
Journal of Computer Science 9 (5): 660-670, 2013
ISSN 1549-3636
© 2013 Science Publications
doi:10.3844/jcssp.2013.660.670 Published Online 9 (5) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Vijaya Karthick, P., Department of Information Technology, Kalasalingam University, Srivilliputhur, India

660 Science Publications

JCS

DYNAMIC SOUPLE WIRELESS GRID
APPLICATIONS FOR HORDE OF JOBS BY

SENSIBLE CENTRALITY SCHEDULING WITH REDITE

Vijaya Karthick, P. and V. Vasudevan

Department of Information Technology, Kalasalingam University, Srivilliputhur, India

Received 2013-04-22, Revised 2013-05-17; Accepted 2013-05-28

ABSTRACT

The Grid Computing has emerged as a thorny platform to tackle numerous large-scale issues,
particularly in science and engineering domains. One of the primary issues related to the economical
and effective utilization of heterogeneous resources in a Grid scheduling. It is mainly due to the
dynamic nature of grid. Grid scheduling could be subtle higher cognitive process that operates at
totally different levels of grids. Grid Schedulers is employed to map user’s job to resources in keeping
with their necessities. There are handful programming mechanism for grid environment the realistically
wear down this dynamic nature in literature. In this study, Sensible Centrality Scheduling is used to deal
with the programming computationally intensive Horde of Jobs (HOJ) applications. Their common and
first aim is that they create planning choices while not totally correct performance prediction
information. Another purpose to notice is that this Sensible algorithm adopts redite (needless
replication) jobs. Our analysis study employs variety of experiments with numerous simulation
settings. The results show the efficiency and aggressiveness of our algorithms in comparison to
existing ways and we proved that is sensible centrality algorithm is the best algorithm.

Keywords: Grid Computing, Horde of Jobs, Grid Scheduling

1. INTRODUCTION

The Grid allows the development of a virtual
computing system that interconnects across worldwide
heterogeneous computing systems with a spread of
resources. Here, resources refer not solely to physical
computers, networks and storage systems however
conjointly to abundant broader entities like databases,
knowledge transfer and simulation (Casanova et al., 2008).
The grid makes an attempt to with efficiency integrate
various resources that the users will access transparently, as
if they’re native resources. Therefore, it provides a
additional powerful setting compared to the user’s native
computing system. Additionally to its jobs capability, it is a
more cost-effective way in comparison to alternative
dedicated superior computer systems.

 The Grid has emerged as a concrete platform to
tackle large-scale issues, with associate degree
increasing range of applications in wide areas being
developed and ported to grid surroundings. There are
two typical application models that are very famous are
Horde-of-Jobs (HoJ) parameter sweep and workflow. A
HoJ application consists of freelance tasks and, thus, no
specific order of task execution, whereas associate
degree application within the advancement model
consists of mutual list of tasks. The Horde-of-Jobs (HoJ)
applications can be any classified into computationally
intensive and knowledge intensive. In this research work,
HoJ applications are mentioned as specific interest. HoJ
applications are normal parallel type of applications that
exist in several scientific and engineering fields, like the
essential native Alignment Search Tool (BLAST)

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

661 Science Publications

JCS

(Montagnat et al., 2008), MCell (Blanquer et al., 2005),
INS2D (Magnin and Montagnat, 2006) and many data
mining applications. Since tasks in a very HoJ
application are able to run severally and at a particular
time, distributed computing systems like grids are
appropriate to run such applications (Casanova et al.,
2008). Many problems that may be comparatively simple
to handle in square computing surroundings become
seriously challenging issues in grids, chiefly thanks to
the dynamism and heterogeneousness of the grid.
Scheduling, particularly, becomes the only most
troublesome task. As an example, the primary purpose of
a resource collaborating in a very grid is to serve the
native users of the organization that it belongs to.
Moreover, the resource is possibly controlled by the
native scheduler. This means that the capability and
availableness of the resource for grid users are volatile,
that leads to the grid associate timeserving setting. This
places nice emphasis on the standard of the
programming methodology. The in recent years, vital
efforts like SETI@home (Anderson et al., 2002) have
been created to alter a colossal quantity of computation
(that is, computationally intensive larva applications
(CBoT)) by exploiting given laptop cycles across the
globe. The success of SETI@home spawned variety of
similar follow-up comes (for example, Folding@home
(Larson et al., 2003; Allen, 2005) and lots of more).
Folding@home is a distributed computing project that is
used for disease research that simulates protein folding,
computational drug designing and other types
of molecular proteins dynamics. In this study, we use
the idle processing resources of thousands of personal
computers owned by volunteers who have installed the
software on their machines. Additionally, a number of
grid programming algorithms for numerous application
models together with the larva application model are
proposed (Phan et al., 2005; Banino et al., 2004;
Mohamed and Epema, 2004; Ranganathan and Foster,
2002; Fujimoto and Hagihara, 2003). Inspite of the
efforts invested with in creating existing programming
algorithms highly economical, most of those algorithms
have issue in guaranteeing a decent quality of schedules.
It is same that performance prediction info on resources
obtained using the Network Weather Service (NWS)
(Casanova, 2001) is incorporated into programming
algorithms as in Xsufferage (Casanova et al., 2000) to
make sure sensible worth plan. However, it is impractical
to assume that excellent performance information on

underlying resources in a very grid is quickly obtainable.
In the past, two novel programming algorithms (Lee and
Zomaya, 2007), known as the Multi Allocation-Input-
data-based Listing (MAIL) formula (Lee and Zomaya,
2006a) and the Multiple Queues with Duplication
(MQD) formula (Lee and Zomaya, 2006b) that we have
a tendency to recently projected area unit conferred with
extra results obtained from a lot of intensive
experimental study. The Multi Allocation-Input-data-
based Listing (MAIL) formula focuses on programming
Data-intensive BoT (DBoT) applications, whereas the
MQD formula targets scheduling CBoT applications.
The Multi Allocation-Input-data-based Listing (MAIL)
formula uses a group of task lists that area unit made by
taking the information sharing pattern into consideration
which area unit organized dynamically, based on the
performance of resources throughout the execution of the
appliance. The first goal of this dynamic listing is to
minimize knowledge transfer, therefore resulting in
shortening the overall completion time of DBoT
applications. Multi Allocation-Input-data-based Listing
(MAIL) makes an attempt to further scale back serious
schedule will increase ensuing from few problematic
task/node assignments by adopting task duplication. The
MQD formula makes programming choices by implicitly
taking the recent employment pattern of resources into
account. Like Multi Allocation-Input-data-based Listing
(MAIL) it adopts a duplication theme so as to achieve
higher resource utilization and to avoid undesirable
scheduling choices. By higher resource access, their
common and primary strength is that they create
programming choices while not correct performance
prediction data.
 In this study, a specialized algorithm Known as
Sensible Centrality Scheduling algorithm (SCS) is
projected to mainly concentrate on CHoJ application. In
which dynamic listings of jobs are created primarily
based upon their workloads that ends up in minimize the
general finishing time of associate application.

1.1. MODELS
1.1.1. System Model

 The grid G in our analysis consists of variety of
location in each of that a group of P process node is
taking part in a grid. Where Li is that the ith location
taking part in G and Ni is a set of nodes:

{ }1 2 3 nG L ,L ,L , L= …

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

662 Science Publications

JCS

And:

{ }i i,1 i,2 i ,pL ;1 i n N ,N , .N≤ ≤ = …

 Each location is an autonomous administrative
domain that has its own native users, who use the
resources in it. These locations are connected with one
another through a Wide Area Network (WAN). Nodes
are composed of each space-shared and time-shared
machine with numerous process speeds, that is, CPU
speed. These resources aren’t entirely dedicated to the
grid. In alternative words, they’re used for both native and
grid jobs (Banino et al., 2004). Every of those nodes
have one or additional processors, memory, disk, so
forth. The availability and capability of resources, as an
example, nodes and network links, varies over time.
Therefore, the accurate completion time of jobs on a
selected node is difficult, if possible, to work out a priori.
Moreover, the job might fail to finish since the resource
failure on that it’s running.

1.2. Compute Intensive Horde-of-Jobs Model

 HoJ applications are normal parallel type of
applications that exist in several scientific and
engineering fields. An application K of this model
consist of r heterogeneous jobs {J1,J2…..Jr} without any
job dependencies. It is assumed that the work
(computation time) of every jobs within the CHoJ model
is understood which it varies between jobs. The input file
transfer for every job is negligible. The size of the jobs
itself is additionally tiny and, thus, transferring it does
not influence a lot of the finishing time of the jobs.

1.3. Scheduling Crisis

 The grid programming crisis self-addressed during
this study may be a job programming of a group K of r
freelance jobs, comprising a HoJ application, onto N
heterogeneous nodes dispersed across multiple location
in a grid. The first goal of this programming is to form as
several applicable job node matches as attainable in order
that the makespan, conjointly referred to as schedule
length, of a HoJ application is decreased. The makespan
during this study is outlined because the quantity of your
time taken from the time the primary computer file
transfer starts to the time the last job accomplished. The
function of the resource broker is to allocate the resources
to the requesting users. The resources and the users will be
dynamic in the wireless grid architecture. The resources
can also be provided for the intermittent users. The
resource broker is responsible for scheduling.

1.4. Related Work

 Grid programming is one among the foremost wide
investigated topics in recent times with the aim of their
effectiveness in use and its performance. A number of
programming algorithms that may be used for Horde of
Jobs based applications are projected.
 Because of the NP-complete nature of the job
programming drawback (Grama, 2003), the majority of
projected solutions are heuristic algorithms. These
heuristics embrace Max-Min, Min-Min, Sufferage
(Lang et al., 2006; Maheswaran et al., 1999),
XSufferage (Casanova et al., 2000) and Storage Affinity
(SA). However, they make associate arguable
assumption that excellent performance prediction
information on assets and jobs is thought at the time of
scheduling; thus, they’re Performance-Prediction
Information-Dependent Algorithms (PPIDA). In contrast
to these heuristics, a recently projected approximation
algorithmic program, list scheduling with Round-robin
with Duplication, does not need any performance
prediction info on assets or jobs (Lee and Zomaya, 2007)
focused on Practical Scheduling with bag of tasks. The
extension of this research work is carried out from the
job allocation. Max-Min selects the unexpected jobs
whose minimum earliest finishing time over all of the
nodes is that the longest among all of the unexpected
jobs. The chosen job is then allotted to the host on that
the minimum earliest finishing time is anticipated. The
sole distinction distinctive Min-Min from Max-Min is
that the job choice scheme. Specifically, Min-Min
provides priority to the job that has the shortest earliest
finishing time. Moreover it observes that, at the time of
every programming instance, Max-Min tends to schedule
the longest job, whereas it’s more doubtless that Min-
Min processes the shortest job. Sufferage makes
programming verdict by the sufferage value of jobs
(Ranganathan and Foster, 2002). The sufferage price of a
task is outlined as the distinction between its earliest
finishing time and its second earliest finishing time. At
every planning call, it computes the sufferage values of all
of the unscheduled jobs and schedules the jobs whose
sufferage value is that the largest. This approach is
effective because of the serious increase of makespan is
decreased. We cannot come to conclusion that this does
not guarantee that the general makespan is shortened.
 XSufferage widen the Sufferage planning heuristic
(Maheswaran et al., 1999) by taking information sharing
into consideration. It makes planning decisions
supported the sufferage worth of jobs. The sufferage
worth of a job in XSufferage is outlined because the
difference between its earliest location-level completion
time and its second earliest location-level finishing time.

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

663 Science Publications

JCS

The sufferage values utilized in Sufferage are node level,
those adopted by XSufferage are location level. The
sufferage worth of a job is employed as a live of the
doable increase on makespan, that is, a job with an
oversized sufferage worth implies that the finishing time
of the job seriously increases, inflicting a doable increase
of makespan if it’s not allotted to the node on that the
earliest location-level finishing time is achievable.
Therefore, the larger the sufferage worth of a job, the
upper the planning priority the job gets.
 Storage Affinity (SA) primarily aims at minimizing
information transfer by creating scheduling choices that
incorporate the situation of knowledge previously
transferred. Additionally, it considers job replication as
presently as a number becomes obtainable between the
time once the last unexpected job gets allotted and the
time once the last running job finishes its execution.SA
resolve job/node assignments depends on the SA metric.
The SA of a job to a node is to quantity the jobs which
was stored in the node belongs. Though the
programming verdict SA makes is between a job and a
node. SA is calculated between a job and a location. This
can be as a result of, within the grid model used for SA,
each location within the grid uses one information
repository that may be fairly accessible by the nodes
within the location. For each programming verdict, the
SA calculates SA values of all unexpected jobs and
dispatches the job which has high value of SA. If none of
the jobs contains a positive SA value, one among them is
selected in arbitrary manner. By the time the
programming of all unexpected jobs is complete, there
would be as several as |N| running jobs, departure all |N|
node busy. On the completion of any of those running
nodes, SA starts job duplication. Now, every of the
remaining running jobs is taken into account for
duplication and also the best one is selected. The
selection verdict is predicated which depends on the SA
value and the variety of replicas.
 RR could be a grid programming rule for freelance
coarse grained jobs. Because the term implies, its
uniqueness comes from the round-robin order
duplication theme that makes duplicates of running jobs
in an exceedingly round-robin fashion after conducting
list programming for all of the special jobs. RR initial
every which way assigns a job to every node within the
grid and so waits till one or additional of these assigned
nodes complete their jobs. On the completion of a job,
the next special job is sent to the node on that the
completed job has run. This tends to end in quick assets

obtaining additional jobs. Once all of the jobs are
dispatched, RR starts duplicating running jobs, hoping
that these replicas end prior to their novels. RR performs
programming with none dynamic data on assets and
nodes. The rule is comparable to alternative
programming heuristics that need such performance data.
The new Multi Allocation-Input-data-based Listing
(MAIL) algorithm rule cluster jobs into variety of
dynamic lists supported their information distribution
modes. Each of these lists is meant to be scheduled onto
identical location in the grid so as to attenuate convey the
details, that is vital to shortening the finishing time of
DBoT applications in explicit. Since the performance of
grid resources fluctuates over time, the lists square
measure organized dynamically during application
runtime. In a trial to with efficiency contend with the
dynamism of grid resources, the Multi Allocation-
Input-data-based Listing (MAIL) adopts a job
duplication that’s particularly useful in avoiding serious
schedule will increase. For example, one or two of jobs
is also running unexpectedly long, increasing the
schedule considerably due to the overload or irregular
behaviors of the assets on which they’re running or
being transferred. A same duplication approach is
found in RR. Note that Multi Allocation-Input-data-
based Listing (MAIL) doesn’t use any prediction data
on the performance of assets and its use, apart from the
information on input file, that is, size and placement,
which is Multi Allocation-Input-data-based Listing
(MAIL) rectifiable by the computer hardware whereas
planning the jobs of associate application. However,
it’s not assumed that the information is offered for
following invocation of the application. The Multi
Allocation-Input-data-based Listing (MAIL) consists of
2 major phases: Job Grouping part-group’s jobs into a
set of lists supported their information sharing pattern,
associates these job lists with location information and
breaks and/or associates them with nodes. Scheduling
part-assigns jobs to nodes, dynamically reorganizing
job lists and duplicates jobs once all jobs square
measure scheduled and a few jobs are still running.
 The MQD will proceed with the programming
method. On completion of jobs, the performance
ranking of the host on which the jobs is finished is
computed. The performance of a bunch used for
computing its performance ranking is quantified by
dividing the employment of the last job the node
finished by the job total finishing time. The above
performance ranking decides that a queue future job
for the node is chosen from it.

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

664 Science Publications

JCS

1.5. Proposed Work

 It is observed that good performance data on
underlying resources during a grid is extremely
thorny, if not impossible to get. Therefore, a best
schedule generated by a programming rule might not
truly be deliverable if the programming choices are
created victimization performance prediction data. On
the opposite hand, if programming is meted out while
not intuitive judgments, as an example, in a first-
come, first-serve manner, the standard of the schedule
can simply become poor.
 The Grid computing facilitates flexible, secure,
coordinated large scale resource sharing among dynamic
collections of individuals, institutions and resource
sharing in a geographical distributed area.
 It is an evolving Technology of set of open
standards for Web services and interfaces that make
services, or computing resources, available over the
Internet. These days the grid technologies are used on
homogeneous clusters and heterogeneous clusters and
they can add value on those clusters by assisting, for
example, with scheduling. The criteria for Grid
Computing involves by coordinating the resources that
are not subject to centralized control. It uses standard,
open, general-purpose protocols and interfaces and
delivers nontrivial qualities of service.

1.6. Architecture of Grid Environment

 The main components of grids are:

• Grid Information Server
• Global Grid Resource Broker
• Local Grid resource Broker
• Grid Users
• Grid resources like computers, laptops, Servers,

Printers

 In Fig. 1, the Architecture of the Grid is depicts the
various components of Grid. The role of Global Grid
Resource Broker is the client Registration of jobs to
process and the role of Resource nodes is to donate the
resources at local Grid resource Broker and process the
client request as per the instruction given by Local Grid
Resource Broker. All the resource statics like resource
node, resource node size, resource header information
will be collected from all the LGRB by Grid Information
server and it is forwards to the GGRB. The main
component in which scheduling will takes place in global
grid resource broker.

Fig. 1. Architecture of grid environment

(a)

(b)

Fig. 2. Initial set of k jobs, (a) Initial set of jobs, (b)

Preprocessed jobs

This GGRB provides all the information like
resource type, resource variants, resource allocations
and the corresponding nodes like nodes 1, node2,
node3 and the information of the nodes will be
acquired by GGRB. The Grid Scheduling takes place
in the time sequence. To provide the efficient
scheduling with the available resources is the one of
the top issues in the Grid Computing environment.

The mechanism of Sensible Centrality Scheduling (SCS)
algorithm is explained in the Fig. 2 with initial set of K
jobs. Initially jobs are organized in descending order by
workload and programming of jobs are mentioned.

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

665 Science Publications

JCS

Table 1. Workload allocated to nodes
Nodes -----------SCS--------- ------------MDQ----------- ----------MAX-MIN-------- ---------MIN-MIN--- ---
1 34 48.57% 54 77.07% 44 62.875% 34 48.57%
2 48 48.00% 76 76.00% 48 48.00% 48 48.00%
3 22 40.74% 34 62.96% 22 40.74% 34 62.96%

Table 2. Comparison of Algorithm by Makespan
Algorithm Total time (min) Average makespan (min)
SCS 10.8 3.60
MDQ 15.3 5.10
MAX-MIN 11.1 3.70
MIN-MIN 11.5 3.83

From the well known workload we compute the
centrality value by dividing the sum of maximum and
minimum workload and bi as sown in the step. Initially
overall processing speed of each node is calculated with
the help of node processing speed in various time limits.
Based on these values we assign rank to the node. In this
algorithm we use three queues (i.e.,) MajQ, MinQ,
RepQ. The job assigned to the MajQ and MinQ are
depends upon the centrality. RepQ is used to avoid the
job redite (needless replication) by deleting the job from
the queue (RepQ) once it assigned for processing. The
jobs in the MinQ are only assigned to the nodes which
have highest rank value.

The jobs in the MajQ are assigned to the remaining
nodes based on the node rank. Either MajQ or MinQ jobs
are get finished, it go for RepQ to find out the
unscheduled jobs. If exits it process those jobs in the
above procedure. This is shown below:

Input: A set of k of jobs, a set N of nodes.
Output: A schedule of K onto N

Algorithm of SCS

1. Sort k in decreasing order by workload
2. Let centrality = max (K)+min (K)/2
3. Create 3 queues/*majQ,min Q,Rep Q*/
4. for each k then
5. Rep Q = k
6. if (k> = centrality)
7. then
8. Assign maj Q=k
9. else
10. Assign min Q=k
11. end if
12. end for
13. Compute the processing speed of all nodes and
assign rank.
14. Let O = Nodes which are sorted in ascending order
based on ranking factor.
15. Let m be the minimum ranking node

16. for each value (vi) of min Q
17. Let m = vi
18. Delete vi from Rep Q
19. End for
20. for each value vj of maj Q
21. Allocate vj to the nodes in ‘O’ order except M
22. Delete Vj from Rep Q
23. end for
24. if last job in min Q is completed then
25. Check Rep Q to find unscheduled jobs
26. if any
27. goto step 2127. vi = min (RepQ)
28. goto step17
29. end if
30. if last job in Max Q is completed then
31. check Rep Q to find unscheduled jobs
32. if any
33. vj = max(RepQ)
34. end if

1.7. Experimental Evaluation

The primary role of the scheduling algorithm is to
minimize the makespan as much as possible. In order to
attenuate makespan, one of the important key issues is
to avoid repetition. The various workloads assigned to
the nodes by each algorithm are offered in Table 1 when
compared to other algorithm, SCS acquire minimum
makespan which is clearly clarified from the Table 2.

1.8. Grid Simulator Tool

 The grid simulator Tool used for this study is
enforced with GridSim tool due to its made set of
simulation facilities that Multi Allocation-Input-data-
based Listing (eaMAIL) y permits the event and analysis
of planning procedures for heterogeneous distributed
computing environments in simulating grids is Tiers an
arbitrary constellation generator that fabricate arbitrary
network models analogous to the structure of the web.
Properties of resources and jobs within the simulations
conducted during predefined set of assets and job factors
shown in Table 2. This was proved by writing the
various test cases for every node and network link is
simulated by employment traces obtained from actual
systems deployed because the GrADS test bed, where
the end to end testing was carried out.

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

666 Science Publications

JCS

 (a)

 (b)

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

667 Science Publications

JCS

 (c)

 (d)

Fig. 3. Programming of Jobs, (a) Node processing speed, (b) SCS (c) MDQ, (d) Max-Min

1.9. Simulation Results

 The SCS algorithm and three previously proposed
algorithms, MDQ, Max-Min, Min-Min, are compared by
using a total of 20,000 simulations for each Fig. 3. The
10,000 simulations are composed of 150 simulated grids
and 30 simulated jobs and each of these 3,000 grid-job
pairs is run 10 times with different host workload traces.
The simulation results presented in this study clearly
show the promising performance of the SCS algorithm
compared to the other three. The experimental results of
Max-Min, Min-Min and MDQ shown in Fig. 4. The

normalized average makespan is shown in the Fig. 5. It
is defined as the average makespan of an algorithm
over that of SCS that generates the shortest makespan
among the three algorithms presented in this study
models analogous to the structure of the web.
Properties of resources and jobs within the simulations
conducted during this study are random and uniformly
scattered between a predefined set of assets and job
factors shown in Table 2. Every node and network link
is simulated by employment traces obtained from actual
systems deployed because the GrADS test bed and the
virtual test has been conducted.

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

668 Science Publications

JCS

 (a) (b)

 (c) (d)

Fig. 4. Simulation results for completion of jobs (a) SCS (b) MDQ (c) MAX-MIN (d) MIN-MIN

Fig. 5. Simulation results for average makespan in various algorithm

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

669 Science Publications

JCS

2. CONCLUSION

This study bestowed an algorithm called Sensible
centrality Scheduling (SCS) for HOJ application in grid
environment. They are fastidiously designed to include
the fundamental features of the grid (that is, vitality and
heterogeneity) into the decision-making process.
Practicability and performance are the two main design
goals. The projected algorithms achieve these goals by
victimization intuitive approaches. SCS takes the work
pattern of resources into thought for programming
choices and conjointly it neglect job duplication.
Extensive experiments with numerous take a look at
superior performance of SCS. It mostly delivers higher
schedules compared to those generated by the four
algorithms (that is, Max-Min, Min-Min and MQD).
Further focus to be carried out to enhance this algorithm
to process the suspended jobs.

3. ACKNOWLEDGEMENT

 This research work is supported in part by the
Kalasalingam University, srivilliputhur, India under the
research and development scheme to promote the
research work.

4. REFERENCES

Allen, B., 2005. Einstein@Home. LSG.
Anderson, D.P., J. Cobb, E. Korpela, M. Lebofsky and

D. Werthimer, 2002. SETI@home: An experiment
in public-resource computing. ACM Commun., 45:
56-61. DOI: 10.1145/581571.581573

Banino, C., O. Beaumont, L. Carter, J. Ferrante and A.
Legrand et al., 2004. Scheduling strategies for
master-slave tasking on heterogeneous processor
platforms. IEEE Trans. Parallel Distribut. Syst., 15:
319-330. DOI: 10.1109/TPDS.2004.1271181

Blanquer, I.B., V.H. Hernandez and J.D. Segrelles, 2005.
An OGSA middleware for managing medical
images using ontologies. J. Clin. Monit. Comput.,
19: 295-305. PMID: 16328944

Casanova, H., 2001. Simgrid: A toolkit for the
simulation of application scheduling. Proceedings of
the 1st IEEE/ACM International Symposium on
Cluster Computing and the Grid, May 15-18, IEEE
Xplore Press, Brisbane, Qld., pp: 430-437. DOI:
10.1109/CCGRID.2001.923223

Casanova, H., A. Legrand and M. Quinson, 2008.
SimGrid: A generic framework for large-scale
distributed experiments. Proceedings of the 10th
International Conference on Computer Modeling
and Simulation, Apr. 1-3, IEEE Xplore Press,
Cambridge, UK., pp: 126-131. DOI:
10.1109/UKSIM.2008.28

Casanova, H., A. Legrand, D. Zagorodnov and F.
Berman, 2000. Heuristics for scheduling parameter
sweep applications in grid environments.
Proceedings of the 9th Heterogeneous Computing
Workshop, May 1-1, IEEE Xplore Press, Cancun,
pp: 349-363. DOI: 10.1109/HCW.2000.843757

Fujimoto, N. and K. Hagihara, 2003. Near-optimal
dynamic task scheduling of independent coarse-
grained tasks onto a computational grid. Proceedings
of the International Conference on Parallel
Processing, Oct. 9-9, IEEE Xplore Press,
Kaohsiung, pp: 391-398. DOI:

10.1109/ICPP.2003.1240603
Grama, A., 2003. Introduction to Parallel Computing.

2nd Edn., Addison Wesley, Harlow, ISBN-10:
0201648652, pp: 636.

Lang, B., I. Foster, F. Siebenlist, R. Ananthakrishnan and
T. Freeman, 2006. Attribute based access control for
grid computing. Mathematics and Computer Science
Division.

Larson, S.M.. C.D. Snow, M. Shirts and V.S. Pande,
2003. Folding@Home and Genome@Home: Using
distributed computing to tackle previously
intraceable problems in computational biology.
Biophysics Program, Stanford University.

Lee, Y.C. and A.Y. Zomaya, 2006a. Data sharing pattern
aware scheduling on grids. Proceedings of the
International Conference on Parallel Processing,
Aug. 14-18, IEEE Xplore Press, Columbus, OH., pp:
365-372. DOI: 10.1109/ICPP.2006.30

Lee, Y.C. and A.Y. Zomaya, 2006b. A grid scheduling
algorithm for bag-of-tasks applications using
multiple queues with duplication. Proceedings of the
1st IEEE/ACIS International Workshop on
Computer and Information Science, Jul. 10-12,
IEEE Xplore Press, Honolulu, HI., pp: 5-10. DOI:

10.1109/ICIS-COMSAR.2006.7
Lee, Y.C. and A.Y. Zomaya, 2007. Practical scheduling

of bag-of-tasks applications on grids with dynamic
reMAIL(Multi Allocation-Input-data-based Listing)
ience. IEEE Trans. Comput., 56 815-825. DOI:
10.1109/TC.2007.1042

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

670 Science Publications

JCS

Magnin, I.E. and J. Montagnat, 2006. The grid and the
biomedical community: Achievements and open
issues. Proceedings of the EGEE User Forum,
(EGEE’ 06), Geneva, Switzerland.

Maheswaran, M., S. Ali, H.J. Siegel, D. Hensgen and R.
Freund, 1999. Dynamic matching and scheduling of
a class of independent tasks onto heterogeneous
computing systems. Proceedings of the 8th
Heterogeneous Computing Workshop, Apr. 12-12,
IEEE Xplore Press, San Juan, pp: 30-44. DOI:
10.1109/HCW.1999.765094

Mohamed, H. and D. Epema, 2004. An evaluation of the
close-to-files processor and data co-allocation policy
in multiclusters. Proceedings of the IEEE
International Conference on Cluster Computing,
Sep. 20-23, IEEE Xplore Press, pp: 287-298. DOI:
10.1109/CLUSTR.2004.1392626

Montagnat, J., A. Frohner, D. Jouvenot, C. Pera and P.
Kunszt et al., 2008. A secure grid medical data
manager interfaced to the gLite middleware. J. Grid
Comput., 6: 45-59. DOI: 10.1007/s10723-007-9088-2

Phan, T., K. Ranganathan and R. Sion, 2005. Evolving
toward the perfect schedule: Co-scheduling job
assignments and data replication in wide-area
systems using a genetic algorithm. Proceedings of
the 11th International Conference on Job Scheduling
Strategies for Parallel Processing, Jun. 19-19,
Springer Berlin Heidelberg, Cambridge, MA, USA.,
pp: 173-193. DOI: 10.1007/11605300_9

Ranganathan, K. and I. Foster, 2002. Decoupling
computation and data scheduling in distributed data-
intensive applications. Proceeding of the 11th IEEE
International Symposium on High Performance
Distributed Computing, Jul. 24-26, IEEE Xplore
Press, pp: 352-358. DOI:

10.1109/HPDC.2002.1029935

