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NUMERICAL ANALYSIS OF TIME-DEPENDENT BEHAVIOUR
FOR THE LEANING TOWER OF PISA
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ABSTRACT

This study investigates the signiˆcance of the creep characteristic in the deformation behaviour of the Pisa Tower
through the simulation of creep tests as well as plane strain analyses conducted under non-creep and creep conditions.
Creep eŠects account for up to 1.7 degrees of tilting and one meter of settlement. In addition, creep increases the mean
eŠective stresses and decreases the deviatoric stresses in the clay layers. An extensive model parameter sensitivity study
shows that the deformation behaviour of the Tower is not controlled by any speciˆc model parameter, but each model
parameter becomes more sensitive under high stress level. The total tilt of 5.5 degrees could not be achieved by simply
changing the values of model parameters. Other factors may have also contributed to the deformation of the tower,
which could not be considered by the current model.
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INTRODUCTION

The Leaning Tower of Pisa is one of the most fascinat-
ing problems that geotechnical engineers have ever faced.
During the last 800 years, the south side of the tower has
settled more than the north side, which resulted in about
2 meters of diŠerential settlement and 5.5 degrees of
southward tilting. The seventh cornice presently over-
hangs the ˆrst one by 4.1 meters. The factor of safety
against overturning failure is very close to one. If the tow-
er continues to tilt, it may collapse catastrophically in the
near future. In order to save the tower, various stabilisa-
tion measures have been proposed. The temporary appli-
cation of a 6 MN lead counterweight at the north rim of
the tower base has reversed the tilting by 50 seconds of
arc. Additional measures are being implemented to pro-
vide a more permanent solution. Meanwhile, numerous
studies have been made in an eŠort to understand the
deformation mechanisms of the soil beneath the founda-
tion (e.g., Mitchell et al., 1977; Lenonards, 1979;
Burland and Potts, 1995; Mitchell and Soga, 1995).
However, they all failed to quantify the soil creep eŠects
on the deformation behaviour of the tower, although
creep tests conducted by Bishop and Lovenbury (1969)
and Mitchell and Soga (1995) have concluded the impor-
tance of the creep characteristic in the Pisa clay.

Creep in soils has been studied for ˆve decades. Vari-
ous creep models have been developed based on diŠerent
mechanisms (Buisman, 1940; Barden, 1969), such as vis-

cous soil skeleton (Murayama and Shibata, 1958;
Christensen and Wu, 1964; Yoshikuni et al., 1994);
jumping of bonds (Eyring, 1936; Murayama and Shibata,
1961; Mitchell, 1964; Kuhn and Mitchell, 1993); structur-
al viscosity (Terzaghi, 1941; Barden, 1965; Walker,
1969); and micropore-macropore structure (De Jong,
1968; Holzer et al., 1973). Most of these creep models still
remain at research levels. The time-dependent constitu-
tive model that is used here belongs to the phenomeno-
logical model developed by Borja and Kavazanjian (1985)
and Hsieh et al. (1990). It has been successively used in
certain ˆeld cases (Borja et al., 1990; Brandes et al., 1994;
Morsy et al., 1995).

In this study, simulation of creep tests was ˆrst under-
taken. Then non-creep and creep analyses were carried
out in order to quantify the creep eŠects on the deforma-
tion behaviour of the tower throughout its 800-year histo-
ry. Lastly, a sensitivity study was carried out to study the
degree that the model parameter would aŠect the calcula-
tions.

THE LEANING TOWER OF PISA

The tower was constructed to complete a religious
monument complex, which includes the Cathedral and
the Baptistery. The Cathedral was erected one hundred
years earlier and the Baptistery twenty years before the
commencement of the tower. The tower is about 60
meters high with a foundation diameter of 20 meters, as
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Fig. 1. Geometrical characteristics of Pisa Tower (modiˆed after
Jamiolkowski et al., 1993)

Fig. 2. Probable initial soil proˆle at the site of Pisa Tower (modiˆed
after Calabresi et al., 1992)
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shown in Fig. 1. It was constructed in three stages. The
ˆrst stage started in 1173. By 1178, it reached the fourth
storey and then the work was stopped. The second stage
started in 1272 and ended in 1278. It brought the tower to
the seventh storey and then the work was stopped again.
The third construction stage started in 1360 and in 1370,
the bell tower was ˆnally ˆnished. It was clear that if the
construction continued without any interruption, the
foundation soil would have experienced an undrained
bearing capacity failure.

Figure 2 shows the ground proˆle underlying the tow-
er. There are three distinct formations: the 10 m thick
Formation A consists of rather variable sandy and clayey
silts. The material in the south side of the tower appears
to be more silty and clayey than in the north side. This is
believed to be a major factor in causing the tower to lean
in a southern direction; the 30 m thick Formation B con-
tains predominantly clay. It includes the upper clay or
Pancone clay (B1 to B3), the intermediate clay (B4 to B5),
the intermediate sand (B6), and the lower clay (B7 to B10);
and Formation C, encountered at a depth of 40 m, con-
tains slightly silty sand. It extends to a depth greater than
the deepest boring.

Drained triaxial creep tests conducted by Bishop and
Lovenbury (1969) and Mitchell and Soga (1995) revealed
large creep deformations in the upper clay layers, which
suggested that creep deformations may have contributed
to a signiˆcant portion of the present tilting for the tow-
er. On the other hand, a survey of literature shows that
creep characteristics have not been incorporated into any
numerical models to study the deformation mechanism
of the Pisa soil.

TIME-DEPENDENT CONSTITUTIVE MODEL

The double-yield surface Cam-clay plasticity (DYSCP)
model developed by Hsieh et al. (1990) has been adopted
in this study due to its simplicity and successful applica-
tion in ˆeld cases (Borja et al., 1990; Brandes et al., 1994;
Morsy et al., 1995). Thirteen material parameters are re-
quired to fully deˆne the model. Seven parameters are
necessary for complete material deˆnition in the absence
of creep and six more are required for creep characteris-
tics. These parameters are all readily obtainable from
standard laboratory tests or correlation with index prop-
erties of the soil. A detailed derivation of this model can
be found in Hsieh et al. (1990), Morsy (1994), and Bai
(1998). Only the main features and the relevant equations
are presented.

The model employs the concept of double-yield criteria
that is deˆned by the ellipsoid modiˆed Cam-clay model
(MCCM) and the Von-Mises cylinder inscribed in the el-
lipsoid, as shown in Fig. 3. The yield functions F for the
MCCM and G for the von-Mises cylinder are given by
Eqs. (1) and (2).

F＝F(s?ij, p?c)＝
q 2

M 2＋p?(p?－p?c)＝0 (1)

G＝G(s?ij, qc)＝q－qc＝0 (2)

where s?ij are the eŠective stress components; M is the
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Fig. 3. Projection of double yield surface on p-q plane

Fig. 4. Projection of double yield surface on p-g plane

Fig. 5. Evaluation of volumetric age (modiˆed after Borja and
Kavazanjian, 1985)
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slope of the critical state line in the p?-q plane; p? is the
mean eŠective stress

Øp?＝s?1＋s?2＋s?3
3 »;

q is the deviatoric stress

Øq＝ 1
2

(s?1－s?2)2＋(s?2－s?3)2＋(s?3－s?1)2»;
p?c is the isotropic preconsolidation pressure which con-
trols the size of the F surface; and qc is the shear yield
stress which controls the size of the G surface. The trace
of the MCCM surface on the q-g plane, where g denotes
the shear strain, is assumed to be a hyperbola, as shown
in Fig. 4.

The total strain-rate tensor can be decomposed into
four components (Borja and Kavazanjian, 1985; Hsieh et
al., 1990; Morsy, 1994)

·e＝ ·ee＋ ·ep
F＋ ·ep

G＋ ·et (3)

where superscripts e and p denote the immediate elastic
and plastic parts, respectively; and superscript t denotes
the delayed or creep part. ·ee is evaluated by applying the
generalised Hooke's law. ·ep

F and ·ep
G are evaluated accord-

ing to the yielding surfaces F and G, which may move
separately, depending on the nature of the stress path.
The total creep strain-rate tensor ·et can be further divided
into distinct, but interdependent volumetric and deviator-
ic parts (Kavazanjian and Mitchell, 1980)

·et＝ ·et
v＋ ·et

d (4)

where subscripts v and d denote volumetric and deviator-
ic creep components, respectively. ·et can be evaluated
through the Taylor's (1948) secondary creep law for volu-
metric creep and the Singh and Mitchell's (1968) law for
deviatoric creep and by employing an associated ‰ow rule
for both the equivalent volumetric and deviatoric yield
surfaces F and G. The resulting creep strain is neither per-
pendicular to F nor to G and therefore, the ‰ow rule for
the creep strains is always non-associative. The creep
strain is given by:

·et＝
c

3(1＋e)tv
I＋

3
2

Ae šaD̃« (td)i

td $
m

ân (5)

where I denotes the second-order identity tensor;

ân＝
s?

¿s?¿
;

and ¿ ¿ denotes the Euclidean norm; c denotes the sec-
ondary compression coe‹cient, in natural logarithm
scale; e denotes the void ratio; tv and td denote the volu-
metric age relative to (tv)i and deviatoric age relative to
(td)i as shown in Figs. 5 and 4, respectively; (tv)i and (td)i

denote the initial volumetric and deviatoric times, usually
set to unity; A, ša, and m denote the Singh and Mitchell
creep parameters, as shown in Fig. 6; and D̃ denotes the
deviatoric stress level,

D̃＝
(s1－s3)

(s1－s3)ult
;

The volumetric age tv, a measure of void ratio reduc-
tion due to creep; determines the growth rate of p?c. The
deviatoric age td, a measure of the shear strain change due
to overconsolidation, determines the growth rate of qc. tv

and td can be represented in the following equations (Bai,
1998):

tv＝(tv)i exp Øe2－e1

c » (6)
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Fig. 6. Singh and Mitchell creep parameters: (a) parameter A and ša;
(b) parameter m Fig. 7. Numerical simulation of triaxial test on Pisa clay

Table 1. Model parameters

Parameter Symbol 19 m sample 10 m sample 6 m sample

Virgin compression index Cc 0.515 (0.615) 0.615 0.155 (0.205)
Recompression index Cr 0.081 0.081 0.021
Secondary compression coe‹cient Ca 0.0154 0.0154 0.0051
Hyperbolic parameters a, b, Rf 0.0057, 1.348, 0.80 0.0063, 1.548, 0.89 0.0046, 1.22, 0.89
Singh and Mitchell creep parameters A, ša, m 2.15*10－3z/min, 8.82, 0.95(0.75) 1.62*10－2 z/min, 6.33, 0.83 2.19*10－2 z/min, 5.86, 0.95
Internal friction angle q 26.54 26.54 33.67
Void ratio at pc＝1 kPa ea 2.73 2.73 1.29
Instant volumetric and deviatoric time (tv)i, (td)i 1.0 day, 1.0 day 1.0 min, 1.0 min 1.0 min, 1.0 min
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td＝« (g1－g2)(1－m)
A exp ( šaD̃)(td)m

i
＋(td)1－m

i $
1/1－m

for m»1 (7a)

td＝(td)i exp Ø (g1－g2)
A exp ( šaD̃)(td)i

» for m＝1 (7b)

deˆnitions of e1, e2, g1, and g2 are shown in Figs. 4 and 5.
Equation (7) is diŠerent from the previous studies (Borja
and Kavazanjian, 1985; Hsieh et al., 1990). Detailed deri-
vation can be found in APPENDIX A.

SIMULATION OF THE CREEP TESTS

In order to calibrate the constitutive model, the triaxial
drained creep tests of Pisa clay conducted by Bishop and
Lovenbury (1969) and Mitchell and Soga (1995) were
simulated using the ˆnite element program named PISA}

(2007). PISA} is a displacement based ˆnite element pro-
gram capable of performing two and three dimensional

time dependent analysis of soils. There is a variety of con-
stitutive model in the program which includes the classi-
cal elasticity and plasticity models, such as Mohr
Coulomb and Drucker and Prager models using associ-
ated and non-associated ‰ow rules, the critical state
models such as Cam Clay and Modiˆed Cam Clay
models, the time dependent model based on Singh-Mitch-
ell creep relationships etc. The program uses an implicit
iterative scheme to obtain a solution for non-linear prob-
lems. In modelling the creep tests, four eight-node ele-
ments were used, as shown in Fig. 7.

The values of the thirteen model parameters are shown
in Table 1. Parameters Cc, Cr, q, and ea were determined
based on Calabresi's (1992) and Tamagnini's (1993)
study; Parameters Cc and Cr are determined from the nor-
mal consolidation line and rebound line of the compres-
sion curve. Friction angle q is determined from the Mohr-
Coulomb failure envelop. The Singh and Mitchell
parameters A, ša, and m can be determined by plotting log
of the strain rates versus log time. This is because taking
the log on both sides of Eq. (5) gives the equation of a
straight line, provided that the time dependent response
of the material follows the Singh and Mitchell creep
relationship. The slope of the line is equal to m and the
intercept is related to A. In order to determine a, it is
necessary to conduct tests at diŠerent stress levels. The
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Table 2. Atterberg limits of drained creep test samples

Items Bishop's
test*

Tamagnini's or
Mitchell's test**

Mitchell's test Calabresi's test

Test-1 (6 m) Test-2 (10 m) Test-1 (6 m) Test-2 (10 m)

Water content (z) 49.5 62 28.7–30.6 59.5–66.1 25–33 40–60
Liquid limit (z) 76 96 39 92 36 74.5
Plastic limit (z) 29 41 12.9 48.4 14 44

* from Table 1, Bishop and Lovenbury (1969);
** from Table 5–1 and 5–2, Mitchell and Soga (1995).

Fig. 8. Axial strain versus time relationship

Fig. 9. Volumetric strain versus time relationship
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values of these parameters were obtained from Mitchell
and Soga's (1995) undrained triaxial tests.

For the parameter Ca, volumetric creep tests or one
dimensional creep tests are required. The value of Ca can
be determined from secondary compression when con-
solidation tests are carried out beyond primary consolida-
tion. The value of Ca used in this study was determined
from Mitchell and Soga's (1995) drained creep tests. The
hyperbolic parameters a and b were calculated from the
following equations:

a＝
p?c･Rf

3G
(8)

b＝Rf･
2(1－Cr

Cc
)

M
(9)

where p?c is the preconsolidation pressure; G is the shear
modulus; M is the Cam-clay parameter,

M＝
6 sin q?

3－sin q?
;

and Rf is the failure ratio,

Rf＝
(s1－s3)failure

(s1－s3)ultimate
,

it is in the range of 0.7 to 1.0.

Drained Creep Tests by Bishop and Lovenbury
Bishop and Lovenbury (1969) studied the creep charac-

teristic of the 19 m deep Pisa clay, which belongs to the
highly structured layer B3 as shown in Fig. 2. Six drained
creep tests were conducted under constant loads of 50,
75, and 85z of the drained strength of the clay; two tests
for each stress level. The applied conˆning pressure was
152 kPa. The samples were approximately 7.6 cm in di-
ameter and 15.2 cm in height. Primary consolidation end-
ed in less than two days after the ˆnal load was applied.
Test results showed that due to the structural breakdown
of the Pisa clay carbonates, all samples exhibited sudden
increases in strains for a period of time at some stages.
After the structural breakdown, the axial strain rates
were in the range of 1 to 1.5z per logarithmic time cycle.

Simulations of Bishop and Lovenbury's drained creep
tests were conducted under three constant loads, as men-
tioned above. The time period was speciˆed in terms of
days. The model parameters are listed in Table 1. The
Atterberg limits of these samples are indicated in Table 2.
Due to the diŠerence in the Atterberg limits, the value of

Cc was decreased from 0.615 to 0.515 and the value of m
increased from 0.75 to 0.95 to best match the laboratory
data.

The results, together with the measured data, are plot-
ted in Figs. 8 and 9. Figure 8 shows an excellent agree-
ment between the numerical and laboratory results for
the relationship of axial strain versus time under both
50z and 75z stress levels. Under an 85z stress level, the
results under-predict the axial strain, but show the same
trend. For the volumetric strain versus time relationship
(see Fig. 9), numerical results could not follow the
laboratory data precisely. There are two main reasons for
the discrepancies. The volumetric strains from laboratory
data are unreliable because of leakage problems, as it
might be expected from the long duration of the tests. On
the other hand, the highly structured nature of the soil
could not be considered in the model. However, overall,
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Fig. 10. Axial strain versus time curve for Test-1 6 m sample, layer A1
(Maximum stress case)

Fig. 11. Axial strain versus time curve for Test-2 10 m sample, layer
B1 (Maximum stress case)
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the numerical results still match the trend of the labora-
tory data reasonably well.

Drained Creep Tests by Mitchell and Soga
Mitchell and Soga (1995) conducted a total of nine

triaxial drained creep tests for Pisa clay. The samples
named Test-1 to Test-9, were taken at depths of 6 m,
10 m, 14 m, and 19 m corresponding to layers A1, B1, B2,
and B3, respectively. The cylindrical specimens were ap-
proximately 3.4 cm in diameter and 8.9 cm in height.
Drainage was allowed at the top and bottom of the speci-
men (one-dimensional ‰ow). Based on the laboratory test
conducted by Rampello and Callisto (1998), the
permeability of the top 7 m of soil beneath the Pisa tower
is approximately 10－8 m/s. Between 7 and 37 m depth,
the clay layer has a permeability of approximately 2–3×
10－10 m/s. Below 37 m lies the sand layer. Since the clay
layer has a permeability that is much lower than the soil
above and below, the drainage condition can be treated as
fully drained both at the top and bottom of the clay layer.
Loads were applied in steps to simulate the construction
sequence of the tower. For each step, a constant load was
applied instantly that lasted for 7 days. The soil became
fully drained after one day of loading. Throughout the
test, a back pressure of 98 kPa was applied to maintain
saturation. Some water leakage was observed during the

test. Therefore, the volume change data was unreliable.
The sample Test-4 obtained from 19 m depth was al-

ready studied through Bishop and Lovenbury's (1969)
creep tests. Creep deformation was not signiˆcant for the
sample Test-3 at 14 m depth, due to its relatively low plas-
ticity. Consequently, only simulations of the Test-1 and
Test-2, obtained from 6 m and 10 m depths respectively,
were conducted. The model parameters are listed in Table
1 and the Atterberg limits are indicated in Table 2. Due to
the diŠerence in the Atterberg limits, the compression in-
dex Cc of the 6 m sample was modiˆed from 0.205 to
0.155 to match the laboratory data.

The calculated axial strain versus time relationship is
plotted in Figs. 10 and 11. The time for each stage is set in
minutes. The numerical results match the laboratory data
very well, especially at the second and third stages. There
are some discrepancies in the ˆrst and the last stages, but
the discrepancies are fairly small compared with the total
values. The model gives a satisfactory prediction of the
stress-strain-time behaviour of the Pisa clay.

PLANE STRAIN ANALYSES

The observed piezometer results show that the water
table in the Pisa soil is between 1 m to 2 m below the
ground surface and it is quite stable. Therefore, in this
study the water table was assumed to be at the ground
surface and in a hydrostatic equilibrium condition.

Finite Element Model
Figure 12 shows a plane strain ˆnite element model,

consisting of 425 eight-node quadrilateral isoparametric
elements. The mesh represents a vertical plane through
the centre of the tower along the N-S direction. It extends
horizontally to 60 m from either side of the tower axis
and vertically to 40 m depth (up to the top of Formation
C). Vertical rollers boundaries were used for the left and
right sides of the ˆnite element mesh to model far ˆeld
conditions. Horizontal roller boundary was used for the
bottom boundary. The bottom boundary is believed to be
su‹ciently far enough from the base of the footing so
that it has little eŠect on the settlement of the tower. This
is conˆrmed by the results of the analysis that changes in
stresses are small at the bottom boundary in comparison
to that under the footing.

In plane strain analysis, the actual three-dimensional
rigid annular plate with 19.6 m outer and 4.5 m inner di-
ameters needs to be transformed into two rigid plates of
inˆnite length. Those two rigid plates must be connected
to prevent them from acting separately (see Fig. 13). The
actual applied loads must be converted to loads of unit
length through the following equation

Load (plane strain)South, North

＝
1

CF «Weight
2

±
Moment.Ic

L $ (10)

where L is the distance between the centre of the two strip
footings. CF and Ic are correction factors. Mitchell and
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Fig. 12. Finite element mesh for two-dimensional analysis

Fig. 13. Conversion of three dimensional condition to plane strain
condition (modiˆed after Mitchell and Soga, 1995)

Table 3. Weight, overturning moment and rigid tilt versus time

Year Weight (MN) Moment (MNm) Tilt (degree)

1178 94.80 — —
1272 137.28 5.51 0.103
1360 144.53 97.7 1.611
1990 144.53 332.56 5.469

Fig. 14. Pisa Tower's weight and overturning moment versus time

Table 4. Loads for elastic and elasto-plastic analyses (CF＝24, Ic＝

1.27)

Year
Dp (kPa) Dp/CF (kPa)

North South North South

1178 41605.5 41605.5 1733.6 1733.6
1272 20658.8 21821.2 860.8 909.2
1360 －6100.8 13351.2 －254.2 556.3
1990 －24775.2 24775.2 －1032.3 1032.3

Note: Dp is the change in applied stress on the foundation.
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Soga (1995) found that for the Pisa soil, a better agree-
ment for the stress distribution at shallow depths can be
obtained by taking CF of 24. For a rectangular founda-
tion with a width of 19.6 m and the same area as the
foundation of the tower, Burland and Potts (1995) sug-
gested that the value of Ic is 1.27.

Table 3 and Fig. 14 show the tower's weight and over-
turning moment. The actual loads applied to the founda-
tion were obtained by subtracting an amount of 11,589
kN from the weights of the tower to account for the
weight of soil excavated for the tower foundation. Each
applied load was converted into two loads using Eq. (10).
The two loads were applied at 6.02 m south and north
from the footing centre respectively. The obtained load-
ing conditions relative to diŠerent construction stages are

listed in Table 4. The applied load is converted into verti-
cal stress, Dp, as shown in Table 4.

The soil parameters used in the elastic analysis are de-
tailed in Table 5. Young's modulus for the rigid footing
was chosen at 1010 kPa, as suggested by Mitchell and
Soga (1995). The input data used in elasto-plastic analysis
are shown in Tables 6 and 7. They are mainly based on
Tamagnini's (1993) recommendation and the mean
values from the previous studies (Calabresi, et al., 1992;
Burland and Potts, 1995; Mitchell and Soga, 1995). Table
8 lists the values of creep parameters. In both elasto-plas-
tic and creep analyses, elastic models were used for the
sand and silty sand layers. Rampello and Callisto (1998)
obtained the Cc and Ca values for the sandy silt layer
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Table 5. Soil parameters for elastic analysis

Layer elevation (m) G*
(MPa)

E**
(MPa) n

Made ground MG ＋3 to ＋0.7 13.44 22.0 0.30
Clayey silts A1 and A?1 variable 13.44 11.0 0.30
Upper Pancone clay B1-B3 －7.4 to －17.8 10.27 23.0 0.30
Intermediate clays B4-B5 －17.8 to －22.0 15.18 34.0 0.30
Lower clays B7-B10 －24.4 to －37.0 22.32 50.0 0.30

Layer elevation (m) E (MPa) n

Upper grey sands A!1, A2 variable 13.0 0.30
Intermediate sands B6 －22.0 to －24.4 18.0 0.30

*—average value from Calabresi et al. (1992) TAB 5.XIV;
**—E＝2(1＋n)*G.

Table 6. Cam-clay parameters for clay layers

Material
No. Layer g (kN/m2) Cc Cr F? (degree) ea a b Rf Ca

1 Made ground MG 9.09 0.205 0.021 33.67 1.290 0.0046 1.220 0.89 0.0051
2 Clayey silts A1 and A?1 9.09 0.205 0.021 33.67 1.290 0.0046 1.220 0.89 0.0051
5 Upper Pancone clay B1 7.32 0.615 0.081 26.54 2.730 0.0063 1.548 0.89 0.0154
6 Upper Pancone clay B2 7.32 0.615 0.081 26.54 2.730 0.0038 1.548 0.89 0.0154
7 Upper Pancone clay B3 7.32 0.615 0.081 26.54 2.730 0.0057 1.548 0.89 0.0154
8 Intermediate clays B4 10.21 0.297 0.062 28.62 1.524 0.0095 1.351 0.89 0.0059
9 Intermediate clays B5 10.21 0.297 0.062 28.62 1.524 0.0055 1.351 0.89 0.0059

11 Lower clay B7 9.21 0.421 0.053 25.84 2.053 0.0051 1.538 0.89 0.0098
12 Lower clays B8 9.21 0.421 0.053 25.84 2.053 0.0039 1.650 0.89 0.0098
13 Lower clays B9 9.21 0.421 0.053 25.84 2.053 0.0039 1.650 0.89 0.0098
14 Lower clays B10 9.21 0.421 0.053 25.84 2.053 0.0039 1.650 0.89 0.0098

Note: Material No. 3, 4, and 10 are sand layers, they are tabulated in the next table.

Table 7. Soil parameters for sand layers

Material
No. Layer g

(kN/m2)
E*

(MPa) n* F?

3 Silty sand A!1 8.39 13.0 0.12 34
4 Upper grey sand A2 8.39 13.0 0.12 34

10 Intermediate sand B6 9.29 18.0 0.12 34.3
15 Rigid footing 9.09 1*107 0.12 —

Note: All the rest of materials are clay and clayey silt, they are tabulated
in the previous table.
*—from Calabresi et al. (1992) TAB5.XV.

Table 8. Singh and Mitchell parameters (from Mitchell and Soga,
1995)

Sample Layer ša m A?
(z/min)

A
(z/year)

4 m Clayey silt A1 5.81 0.89 2.12*10－2 9.03*10－2

6 m Clayey silt A?1 5.86 0.95 2.19*10－2 4.23*10－2

10 m Upper clay B1 6.33 0.83 1.62*10－2 15.21*10－2

14 m Upper clay B2 6.39 0.86 8.35*10－3 5.279*10－2

19 m Upper clay B3 8.82 0.75 2.15*10－3 5.789*10－2

Note: A＝A?* (365*24*60)(1－m). A? has unit of z/min, to convert A? to
z/year, multiply by (365*24*60). The unit of time is in minutes, there-
fore divide by (365*24*60)m to convert td to unit of year.
Due to the lack of creep test data, and the fact that layer B3 is highly
structured soil, creep parameters from layer B2 were assumed to
represent those of B4 to B10.
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based on triaxial tests of high quality samples. Cc and Ca

were found to be in the range of 0.3 and 0.003 for the
sandy silt layer and 0.9 and 0.02 for the clay layer. It is
seen that the clay layer is much more compressible than
the sandy silt layer and shows considerably more time de-
pendent deformation. Therefore, elastic model can be
used for the sandy silt layer.

The loading sequence consists of a switch on gravity
process to generate the pre-existing stress ˆeld before the
construction of the tower and subsequent stage loading
due to the construction of the tower. In order to obtain a
more accurate initial stress state, the switch on gravity
process was applied in 10 increments with 10z of the
gravity load in each increment. Then, displacements and
strains were both set to zero to give the initial conˆgura-
tion of the soil foundation the same as the ˆeld. The tow-
er loads corresponding to diŠerent construction stages
were applied to the initial in-situ stress conditions as four
distinct individual loading cases corresponding to the
years 1173, 1272, 1360, and 1990, respectively. For each
loading step, a time value based on the real history was
added to let the soil creep. The time period for each stage
was speciˆed in terms of years.

Stress Distributions in the Pisa Soil
Results from the elasto-plastic analysis show that the

shear stresses in the upper and intermediate clay layers

are at a level of 50z to 60z of their shear strength.
Therefore, the Singh and Mitchell creep equation can be
used for these layers. However, the stress level in Forma-
tion A is very high. Part of the area is already in a state of
failure. These layers are believed to have a major in-
‰uence on the tilting of the tower. The Singh and Mitchell
equation may under-predict the amount of creep strain in
these high stress layers.

Stress contours of p? and q corresponding to the years
1178 and 1990 are plotted in Figs. 15 to 18. Figures 15
and 16 represent the results from no-creep analysis and
Figs. 17 and 18 represents the results from creep analysis.
By comparing these results, it can be seen that due to
creep, mean eŠective stresses concentrate more in the clay
layers. They are increased by 20z in the upper clay lay-
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Fig. 15. Mean stress contours (elasto-plastic analysis): (a) year 1173
and (b) year 1990

Fig. 16. Deviatoric stress contours (elasto-plastic analysis): (a) year
1173 and (b) year 1990

Fig. 17. Mean stress contours (visco-plastic analysis): (a) year 1173
and (b) year 1990

Fig. 18. Deviatoric stress contours (visco-plastic analysis): (a) year
1173 and (b) year 1990
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ers. Thus, substantial settlement can be expected. Creep
also has a signiˆcant eŠect on the deviatoric stresses. It
decreases the deviatoric stresses in the clay layers, but in-
creases in the sand layers, which may cause yielding in the
sandy soils.

The stress paths of two points, at 6.5 m and 12 m
depths, located at 10 m south from the centre of the tow-
er are plotted in Fig. 19. Stress ratios from the elastic
analysis are greater than the yielding ratio, which means
that some soils are no longer in an elastic state. Figure 19
clearly indicates that plasticity and creep cause the in-

crease of mean eŠective stresses and the decrease of dev-
iatoric stresses. Thus, the stress states in the clay layers
move away from the critical state. This phenomenon has
also been observed by Morsy (1994).

Displacements of the Footing
The calculated ˆnal vertical displacements of the foot-

ing from creep analysis together with non-creep case are
plotted in Fig. 20. A ˆnal settlement of 3.3 m and a tilting
angle of 3.4 degrees are obtained after taking the eŠect of
creep into consideration. Creep has caused one meter of
additional settlement and 1.7 degrees of additional tilt-
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Fig. 19(a). Stress path at 6.5 m depth at a location 10 m south from
the center of the tower

Fig. 19(b). Stress path at 12 m depth at a location 10 m south from the
center of the tower

Fig. 20(a). Settlement of the footing (CF＝24, Ic＝1.27, visco-plastic
analyses)

Fig. 20(b). Comparison of the ˆnal settlement of the footing (CF＝24,
Ic＝1.27)

Fig. 21(a). Tilting history of the tower

Fig. 21(b). Settlement versus time relationship
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ing. However, the calculated settlement is slightly larger
than the estimated value of 3.0 m and the angle of tilting
is smaller than the observed 5.5 degrees.

The calculated tilting is plotted against time in Fig.
21(a) together with the observed data given by
Jamiolkowski et al. (1993). The calculated settlement at
the footing centre is plotted in Fig. 21(b) together with
the total estimated settlement since no settlement history
is available for comparison. Figure 21 reveals that the
tilting was mainly accumulated after the construction
stage and the settlement was mainly accumulated during
the construction stages, especially in the ˆrst stage. The
calculated tilting can match history during the construc-
tion stage, but underpredict the tilting angle after the year
1550. The northward leaning cannot be simulated,
although it is reported to have occurred during the ˆrst
construction stage.

The deformation process of the tower can be generally
divided into two stages: immediate deformation and
creep. The immediate deformation of sandy layers was
signiˆcant compared with its subsequent creep, which
caused the northward leaning. The model could not simu-
late this deformation characteristic well. During and im-
mediately after completion of construction, the soil un-
derneath the tower was mainly creeping. Thus, the creep
model can predict the history of tilting reasonably well.
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Table 9. Possible range of soil parameters
(a) Layer A1

Parameter
Cc q (degree) ea Rf Ca A (/year) m ša

value D value D value D value D value D value D value D value D

min 0.161 －21z 30.92 －8z 0.71 －45z 0.7 －21z 0.0041 －20z 0.000423 －53z 0.77 －13z 5.07 12.7z
mean 0.205 * 0.89 * 0.0051 * 0.000903 * 0.89 * 5.81 *
max. 0.299 ＋46z 33.67 * 1.290 * 1.0 ＋12z 0.0137 ＋169z 0.96 ＋8z 6.29 ＋8z

(b) Layer B1

Parameter
Cc q (degree) ea Rf Ca A (/year) m ša

value D value D value D value D value D value D value D value D

min 0.507 －18z 24.44 －8z 2.67 －2z 0.7 －21z 0.0075 －51z 0.78 －6z 5.50 －13z
mean 0.615 * 0.89 * 0.0154 * 0.001521 * 0.83 * 6.33 *
max. 1.0 ＋63z 26.54 * 2.73 * 1.0 ＋12z 0.0615 ＋299z 0.86 ＋4z 9.00 ＋42z

Table 10. Soil parameters used in FEA analyses

Layer A1 B1

Parameters Cc q (degree) Rf ea Ca A (/year) m ša Cc q (degree) Rf ea Ca A (/year) m ša

used 0.205 33.67 0.89 1.29 0.0051 0.000903 0.89 5.81 0.615 26.54 0.89 2.730 0.0154 0.001521 0.83 6.33
10z change 0.226 30.30 0.80 1.419 0.0056 0.000993 0.80 6.39 0.678 23.89 0.80 3.003 0.0169 0.00167 0.747 6.96
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As time progresses, the creep strain rate decreases and
ˆnally reduces to zero since the tower is under drained
conditions, in which creep rupture is not possible for nor-
mally consolidated soil (Mitchell, 1992). On the other
hand, other mechanisms such as leaning instability might
also exist, which may contribute to considerable amount
of tilting. Since the leaning instability mechanism could
occur only after the tower reached its full height, it might
be the reason which accounts for the abrupt increase in
the tilting angle immediately after the construction, as
shown in Fig. 21(a). Since the tower has been in a very
critical condition close to failure, it is very sensitive to
very small disturbances, such as dewatering, foundation
excavation and solar heating and daily temperature ‰uc-
tuation. Throughout the tower's history, there might
have been physical disturbances which led to an increase
in tiling, approximately around AD 1300 and between
AD 1400–1500, which may account for the discrepancies
between the calculated and observed tiling of the tower.

SENSITIVITY ANALYSES OF MODEL
PARAMETERS

Since the above analyses were performed mainly based
on the mean values of the model parameters, it is of in-
terest to explore the degree that these parameters aŠect
the calculated deformation. On the other hand, as men-
tioned by Brandes et al. (1996), it should be kept in mind
that the model parameters do not act independently. The
sensitivity of these parameters could be less signiˆcant
than the results shown in this study if the dependence of
these parameters on each other were considered.

Selection of Model Parameters
The sensitivity analysis was focused on the parameters

from the clayey silt layer A1 and the upper clay layer B1

(see Fig. 2) due to their scatter nature and the signiˆcance
on the deformation behaviour of the tower. Among the
seven time-independent parameters, only four parame-
ters, Cc, q?, Rf, and ea, were selected for the sensitivity
study. The in‰uence of the recompression index Cr is not
expected to be signiˆcant, since Pisa soil is mainly sub-
jected to loading. Parameter a is the reciprocal of the ini-
tial tangent modulus, it is not sensitive in the stress strain
relationship. Hyperbolic parameter b depends on Cr, Cc,
M, and Rf.

Volumetric and deviatoric creep components may be
both important in the Pisa soil, since the tower load could
increase both mean eŠective stresses and deviatoric stress-
es by one order of magnitude from their initial values, as
shown in Fig. 19. The sensitivity of the secondary com-
pression coe‹cient Ca and the Singh and Mitchell creep
parameters A, m and ša were investigated. Creep tests on
Pisa clay (Bishop and Lovenbury, 1969; Mitchell and
Soga, 1995) showed that creep eŠects in layers A1 and B1

were signiˆcant in comparison with the rest of the layers.
Therefore, sensitivity analyses of the time-dependent
parameters Ca, A, m, and ša were also limited to the layers
A1 and B1.

The possible practical ranges of model parameters that
are necessary for sensitivity study are shown in Table 9.
The maximum and minimum values were determined
based on most probable values of the parameters for the
soil type from practical experience. The range of values
vary from less than 10z to over 50z, depending on the
parameter. Creep analysis conducted in the previous sec-
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Table 11. Parameter sensitivity analyses results

Layer A1 B1

Items
Settlement (m) Tilting angle (degree) Settlement (m) Tilting angle (degree)

FEA result change (z) FEA result change (z) FEA result change (z) FEA result change (z)

Reference 3.34 — 3.35 — 3.34 — 3.35 —
Cc (＋10z) 3.43 ＋2.7 3.48 ＋3.8 3.40 ＋1.9 3.37 ＋0.6
q? (－10z) 3.37 ＋0.9 3.57 ＋6.5 3.36 ＋0.7 3.39 ＋1.2
Rf (－10z) 3.36 ＋0.8 3.48 ＋4.0 3.35 ＋0.3 3.41 ＋1.7
ea (＋10z) 3.31 －0.8 3.29 －1.9 3.29 －1.6 3.31 －1.4
Ca (＋10z) 3.34 0 3.38 ＋0.8 3.34 ＋0.1 3.37 ＋0.5
A (＋10z) 3.35 ＋0.3 3.40 ＋1.3 3.34 ＋0.1 3.36 ＋0.2
m (－10z) 3.41 ＋2.2 3.61 ＋7.6 3.37 ＋0.9 3.45 ＋3.0
ša (＋10z) 3.40 ＋1.8 3.56 ＋6.1 3.35 ＋0.5 3.33 －0.8

Fig. 22(a). Sensitivity of model parameters in terms of ˆnal inclina-
tion

Fig. 22(b). Sensitivity of model parameters in terms of ˆnal settlement
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tion was chosen as a reference case in the discussion. The
sensitivity analyses were done by taking a 10z change of
each reference value as shown in Table 10. Ten percent
change from each reference value is considered to be ap-
propriate and it should provide an insight on the tilting of
the tower. Overly large variations can produce unrealistic
eŠects while excessively small changes make it di‹cult to
examine its impact. The results of the parametric varia-
tion are shown in Table 11 and Fig. 22.

Discussions
Table 11 indicates that model parameters of layer A1

are more sensitive than those of layer B1 in the deforma-
tion behaviour of the Pisa soil, although creep in layer B1

is more signiˆcant in comparison with the rest of the lay-
ers. This suggests that model parameters become more
sensitive under high stress levels than low stress levels.
Increasing the accuracy of the parameters of layer A1

could improve the accuracy of the FEA results.
Figure 22 summarises the results in terms of the ˆnal

inclination and settlement under changes of material
parameters in layer A1. The diŠerence in the ˆnal settle-
ment is within 2.7z and tilting angle 7.6z of their refer-
ence values under a 10z change of model parameters.
The diŠerence could be even lower if the dependence of
these parameters on each other is considered. This sug-
gests that the deformation behaviour of the Pisa founda-
tion may not be controlled by any speciˆc parameter. It is
the combination of all the time-independent as well as
time-dependent parameters in the model.

Among the model parameters, the angle of internal
friction q? and the Singh and Mitchell parameters m and
ša are relatively sensitive in terms of the tilting angle. A
10z decrease of q? value causes a 6.5z increase in the
tilting angle. A 10z decrease of m results in a 7.6z in-
crease in tilting, while a 10z increase of ša results in a 6.1
z increase in tilting.

SUMMARY AND CONCLUSION

A time-dependent constitutive model has been adopted
to investigate the deformation characteristics of the soil
underneath the Pisa Tower. In the model, strain tensors
are decomposed into immediate and delayed or creep
components, which are further decomposed into volu-
metric and deviatoric components. The double-yield
criteria deˆned by the ellipsoid MCCM and the Von-
Mises cylinder inscribed in the ellipsoid is incorporated to
evaluate both the time-independent and time-dependent
strain components.

The numerical analyses conducted under non-creep
and creep conditions have concluded that creep is one of
the major important factors that cause the tilting of the
tower. Because of the creep, mean eŠective stresses in-
crease by 20z in upper clay layers and the stress states
move away from the critical state. Deviatoric stresses are
more concentrated in the sand layers and directly below
the footing. Creep causes an additional one-meter settle-
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ment and 1.7 degrees additional tilting. The calculated
settlement is larger than the estimated value and the cal-
culated tilting angle is smaller than the measured one.

Comparing the calculated tilting history with the esti-
mated one, one can see that creep may be an important
factor during and right after the construction stages.
Apart from that, other factors may have contributed to
the tilting of the tower, such as leaning instability, solar
heating, and other perturbations, but these cannot be
quantiˆed in the current model.
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APPENDIX A

This appendix presents the derivation of the intrinsic
time variables.
a) Volumetric age

Taylor's secondary creep law

·et
v＝

c
(1＋e)tv

(A1)

From the deˆnition of volumetric strain

·ev＝
·ep

(1＋e)
(A2)
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Comparing (A1) and (A2) yields

·ep＝－
c
t

(A3)

Here the negative sign is added because as time progress-
es, the void ratio tends to decrease.

Integration of (A3) yields

ep＝－c ln t＋c (A4)

where c is the integration constant.
Let void ratio e2 correspond to the reference volumetric

time (tv)i, associated with the virgin consolidation curve
(see Fig. 5). If t＝(tv)i and ep＝e2, then

c＝e2＋c ln (tv)i (A5)

Substituting this back into (A4) yields

ep＝－c ln
t

(tv)i
＋e2 (A6)

Let the void ratio e1 correspond to the current state with
time tv. If t＝tv and ep＝e1, then

tv＝(tv)i exp Ø (e2－e1)
c » (A7)

b) Deviatoric age
Singh and Mitchell's (1968) creep equation

·et
d＝Ae šaD̃« (td)i

td $
m

(A8)

Integration of (A8) yields two diŠerent mathematical
forms

ea＝A exp ( šaD̃)(td)m
i Ø 1

1－m»t 1－m＋c1 for m»1 (A9a)

ea＝A exp ( šaD̃)(td)i ln t＋c2 for m＝1 (A9b)

In three-dimensional case, the above equations become

g＝A exp ( šaD̃)(td)m
i Ø 1

1－m»t 1－m＋c1 for m»1 (A10a)

g＝A exp ( šaD̃)(td)i ln t＋c2 for m＝1 (A10b)

where g is the shear strain. c1 and c2 are integration con-
stants.

Let shear strain g1 correspond to the current state with
time td. Let strain g2 correspond to an instant time (td)i

with a hyperbolic relationship on the q-g plane (see Fig.
4)

g2＝
qa

p?cRf－qb
(A11)

For the m»1 case, if t＝(td)i and g＝g2, integration con-
stant c1 can be obtained from (A10a) as follows

c1＝g2－
A

1－m
exp ( šaD̃)(td)i (A12)

Substituting c1 back into (A10a), and setting t＝td and g＝
g1, the deviatoric age td can be obtained as

td＝« (g1－g2)(1－m)
A exp ( šaD̃)(td)m

i
＋(td)1－m

i $
1/1－m

for m»1 (A13a)

For the m＝1 case, if t＝(td)i and g＝g2, integration con-
stant c2 can be obtained from (A10b) as

c2＝g2－A exp ( šaD̃)(td)i ln (td)i (A14)

Substituting c2 back into (A10b) and let t＝td and g＝g1

yields

td＝(td)i exp Ø (g1－g2)
A exp ( šaD̃)(td)i

» for m＝1 (A13b)


