for j＝0,
(23)

where

Âjø2(1－j)j, j̃ø(1－2j), pxø p2＋2 Âjx2, (24)

pø－
1
3

tr s, s?øs－
1
3

(tr s)I, (25)

xø
¿h¿

M
, hø

s?

p
, (26)

I is the identity tensor having the components of
Kronecker's delta dij, i.e., dij＝1 for i＝j and dij＝0 for
i»j. M is the stress ratio ¿h¿ in the critical state, which is
generally a function fm of

cos 3usø 6 tr t?3, t?ø
s?

¿s?¿
, (27)

including the material constant qc referred to as the fric-
tional angle in the critical state for the axisymmetric com-
pression and it is given by Hashiguchi (2002) as follows:

M＝
14 6 sin qc

(3－sin qc)(8＋cos 3us)
. (28)

In the above, the yield surface of soils is formulated so
as to fulˆll the conditions 1)–3) based on the modiˆed
Cam-clay model (Roscoe and Burland, 1968). It is
di‹cult to derive the other yield surface fulˆlling the con-
ditions 1)–3). For instance, consider the translation of the
original Cam-clay model (Schoˆeld and Wroth, 1968) to
the negative pressure range by pªp＋jF.

(p＋jF ) exp Ø ¿s?¿

p＋jF/M»＝F (29)

However, a separated form of the stress and internal vari-
ables and the hardening function cannot be derived from
this equation. On the other hand, the translation of the
yield surface to the negative pressure range by the con-
stant value Cy(pªp＋Cy) is adopted for constitutive
equations for unsaturated soils (e.g., Alonso et al., 1990;
Simo and Meschke, 1993; Borja, 2004). The modiˆed
Cam-clay model, for instance, is described by this trans-
lation as follows:

{
p－(1/2)F＋Cy

F/2 }
2

＋
¿s?¿2

(MF/2)2＝1 (30)

In this equation, the yield surface expands/contracts
from/to the ˆxed point s＝CyI (p＝Cy) on the hydrostat-
ic axis and thus it does not fulˆll the condition 2). The in-
corporation of this yield condition into the subloading
surface model leads to the physical impertinence that the
unloading is induced against the fact a large plastic defor-
mation is induced when the stress translates towards the
negative pressure direction.

Let the isotropic hardening/softening function F be
given by the following equation, modifying the past for-
mulation (Hashiguchi, 1974, 1995; Hashiguchi and Chen,
1998) so as to avoid the singularity induced at p＝0.

F(H )＝ØF0＋
pe

1－j» exp
H

r－g
－

pe

1－j
,
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Fig. 3. ln n-ln p linear relation of isotropic consolidation of soils

Fig. 4. Numerical results calculated by Euler method at several levels of strain increment for the triaxial compression of normally-consolidated soil
by Cam-clay model and the subloading surface model
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H＝－tr Dp－m?¿Dp?¿
¿s?¿－Md`p`

F
, (31)

where F0 is the initial value of F. r and g ( see Fig. 3) are
the material constants describing the slopes of the nor-
mal-consolidation and swelling lines, respectively, of the
ln v－ln (p＋pe) linear relation (v: volume) in the isotrop-

ic consolidation (Hashiguchi, 1974, 1995, 2008). pe is the
material constant, while the volume becomes inˆnite for
p＝－pe. m? is the material constant. Md is the function of
cos 3us and is given here in the identical form as M by

Md＝
14 6 sin qd

(3－sin qd)(8＋cos 3us)
, (32)

where qd is the material constant. The hardening and the
softening are induced for ¿s?¿ÀMd`p` and ¿s?¿ºMd

`p`, respectively.
The elastic modulus E in Eq. (2) is given in the Hooke's

type as follows:

Eijkl＝ØK－
2
3

G»dijdkl＋G(dikdjl＋dildjk),








(33)

(E－1)ijkl＝
1
3 Ø 1

3K
－

1
2G»dijdkl＋

1
4G

(dikdjl＋dildjk),

where the elastic bulk modulus K and the elastic shear
modulus G are given as

K＝
p＋pe

g
, G＝

3(1－2n)
2(1＋n)

K, (34)
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Fig. 5. An eight-noded cuboidal element with two kinds of overlays
consisting of ˆve tetrahedra

Fig. 6. Footing settlement test apparatus: type A (Tatsuoka et al.,
1984) and type B (Tani, 1986)

Fig. 7. Footing settlement test apparatus: type C (Okahara et al.,
1989)
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where n is Poisson's ratio. The elastic bulk modulus in
Eq. (34)1 as well as Eq. (31) is derived from the ln v－ln
(p＋pe) linear relation of the isotropic consolidation.

The numerical results of the axial diŠerence stress q(＝
sl－sa; sa: axial stress, sl: lateral stress), the isotropic
hardening function F and the normal-yield ratio R vs. the
axial strain ea and the stress path in the (p, q) plane for
the three levels of strain increment in the undrained triax-
ial compression of the normally-consolidated soil are
shown in Fig. 4, while the Euler method without a con-
vergence algorithm is adopted. The following material
parameters are used in the calculation.

F0＝350 kPa, qc＝329, j＝0.001,
r＝0.1, g＝0.05,
pe＝0.01 kPa, n＝0.3,
qd＝299, m?＝0.8,
u＝15.0.

The axial stress diŠerence and the normal-yield ratio are
predicted to go over the accurate values but inversely the
hardening function is predicted to be suppressed from the
accurate value as the axial strain increment increases as
shown in this ˆgure.

The stress is attracted to the normal-yield surface even
if the stress goes over it by the large strain increments in
the subloading surface model. Then, an accurate calcula-
tion can be performed by the subloading surface model
by virtue of the controlling function.

NUMERICAL ANALYSIS OF
FOOTING-SETTLEMENT BEHAVIOR

Numerical analysis of the present problem, i.e., the
prediction of peak load and post-peak behavior for the
footing-settlement problem on sands having the high fric-
tion and dilatancy cannot be attained in fact by the usual
implicit ˆnite element method requiring the repeated cal-
culations of total stiŠness equation which needs quite
large calculation time. On the other hand, it can be at-
tained by the explicit dynamic relaxation method in
which the dynamic equilibrium equation is solved directly
without solving the total stiŠness equation so that the cal-
culation time is drastically reduced. The FLAC3D (Fast
Lagrangian Analysis of Continua in 3 Dimensions) (Cun-
dall and Board, 1988; Itasca Consulting Group, 2006)
based on the explicit dynamic relaxation method is adopt-
ed in the present analysis, in which the subloading surface
model with the automatic controlling function to attract
the stress to the normal-yield surface is implemented as
the constitutive equation. The calculation is executed by
the Euler method without a calculation for convergence
in this program by adopting small incremental steps so as
not to have an in‰uence on the calculation, while this fact
is examined prior to the calculation. The ˆnite elements
are composed of eight-noded cuboidal elements. Each
cuboidal element is divided into the two kinds of over-
lays, i.e., assembly of ˆve tetrahedral sub-elements hav-
ing diŠerent directions as shown in Fig. 5. Then, the dev-
iatoric variables are analyzed using individual values in

each tetrahedral sub-element. On the other hand, isotrop-
ic variables are analyzed using averaging values in ten
tetrahedral sub-elements in order to avoid the over-con-
straint problems common in ˆnite element calculations
for dilatant materials, i.e., the dilatancy locking.

Test Data Used for Numerical Simulation
The test data of footing settlement phenomenon on

sand layers under the plane strain condition are used for
the simulation by the FLAC3D incorporating the sub-
loading surface model explained in the preceding section.
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Fig. 8. Finite element meshes
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The overviews of the test apparatus of type A (Tatsuo-
ka et al., 1984) and type B (Tani, 1986) are shown in Fig.
6, and that of type C (Okahara et al., 1989) is shown in
Fig. 7. For the large test apparatus: type C, the rein-
forced concrete is used for the front transparent wall in
order to maintain steadily the plane strain condition and
thus more accurate test data could be obtained. The foot-
ings width, denoted as B, is taken 10 cm for the types A
and B and 50 cm for the type C. The sand layers have
been prepared carefully by the air-pluviation method for
the dried Toyoura sand in order to obtain the same
homogeneous layers but the test data exhibit dispersion
more or less test by test despite the laborious preparation
work.

Numerical Analysis and Comparison with Test Data
The ˆnite element meshes in the present analyses for

the simulations of the test data are shown in Fig. 8. The
nodal points of soil layer in contact with the footing and
the bottom of soil bin are ˆxed to them, respectively. On
the other hand, the nodal points at the side walls can
move freely in the vertical direction. The right half of soil
layer is analyzed in order to reduce the calculation time as
has been done widely even for searching the localized
deformation (cf. e.g., Sloan and Randolph, 1982;
Pietruszczak and Niu, 1993; Stallebrass et al., 1997; Bor-
ja and Tamagnini, 1998; Siddiquee et al., 1999; de Borst
and Groen, 1999; Sheng et al., 2000; Borja et al., 2001,
2003; Nakano et al., 2008). The symmetry of deforma-
tion would hold approximately as observed also in experi-
ments (Tatsuoka et al., 1984; Tani, 1986; Okahara et al.,
1989) used here for comparisons with predictions, while it
should be noted that an analysis of only a half part is not
allowed in such a problem as a buckling phenomenon
searching a deformation to a lateral direction. First, the
initial state of stress is chosen to be zero and then the
gravity force is gradually applied to the nodal points
prior to the settlement of footing. Then, the vertical dis-
placement of footing is given by incremental steps of 10－5

¿5×10－4 cm.
The material parameters in the subloading surface

model are selected as:

F0＝350 kPa, qc＝309, j＝0.001,
r＝0.0015, g＝0.00015,
pe＝0.01 kPa, n＝0.3,
qd＝299, m?＝0.2,
u＝15.0.

referring to the values listed in the previous paper
(Setouchi and Hashiguchi, 2006). The material constants
r and g are determined so as to ˆt to the inclinations of
normal-consolidation line and the swelling line, respec-
tively, in the isotropic consolidation lines depicted in the
both logarithmic diagram of pressure and volume. The
initial value F0 is determined as the pressure in the transi-
tional point from the swelling line to the normal-consoli-
dation line in the diagram. The oedometer test data may
be referred for the determination of these parameters
when isotropic consolidation test datum is not at hand.

The Poisson's ratio n is determined such that the axial
stress-strain equation ˆts the inclination of the initial ris-
ing part of stress-strain curve in the test data of the triaxi-
al compression with a constant lateral stress, whilst the
value of g determined beforehand is used. The material
constant u in the evolution rule of the normal-yield ratio
R is determined so as to ˆt to the curvature of the stress-
strain curve in the transitional state from the elastic to the
normal-yield state, while it is smaller for looser materials.
The material constant qc describing the angle of internal
friction in the critical state as the non-cohesive material
can be determined from the stress ratio in the residual
state in the triaxial compression test data. The material
constant qd is determined so as to describe the undrained



214

Fig. 9. Comparisons of test and calculated results for footing settlement phenomenon
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stress path reducing to the null stress along and below the
critical state line for loose sands and increasing along and
above the critical state line for dense sands, deviating
from the undrained stress path for clays exhibiting the
isotropic hardening induced only by the plastic volumet-
ric strain. The material constant pe has only to be given a
small value fulˆlling peÀjF such that a volume does not
become inˆnite only by the elastic deformation for the
variation of pressure inside the normal-yield surface.
Therein, we do not need to add a surcharge on the ground
surface at null stress state. Here, note that pe depends on
F in general but this fact is ignored in the present formu-
lation since it leads to the complexity of formulation with
the elastic-plastic coupling (Hashiguchi, 2008). The
values of material parameters listed above are used for all
the following numerical calculations because Toyoura
sands in the same initial void ratio 0.66 are used in the
tests.

The comparisons of test and calculated results are
shown in Fig. 9, where the prediction by Siddiquee et al.
(1999) is also depicted in (c). In this ˆgure qm is the
average footing pressure, gd is the unit dry weight, Ng is
the normalized footing pressure and S is the settlement.

The qualitative trends of test results and the quantitative
simulation to some extent are captured and the ultimate
loads, i.e., bearing capacities are predicted well by the
present analyses, although the analyses are performed for
the sand with the high friction and dilatancy. Here, the
post-peak behavior, i.e., the increase of load after ex-
hibiting once the minimal value is also predicted well
qualitatively. It would be provided by the adoption of the
up-dated Lagrangian calculation leading to the accumu-
lation of displacements of nodal points, which results in
the upsurge of soils around the footing and thus the in-
crease of footing load. However, the quantitative predic-
tion of post-peak behavior would require further study
taking account of the tangential inelastic strain rate due
to the stress rate tangential to the loading surface
(Hashiguchi and Tsutsumi, 2001) and the gradient eŠect
(cf. Hashiguchi and Tsutsumi, 2006) by introducing the
shear-embedded model (cf. Pietruszczak and Mroz, 1981;
Tanaka and Sakai, 1993) for example.

The displacements of nodal points from the initiation
of settlement are shown in Fig. 10 at the settlement 11
mm, 15 mm, 80 mm for Type A, B and C, respectively,
which are the ˆnal stage of calculation. The Prantdl's slip
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Fig. 10. Deformed ˆnite element meshes at ˆnal step Fig. 11. Distribution of accumulation of magnitude of plastic devia-
toric strain rate ep?øf¿Dp?¿dt at ultimate load
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line solution with the triangle wedge, the logarithmic
spiral zone and the passive Rankine zone is observed
clearly in this ˆgure.

In what follows, distributions of basic physical quanti-
ties are shown based on the calculated results, which are
important on the interpretation of the present problem
although they are not measured or cannot be measured
directly. The most basic quantities are the accumulation
of magnitude of plastic deviatoric strain rate, ep?ø
f¿Dp?¿dt and the plastic volumetric strain ep

v, while they
describe the loading history representatively.

The distributions of accumulation of magnitude of
plastic deviatoric strain rate, ep?øf¿Dp?¿dt, at the ulti-
mate load and the ˆnal step are shown in Figs. 11 and 12,
respectively. It is predicted that the slip line appears only
in the vicinity of footing at the ultimate load but it de-
velops over the wide region exhibiting the Prantdl solu-
tion at the ˆnal steps as has been revealed experimentally
by Tatsuoka et al. (1992).

On the other hand, the soils in the periphery of footing
inevitably experience the null or further negative pressure
since they are pulled into the vertical direction as the foot-
ing settlement proceeds (see Fig. 13). It causes the sin-
gularity of plastic modulus for the normal-yield surface
passing through the origin of stress space at which the

normal-yield and the subloading surfaces contact with
each other. This defect is improved in the present model
by making the normal-yield surface translate to the
region of negative pressure as shown in Fig. 2, whilst the
numerical di‹culty can be avoided although the transla-
tion was taken quite small as 1/1000 in size of the normal-
yield surface. In addition, the impertinence that the
volume becomes inˆnite elastically is avoided by shifting
the isotropic consolidation characteristic into the nega-
tive range of pressures as shown in Fig. 2. It should be
emphasized that the stable analysis cannot be executed
without these improvements.

The distribution of plastic volumetric strain ep
v at ˆnal

step is depicted in Fig. 14, where it is distributed widely in
the upper layer of grounds. The large plastic volumetric
expansion is induced in the neighborhoods of the edge of
footing and along the boundary of the passive Rankine
zone. Here, it is observed that the volume expansion
spreads widely reaching to the side walls. The distribution
of the normal-yield ratio R at the ˆnal step is shown in
Fig. 15. It is known from this ˆgure that the logarithmic
spiral zone and the boundary of passive Rankine zone
ˆrst reach the normal-yield state.

The diŠerences in the distribution of mechanical quan-
tities are observed in (a) Type A and (b) Type B of Figs.
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Fig. 12. Distribution of accumulation of magnitude of plastic devia-
toric strain rate ep?øf¿Dp?¿dt at ˆnal step

Fig. 13. Distribution of mean pressure p for type A at ˆnal step

Fig. 14. Distribution of plastic volumetric strain ep
v at ˆnal step
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10–15, while only the widths of soil-bins are diŠerent in
these types. Then, in order to examine the in‰uence of the
width of soil-bin on the footing settlement behavior, the
analyses for the three levels 80, 300 and 500 cm of soil-bin
width are further performed changing the soil-bin width
in the ˆnite element mesh shown in Fig. 8(a) Type A. The

distributions in the displacement of nodal points, the ac-
cumulation of magnitude of plastic deviatoric strain rate
and the normal-yield ratio in the ˆnal step for the smaller
soil-bin width 80 cm are shown in Fig. 16, where the clear
slip-lines are observed compared with those for the soil-
bin width 182 cm. Here, note that the ratio of the area of
slip-line zone to the footing width is large since the active
angle of internal friction is large for a small footing width
as will be described later referring to Fig. 19. Then, the
constraint is hard if the ratio of the soil bin width to the
footing width is small. The relations of the footing load
vs. the relative settlement are shown in Fig. 17, where the
test data for types A and B shown in Fig. 9 are also
depicted. The relation of the ultimate footing load vs. the
ratio of the footing width to the soil-bin width is shown in
Fig. 18. Needless to say, the footing load increases as the
width of soil-bin decreases. According to the present
analyses, it is required to choose the soil-bin width more
than twenty times of the footing width in order to exclude
the in‰uence of the soil-bin width leading to the semi-in-
ˆnite ground.

The in‰uences of footing width on the ultimate load
and the settlement at ultimate load are depicted in Fig.
19, where the calculated results by Tatsuoka et al. (1992)
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Fig. 15. Distribution of normal-yield ratio R at ˆnal step
Fig. 16. Distribution of the displacement, the accumulation of magni-

tude of plastic deviatoric strain rate ep?øf¿Dp?¿dt and the normal-
yield ratio R at ˆnal step (Settlement＝8 mm) (B: 10 cm, L: 80 cm)

Fig. 17. In‰uence of ratio of soil-bin and footing width on footing
load-settlement relation
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are also depicted. The ˆnite element meshes scaled up or
down from the mesh in Fig. 8 for type B (footing width
10 cm) in proportion to the footing width are adopted in
these analyses. The test results that the ultimate footing
pressure increases quite intensely as the footing width
decreases are predicted fairly well by the calculations on
the contrary to the simple interpretation that the com-
pressive stress in soils increases by the weight of soils
themselves and thus the ultimate footing pressure in-
creases as the footing width increases. It was interpreted
by Siddiquee et al. (1999) for this fact that the active an-
gle of internal friction increases as the pressure decreases.
This property is re‰ected in the present model predicting
the decrease of stress ratio at failure with the increase of
the pressure, while it is lacking in the Drucker-Prager
model (1952) without the cohesion. The dependence of
failure stress on the pressure is shown in Fig. 20, while
the settlement at ultimate load is hardly aŠected by the
footing width in both the test and calculated results.

The pertinent result for the footing-settlement problem
on the sand with a high friction, one of the di‹cult prob-
lems in soil mechanics, is obtained in the present study as
described above. Here, the peak, the subsequent reduc-
tion and the ˆnal increase of footing load are predicted
well qualitatively and quantitatively to some extent.
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Fig. 18. Predicted in‰uence of ratio of soil-bin width to footing width
on ultimate load

Fig. 19. In‰uences of footing width

Fig. 20. Dependence of failure stress on pressure (Hashiguchi et al.,
2002)

218 MASE AND HASHIGUCHI

The reasons for successful outcome are summarized as
follows:
1) The subloading surface model applied in the present

analysis has the following advantages:
i) It is furnished with the automatic controlling func-
tion to attract the stress to the yield surface, whilst all
other elastoplastic constitutive models are required to
incorporate a return-mapping algorithm to pull back
the stress to the yield surface in the plastic deforma-
tion process in the normal-yield state as shown in Fig.
4. The distinguished advantage enables us to execute
an accurate calculation by the program FLAC3D
adopting the simple Euler method without a conver-
gence calculation process.
ii) It is not required of the judgment whether or not
the yield condition is fulˆlled in the loading criterion.
iii) It adopts the associativity of the ‰ow rule and thus
leads to the symmetry of elastoplasic constitutive
matrix. Therefore, this model possesses the distin-
guishable adaptability to numerical calculation.

2) The subloading surface model of soils applied in the
present analysis has the advantages:
i) It is capable of describing the softening behavior
and dilatancy characteristics quite realistically,
predicting the simultaneous occurrence of the peak
load and the highest dilatancy rate as has been found
experimentally by Taylor (1948).
ii) It has the full regularity since the normal-yield sur-
face does not pass through the zero stress point and
thus the subloading surface is always determined
uniquely. In addition, the elastic property is improved
such that the elastic bulk modulus does not become
zero for the stress inside the normal-yield surface.

3) The ˆnite diŠerence program FLAC3D adopted in the
present study is based on the explicit-relaxation
method which enables us to shorten the calculation
time drastically since it is not required to solve the
total stiŠness matrix.

CONCLUDING REMARKS

The footing-settlement problem on the sand with a
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high friction and dilatancy is analyzed in this study. The
numerical analysis incorporating the subloading surface
model into the ˆnite diŠerence program based on the dy-
namic-relaxation method is performed and it revealed
that a pertinent prediction is attained exhibiting high
e‹ciency and robustness. The numerical analysis due to
the subloading surface model presented in this study has
the distinguishable e‹ciency and the robustness. Now, it
could be stated that the present numerical method can
take the place of the slip-line method which has been used
for the practical design of soil structures for a long time
and the para-elastoplastic model (e.g., Duncan and
Chang, 1970).

However, the pertinent prediction of deformation in
the post-peak stress state requires the incorporation of
the tangential inelastic strain rate (Hashiguchi and Tsut-
sumi, 2001, 2003; Hashiguchi and Protasov, 2004;
Khojastehpour and Hashiguchi, 2004a, b; Tsutsumi and
Hashiguchi, 2005) and the further study considering the
shear band leading to avoid the mesh size dependency
which would be the quite di‹cult issue. One of ap-
proaches to consider the shear band is the incorporation
of the smeared (shear-band embedded) model
(Pietrueszczak and Mroz, 1981; Tanaka and Kawamoto,
1988; Tanaka and Sakai, 1993), while the gradient-depen-
dent models (Aifantis, 1984; Vardoulakis and Sulem,
1995; Hashiguchi and Tsutsumi, 2006), the non-local the-
ories (Bazant and Cedolin, 1991) and the Cosserat models
(Muhlhaus and Vardoulakis, 1987) would be rigorous
theoretically but are inapplicable to numerical analyses in
engineering practice since one cannot use ˆnite elements
far smaller than shear-band width because of the limita-
tion of computer capacity at least at present. In addition,
the anisotropy due to the rotational hardening
(Hashiguchi and Chen, 1998; Hashiguchi, 2001) is re-
quired since soil grounds in situ exhibit the anisotropy in-
duced during the Ko-consolidation process. Further study
considering these fundamental issues has to be performed
progressively.
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