
IEICE Electronics Express, Vol.3, No.8, 149–155

Studies on the accuracy of
numerical operations with
embedded CPUs

Satoshi Kawamura1a), Takahiro Nakanishi2, Hitoaki Yoshida2,
Kazuaki Oozeki3, Kazuo Fujimaki3 and Ryuji Gotoh3

1 Faculty of Science and Engineering, Ishinomaki Senshu University

1 Shinmito, Minamisakai, Ishinomaki, Miyagi 986–8580, Japan
2 Super Computing and Information Sciences Center, Iwate University

4–3–5 Morioka, Iwate 020–8550, Japan
3 R&D Center, ADTEK System Science Co., Ltd.

1–145–1 Nimaibashi, Hanamaki, Iwate 025–0312, Japan

a) kawamura@isenshu-u.ac.jp

Abstract: In this study, the authors performed a computer experi-
ment on Renesas SH4 and Intel PXA255, which are very popular CPUs
for embedded use, to verify their floating-point operation performance
in addition (subtraction) and multiplication. The experimental results
show that outputs of the embedded CPUs have possible errors. The er-
rors have been successfully removed by clearing the low-order 10 bits to
zero in the field of fractional bits of the floating point numbers. The re-
sult suggests that special care must be used in the accurate calculation
when using an embedded CPU for floating point operations.
Keywords: embedded CPU, capability of numerical operation, com-
putational error, operation accuracy
Classification: Science and engineering for electronics

References

[1] Embedded Linux industry trend ∼What are the advantage and the weak
point of Embedded Linux?∼, Development of Embedded Systems Forum
Web site, http://www.atmarkit.co.jp/fembedded/trend0411/
trend01.html (in Japanese)

[2] SH-4 Programming Manual, Web Site.
http://documentation.renesas.com/eng/products/mpumcu/
e602156 sh4.pdf

[3] Intel r© PXA255 Applications Processors Developer’s Manual, ftp site.
ftp://download.intel.com/design/pca/applicationsprocessors/manuals/
27869302.pdf

[4] D. A. Patterson, J. L. Hennessy, P. J. Ashenden, and J. R. Larus, Com-
puter Organization and Design: The Hardware/Software Interface (The
Computer Architecture and Design Series), Morgan Kaufmann Pub.,
2004.

[5] J. H. Wilkinson, “Rounding errors in algebraic processes,” Prentice-Hall,
1963.

[6] MISRAC Web Site. http://www.misra-c2.com/
c© IEICE 2006

DOI: 10.1587/elex.3.149
Received February 13, 2006
Accepted March 27, 2006
Published April 25, 2006

149

IEICE Electronics Express, Vol.3, No.8, 149–155

[7] IA-32 Intel Architecture Software Developer’s Manual Volume 1: Basic
Architecture, ftp Site. ftp://download.intel.com/design/Pentium4/
manuals/25366517.pdf

[8] AMD64 Architecture Programmer’s Manual Volume 1: Application Pro-
gramming, Web Site. http://www.amd.com/us-en/assets/content type/
white papers and tech docs/24592.pdf

[9] S. Kawamura, H. Yoshida, M. Miura, M. Saito, T. Takahashi, and K.
Oozeki, “CPLD Based Implementation of Artificial Neuron Using Non-
linear Activation Function,” Proc. of the 17th Digital Signal Processing
Symp. (CD-ROM), B7–3, 2002. (in Japanese)

1 Introduction

Severe restrictions on costs and operating environments are limiting the ca-
pabilities of embedded CPUs. General-purpose CPUs used in PC run at
speeds from hundreds of MHz to several GHz, but embedded CPUs (also
called MPUs) do not run faster than about tens of MHz to hundreds of MHz.
Regarding numerical operations of CPU, general-purpose CPUs used in PC,
have highly efficient functions and performance of Floating point number
Processing Units (FPUs), but embedded CPUs often have no or only a few
limited functions [1, 2, 3].

With the advance of ubiquitous computing and the spread of systems
with embedded CPUs, such as cellular phones, home information appliances,
and other CPU-embedded devices, processing configurations are increasing
in these devices for image processing, cryptographic applications, and other
comparatively processing. For the adaptive processing with embedded sys-
tems, an artificial intelligence technique is used. Generally, high operation
accuracy and the double data type of floating point expressions is needed for
speech and image signal processing and neural networks, and so on.

A CPU-embedded device executes processing within the capabilities of
its CPU and memory. Embedded CPUs are enhanced especially in their
operational capabilities for specific applications and functions. As compared
with general-purpose CPUs for PCs, embedded CPUs are often restricted in
operating speed, operation accuracy, and function [1, 2, 3]. In particular, the
capability of the floating point operation is limited in almost all cases.

When constructing an actual system, basic knowledge about the employed
devices is important. Floating point arithmetic systems and their behavior
have been theoretically studied [4, 5] and the method of programming for
embedded systems has been standardized [6]. For a comparison of the oper-
ational accuracy and computational results between general-purpose CPUs
and embedded CPUs, however, no information is available from manufactur-
ers’ technical documents [2, 3, 7, 8] and no detailed studies have been made
in a real system (device).

This paper reports the results of evaluating Renesas SH4 [2] and Intel
PXA255 [3], which are very popular CPUs for embedded use, to verify their
floating-point operation performance, especially in addition (subtraction) and

c© IEICE 2006
DOI: 10.1587/elex.3.149
Received February 13, 2006
Accepted March 27, 2006
Published April 25, 2006

150

IEICE Electronics Express, Vol.3, No.8, 149–155

multiplication. For floating point expressions, the double data type (64 bits)
of the C language was used. For a comparison of the computational results,
the most popular x86 compatible CPUs (IA-32 and x86-64) were used. The
computer experiment clarified that some systems could cause errors even in
the same processing. This paper also reports that clearing the low-order
10 bits to zero in the field of fractional bits (rounding) made the compu-
tational results identical. Note that the results cannot be estimated from
technical documents of each CPU [2, 3, 7, 8].

This paper is structured as follows. Section 2 introduces the method of
the computer experiment to compare the capability of numerical operations
between CPUs. Section 3 presents and discusses the results of the computer
experiment, and finally the conclusions are presented in Section 4.

2 Computer experiment

To verify various CPUs for their accuracy of numerical operation, the authors
compared the results of the same operations. For this verification, floating
point operations were used because they are particularly straightforward for
showing differences (due to the difference of implementation of numerical
operations). For the operations, the double data type of the C language was
used. The length of the double data type is 64 bits (sizeof() function returns
8 bytes) in all systems. In manufacturers’ technical documents of each CPU,
it is stated that operations conforming to IEEE 754 are possible but does not
mention errors clearly [2, 3, 7, 8].

2.1 Processing used to compare the computational error
Eq. (1) shows the object of computation used in the experiment. This ex-
presses Eq. (2) of a general neuron model having piecewise nonlinear output
function without using the exp function or division [9].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(x) = 1.0, x ≥ 12.0
f(x) = −0.000337592 × (x − 12)2 + 1.0, 12.0 > x ≥ 3.75
f(x) = −0.0324362 × (x − 3.83587)2 + 0.977262, 3.75 > x ≥ 0.0
f(x) = 0.0324362 × (x + 3.83587)2 + 0.022738, 0.0 > x ≥ −3.75
f(x) = 0.000337592 × (x + 12)2 + 0.0,−12 > x ≥ −3.75
f(x) = 0.0, x ≤ −12.0

(1)

f(x) =
1

1 + exp(−u)
, u =

n∑
i=1

wixi (2)

2.2 Environment used for comparison
This section describes the environment used to compare the operational ac-
curacy. Table I shows the environment used for the computer experiment.

The x86 and its compatible CPUs (AMD Duron, Intel Xeon), which are
widely used for general PCs, AMD Opteron (32-bit mode, gcc -m32) for
servers, and Renesas SH4 and Intel PXA255 (ARM Architecture v.5TE),c© IEICE 2006

DOI: 10.1587/elex.3.149
Received February 13, 2006
Accepted March 27, 2006
Published April 25, 2006

151

IEICE Electronics Express, Vol.3, No.8, 149–155

Table I. Environments used for comparison: CPU and OS
information

Fig. 1. Floating-point expression and zero clearing
method (Clearing the end of the field of fractions
bits to zero)

which are mainly implemented for embedded use, were verified. All are 32-
bit CPUs of little-endian numeral systems (Opteron is a 64-bit CPU but was
used in the 32-bit mode). Of these CPUs, only Intel PXA255 does not have
a floating-point operation function and uses a software library for its floating
point operations.

For Intel PXA255 in the computer experiment, a Pocket PC was used
as the OS and Microsoft EMbedded Visual C++ (SP4) was used as the
compiler. For other CPUs, the OS was GNU/Linux and the compiler was
gcc (GNU C Compiler).

Because floating point operations are used in this experiment, errors in
the computational results may occur. Therefore, Eq. (1) was employed as
the object of computation and the function output f(x) was obtained by
varying the input value x from −20.0 to 20.0 in units of 0.01. Because
computational errors were anticipated, the end (Region A in Fig. 1: low-
order bits of the field of fractional bits) of the output value of each operation
(addition (subtraction) or multiplication) was cleared to zero, as shown in
Fig. 1. This zero clearance (rounding) was also applied to input value x.

c© IEICE 2006
DOI: 10.1587/elex.3.149
Received February 13, 2006
Accepted March 27, 2006
Published April 25, 2006

152

IEICE Electronics Express, Vol.3, No.8, 149–155

Fig. 2. Computational results of different CPUs - 0
(False) for any difference and 1 (True) for no
difference. (a) to (d): After no zero clearance
(rounding), (e) and (f): After 10-bit zero clear-
ance (rounding).

3 Results and discussion

Fig. 2 shows the following results of the computer experiment: (False) for any
difference in the computational results and 1 (True) for no difference. For
x86 and its compatible CPUs (AMD Duron, AMD Opteron (32-bit mode),

c© IEICE 2006
DOI: 10.1587/elex.3.149
Received February 13, 2006
Accepted March 27, 2006
Published April 25, 2006

153

IEICE Electronics Express, Vol.3, No.8, 149–155

and Intel Xeon), all output values were identical with errors even when the
computational results were not cleared to zero (rounded) (see Fig. 2 (a) and
(b)). Therefore, this paper compares Renesas SH4 and Intel PXA255 with
the AMD Duron.

Fig. 2 (c) and (d) compare embedded CPUs Renesas SH4 and Intel
PXA255 with AMD Duron when zero clearance was not applied. In the
figures, 0 (False) for Renesas SH4 and Intel PXA255 is seen in many areas,
meaning that there was a difference in the computational results. In particu-
lar, PXA255 with no FPU output shows different computational results from
AMD Duron in a wide range (area) of input values x. This may be because
the OS and compiler are different in this environment.

Because the same operation ends in different results, the technique shown
in Fig. 1 was applied to clear the low-order bits of the output values to zero.
As more bits were cleared to zero, the area of difference in the computational
results became narrower. When 10 bits were cleared to zero in the end, there
were no more differences in the computational results. Fig. 2 (e) and (f) show
the computational results with the 10-bit zero clearance. Although not shown
in Fig. 2, the output values from x86 and its compatible CPUs (AMD Duron,
AMD Opteron in the 32-bit mode, and Intel Xeon) were identical, even when
zero clearance was used.

From the computer experiment results for the output of the neuron non-
linear approximate function in Eq. (1), it became clear that 10-bit zero clear-
ance would be needed to make the computational results identical among all
CPUs tested. This cannot be estimated from technical documents of each
CPU [2, 3, 7, 8].

4 Conclusion

On several CPUs popular for embedded use, a computer experiment was per-
formed for floating-point operation performance based on a general neuron
model having piecewise nonlinear output function. The floating point opera-
tions here were addition (subtraction) and multiplication. In the experiment,
the double data type of the C language was used. The length of the double
data type is 64 bits (sizeof() function returns 8 bytes) in all systems. The
x86 CPU and its compatible CPUs output no computational differences in
the computational results, regardless of whether zero clearance (rounding)
was applied to the low-order bits in the field of fractional bits of the output
value. In contrast, the embedded CPUs Renesas SH4 and Intel PXA255 out-
put greatly different computational results. In particular, Intel PXA255 with
no FPU output different results from other CPUs in a wide range (area) of
input values x.

These results clarified that embedded CPUs would output different com-
putational results for the x86 and its compatible CPUs used for compari-
son. It also became clear that the embedded CPUs (Renesas SH4 and Intel
PXA255) used this time could absorb the computational errors and output
identical results by clearing the low-order 10 bits to zero (rounding) in the

c© IEICE 2006
DOI: 10.1587/elex.3.149
Received February 13, 2006
Accepted March 27, 2006
Published April 25, 2006

154

IEICE Electronics Express, Vol.3, No.8, 149–155

field of fractional bits of the floating point numbers in the same output.
Because a similar tendency is also anticipated in practical applications us-

ing embedded CPUs, extreme care must be taken for an accurate calculation
when using an embedded CPU for floating point operations.

Acknowledgments

This work was supported by Dreamland Iwate Strategic Research Promotion
Project from Science and Technology Division of Iwate Prefecture.

c© IEICE 2006
DOI: 10.1587/elex.3.149
Received February 13, 2006
Accepted March 27, 2006
Published April 25, 2006

155

