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ABSTRACT: Toxic benthic cyanobacterial proliferations in freshwater are becoming increasingly
prevalent, and associated animal poisonings are being reported with greater regularity. Despite this,
few studies have investigated spatial and temporal variations in freshwater mat-forming Cyanobac-
teria and their associated toxin production. Some sections of the Hutt and Wainuiomata rivers (lower
North Island, New Zealand) contain extensive Phormidium sp. proliferations that sometimes produce
anatoxin-a (ATX) and homoanatoxin-a (HTX). The percentage coverage of Phormidium sp., ATX
and/or HTX concentrations and a suite of physicochemical parameters were monitored at 8 sites for
12 mo. The percentage coverage of Phormidium mats was greater in the summer months and these
correlated with warmer water temperatures and stable river flows. Flows in excess of 3 times the
mean resulted in the removal of Phormidium mats. There was no correlation between the
presence/absence of Phormidium mats and water-soluble nutrients. The presence and concentration
of ATX and/or HTX and their degradation products, dihydroanatoxin-a and dihydrohomoanatoxin-a,
was highly variable across all sites and over time. Anatoxin-a and HTX occurrence was restricted to
periods of warm water temperatures (above 13.4°C) and below average river flows.
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INTRODUCTION

Toxic cyanobacterial proliferations causing human
and animal poisonings and fatalities have been docu-
mented in fresh and brackish waters worldwide. These
events have commonly been linked to ingestion of tox-
ins produced by planktonic Cyanobacteria (Negri et al.
1995, Kuiper-Goodman et al. 1999, Saker et al. 1999,
Azevedo et al. 2002). However, animal toxicosis linked
to benthic Cyanobacteria has increased recently (Mez
et al. 1997, Hamill 2001, Gugger et al. 2005, Cadel-Six
et al. 2007, Wood et al. 2007, 2010). The physical,
chemical, and biological parameters leading to plank-
tonic cyanobacterial blooms have been extensively
studied (e.g. Oliver & Gnaf 2000), as have variables
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regulating toxin production by planktonic species (see
Sivonen & Jones 1999 for review). In contrast, research
on benthic Cyanobacteria has been initiated largely in
response to animal poisonings and has focused on
characterising the causative cyanobacterium and toxin
and the symptoms in effected organisms (e.g. Cadel-
Six et al. 2007, Wood et al. 2010). There is a limited
understanding of mechanisms leading to benthic
cyanobacterial proliferations and the influences of
environmental variables on regulating toxin produc-
tion of benthic species.

Benthic Cyanobacteria produce most of the known
cyanotoxins, e.g. microcystins (Mez et al. 1997, Wood
et al. 2010), saxitoxins (Carmichael et al. 1997), and
cylindrospermopsins (Seifert et al. 2007). In New
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Zealand, anatoxin-a (ATX) and homoanatoxin-a (HTX)
are the most commonly detected cyanotoxins pro-
duced by benthic species (Wood et al. 2007, Heath et
al. 2010). These are powerful neuromuscular blocking
agents acting through the nicotinic acetylcholine
receptor. In affected animals they can cause convul-
sions, coma, rigors, cyanosis, limb twitching, hypersali-
vation, and/or death. Research on the regulation of
ATX in planktonic species has revealed that toxin
production varies among species and with different
physicochemical factors, e.g. temperature, light, and
phosphorus (Rapala et al. 1993, Rapala & Sivonen
1998). Few studies have investigated ATX regulation
and production in benthic mat-forming Cyanobacteria,
despite the evident risk posed to human and animal
health.

In November 2005, at least 5 dogs died rapidly after
contact with water from the Hutt River (lower North
Island, New Zealand). Dense mats of Phormidium
autumnale were found in the river, and ATX and HTX
were identified in the mats and dog stomach contents
(Wood et al. 2007). Increased monitoring of Cyanobac-
teria in subsequent summers identified extensive cov-
erage of Phormidium throughout the middle and lower
reaches of the river, and further Cyanobacteria related
dog deaths were reported. Phormidium mats were also

detected in other rivers in the region (Milne & Watts
2006, Wood et al. 2007), including the Wainuiomata
River (Fig. 1).

In this study, 6 sites along the Hutt River and its trib-
utaries, and 2 sites on the Wainuiomata River were sur-
veyed and sampled for 1 yr. Surveying and sampling
was undertaken fortnightly during periods of flushing
flows or weekly when river flow was more stable. Sam-
ples were collected for species identification and ATX
and HTX analysis. Monthly water samples were taken
for nutrient analysis, and river flow and temperature
were logged continuously at different locations along
each river. Percentage cover and community composi-
tion data were used in concert with physicochemical
measurements to elucidate parameters correlated with
cyanobacterial mat proliferation and ATX and HTX
production.

MATERIALS AND METHODS

Site descriptions. The Hutt River stretches 54 km
south through the Hutt Valley and discharges into
Wellington Harbour (Fig. 1). It runs through several
populated areas and has over 1 million recreational
visits each year. In its upper reaches the river is used to
provide the wider Wellington metropolitan
area with up to 40 % of its potable water (Wood
et al. 2007).
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Six sites were sampled on the Hutt River and
its tributaries and 2 on the Wainuiomata River
(Fig. 1). These were selected based on histori-
cal knowledge of high benthic cyanobacterial
abundance at these locations. The sites were
ranked based on a Water Quality Index (WQI)
that relies on 6 variables: visual clarity (black
disc), dissolved oxygen, dissolved reactive phos-
phorus, ammoniacal nitrogen, nitrate nitrogen,
and faecal coliforms (Perrie 2007). The sites
ranged in water quality between ‘poor’ and
‘excellent’ (Table 1). Coarse greywacke, a hard
sedimentary rock, was the dominant substrate
found at all 8 sites. The Sites 2, 3 and 4 were
located on feeder tributaries to the Hutt River
just above their confluence.

Data and sample collection. At each site,
cyanobacterial mat and periphyton percentage
- substrate coverage was measured in three 1 m?

quadrats, randomly positioned within a larger

Fig. 1. Locations of sampling sites. Sites 1 to 6 are located in the Hutt

River and tributaries, and Sites 7 and 8 in the Wainuiomata River,

Wellington, New Zealand. Site coordinates: Site 1: E: 2689075

N: 6010880; Site 2: E: 2688625 N: 6010315; Site 3: E: 2686195 N:

6010975; Site 4: E: 2681885 N: 6008350; Site 5: 2676780 N: 6004090;

Site 6: E: 2670240 N: 5998870; Site 7: E: 2678253 N: 5992345; Site 8:
E: 2674410 N: 5990890

10 m? quadrat, in a run (a swiftly flowing region
of river with a relatively smooth surface). The
data from the three 1 m? quadrats were aver-
aged to estimate the percentage cover for each
10 m? quadrat. Samples were collected within
each 10 m? quadrat by scraping mat material
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Table 1. Average nutrient concentrations (g m™2) and ratios, and average (Avg.) and median river flows (m?® s7!) at Sites 1-6 in Hutt River and tributaries, and Site 7 in the

Wainuiomata River. No data were available for Site 8. Data are averages of 12 monthly samples with ranges shown in brackets. TN: total nitrogen; TP: total

phosphorus; DIN: dissolved inorganic nitrogen; DRP: dissolved reactive phosphorus; WQIL:Water Quality Index

TN: DIN: WQI
TP

TP DRP TN Nitrite-N Ammonia-N Nitrate-N DIN

——River flow—

DRP

Median

Avg.

18.6 22.1 Excel-

0.095

0.089
(0.032-0.208) (0.034-0.220)

0.011

0.002
(<0.001-0.003) (<0.001-0.014)

0.174
(0.110-0.260)

0.008
(<0.001-0.008)

0.009
(0.005-0.026)

4.507

11.140

Te Marua

(Site 1)

lent
Poor

78.9

34.3

0.599
(0.280-1.600)

0.593
(0.267-1.596)

0.010

0.003
(<0.001-0.004) (<0.001-0.012)

0.802
(0.450-1.800)

0.008
(<0.000-0.014)

0.023

(0.008-0.096)

1.255

3.180

Mangaroa
(Site 2)

26.9 29.8 Excel-

0.119
(0.012-0.310)

0.105

(0.001-0.298)

0.0178
(<0.001-0.087)

<0.001

0.181
(<0.001-0.360)

<0.000

0.007
(<0.001-0.012)

2.605

5.592

Akatarwa
(Site 3)

lent

15.0 24.1 Excel-

0.160
(0.033-0.690)

0.150
(0.020-0.688)

0.002 0.015

0.236
(<0.001-0.760) (<0.001-0.003) (<0.001-0.059)

0.007
(<0.000-0.025)

0.016
(0.007-0.066)

0.775

1.707

Whakatikei
(Site 4)

lent

274 584 Excel-

0.301
(0.150-0.990)

0.291
(0.138-0.988)

0.012

0.002
(<0.001-0.004) (<0.001-0.031)

0.414
(0.210-1.000)

0.005
(<0.000-0.0014)

0.015
(0.005-0.048)

12.066

26.148

Silverstream

(Site 5)

lent
Excel-
lent

10.9 Good

71.1

23.0

0.302
(0.140-1.500)

0.291
(0.135-1.498)

<0.001

0.002
(<0.001-0.005)

0.403
(0.200-1.500)

0.004
(<0.000-0.006)

0.0018
(0.004-0.076)

12.066

26.148

Boulcott
(Site 6)

2.6

0.092 0.097

(0.006-0.228) (0.019-0.230)

<0.001

0.002
(0.000-0.002)

0.186
(<0.001-0.410)

0.009
(0.005-0.012)

0.072

(0.012-0.760)

0.456

0.951

Manuka

Track(Site 7)

from rocks into a sterile plastic screw-cap bottle (50 ml,
Biolab, New Zealand). All samples were placed on ice
for transport. On arrival at the laboratory, samples were
frozen (-20°C) for toxin analysis or preserved using Lu-
gol's Iodine for morphological identification. Continu-
ous river flow and water temperature data were mea-
sured at sampling sites using either Campbell C107 or
Unidata LM34 sensors. Continuous readings for Site 4
were obtained from a logger 10 km upstream and read-
ings for Sites 5 and 6 from a logger positioned midway
between the 2 sites. We calculated the average river
flow over the 12 mo period for each river (Fa). This
yearly average value was used to standardise the river
flow data as F/Fa (times above average), where F is the
river flow at the time of sampling. F/Fa was used as a
potential predictor for our statistical analysis. No water
temperature was recorded for Sites 4, 7 and 8 and no
river flow for Site 8. Water samples were collected
monthly at Sites 1 to 7 to determine nitrate-N, nitrite-N,
ammonia-N, total nitrogen, total kjedahl nitrogen, dis-
solved reactive phosphorus, and total phosphorus. No
water samples were collected at Site 8. Samples for dis-
solved nutrients were filtered through 45 pm Whatman
GF/C filters and frozen (-20°C) until further analyses.

Species identification. Subsamples of the preserved
field samples were homogenized and allowed to settle
in a cavity slide (1 ml), and species were identified
under an Olympus (CKX41) inverted microscope.
Identifications were made primarily by reference to
Komaérek & Anagnostidis (2005), McGregor (2007), and
Biggs & Kilroy (2000).

Extraction and detection of anatoxin-a and
homoanatoxin-a. Frozen mat material was lyophilized
(FreeZone6, Labconco). Lyophilized material (100 mg)
was resuspended in 10 ml of double distilled water
(DDW) containing 0.1% formic acid and sonicated
(Cole Parmer 8890, Biolab) for 15 min. Samples were
centrifuged (4000 x g, 10 min). The pellet was re-
extracted a second time using 5 ml DDW and super-
natants combined.

All samples were analysed for ATX, HTX, and their
degradation products: dihydroanatoxin (dhATX), dihy-
drohomoanatoxin (dhHTX), epoxyanatoxin-a (epATX),
and epoxyhomoanatoxin-a (epHTX), using liquid chro-
matography-mass spectrometry (LC-MS). Anatoxins
were separated by Acquity uPLC (Waters Corp.) using
a 50 x 1.0 mm Acquity BEH-C18 (1.7 pm) column
(Waters Corp.). The mobile phase A (0.1 % formic acid
in water) and mobile phase B (0.1 % formic acid in ace-
tonitrile) were used at a flow of 0.3 ml min~!, isocratic
for 1 min at 100% A, followed by a gradient to 50% B
over 2 min. Injection volume was 5 pl. The Quattro Pre-
mier XE mass spectrometer (Waters-Micromass) was
operated in ESI+ mode with capillary voltage 0.5 kV,
desolvation gas 900 1 h!, 400°C, cone gas 2001 h~! and
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cone voltage 25 V. Quantitative analysis was by multi-
ple reaction monitoring (MRM) using MS-MS channels
set up for ATX (166.15 > 149.1; retention time (rt) 1.0
min), HTX (180.2 > 163.15; rt ca. 1.9 min), dhATX
(168.1 > 56; rt 0.9 min), and dhHTX (182.1 > 57; rt ca.
1.9 min). The instrument was calibrated with dilutions
in 0.1% formic acid of authentic standards of ATX
(A.G. Scientific).

Nutrient analyses. Filtered nutrients were analysed
on a Lachat QuickChem FLOW Injection Analyser
(FIA + 8000 Series, Zellweger Analytics) and a Konelab
Aquakem 600 Discrete Analyser (Thermo Scientific).
Nitrite-N was analysed using automated AZO dye
colorimetry, and total oxidised nitrogen (nitrate-N +
nitrite-N) were analysed using automated cadmium
reduction following the methods of the American Pub-
lic Health Association (Eaton et al. 2005). Total kjedahl
nitrogen was digested in sulphuric acid and analysed
using phenol/hypochlorite colorimetry (Eaton et al.
2005). Nitrate was calculated by subtracting nitrite-N
from total oxidised nitrogen (nitrate-N + nitrite-N), and
total nitrogen was calculated by the addition of total
kjedahl nitrogen, nitrite-N, and nitrate-N. Total phos-
phorus was digested with acid persulphate before
using ascorbic acid colorimetry (Eaton et al. 2005). Dis-
solved reactive phosphorus was analysed using molyb-
denum blue colorimetry (Eaton et al. 2005).

Statistics. Stepwise logistic regression was used to
establish the best predictors of Phormidium mat cover-
age and ATX and/or HTX presence across all 8 sites.
No physicochemical data were collected for Site 8, and
therefore this site was excluded from the analysis. Pre-
dictors were considered significant at the 95% (p <
0.05) confidence interval. River flow and water temper-
ature were found to be significant predictors. In all
cases, binary predicative's were improved by altering
the default of 0.5 probability to a cut value that max-
imised the prevalence of the presences in the data.
This decreased the probabilities of false negatives (i.e.
Cyanobacteria predicted to be absent when in fact it
was present).

For water temperature and river flow (m?® s), a
5-day average prior to sampling was correlated with
each sampling point. Standardisation of river flow was
achieved by dividing the 5-day average river flow by
yearly average river flow. All data were analysed using
SPSS Statistical Software, version 16.0.

RESULTS
Nutrients

Total nitrogen (TN) and total phosphorus (TP) were
generally found at low levels throughout the course of

this investigation (Table 1). The lowest nutrient load-
ings were observed at the head waters of both the
Hutt (Site 1, TN 0.174 g m™3, TP 0.009 g m~®) and
Wanuiomata (Site 7, TN 0.074 g m~3, TP, 0.072 g m~3)
rivers, whilst the highest concentration were found in
the lower reaches of the Hutt River (Site 6, TN 0.403 g
m~3, TP 0.018 g m~®) and at Site 2, which had increased
nitrogen and phosphorus levels (TN 0.802 g m™3, TP
0.023 g m™3). Site 7 had a low TN:TP ratio (2.6); the
remaining sites all had ratios above 15, with Sites 2, 5
and 6 above 25 with ratios of 34.3, 26.9, and 27.4,
respectively. The TN:TP ratios increased with distance
down the river. A t-test found there was no significant
difference between N:P ratios with and without the
presence of Phormidium mats (p = 0.3350, df = 89).

Temporal and spatial variability in Phormidium
mat abundance

Cyanobacterial mats were recorded at all 8 study
sites. The dominant genus in these mats was Phormid-
ium. Although genetic analysis was not conducted as
part of this study, polyphasic analyses of samples col-
lected simultaneously identified Phormidium autum-
nale as the dominant cyanobacterium in the mats
(Heath et al. 2010). Species from the Pseudanabaena-
ceae family such as Leptolyngbya spp. and Pseuda-
nabaena spp. were observed in low concentrations
within the mats (Heath et al. 2010). Phormidium mats
were generally most abundant in summer and less fre-
quently observed in winter (between May and October
2008). This higher coverage coincided with periods
of stable river flow and warmer water temperatures
(Fig. 2).

Percentage Phormidium mat cover was often over
50% at 4 of the 6 Hutt River sites (Sites 2, 3, 5 and 6)
during summer, with the highest coverage (70 %)
observed at Sites 2 (6 January 2008) and 5 (27 Febru-
ary 2008) (Fig. 2). At Site 1, Phormidium mats were
observed from the initial sampling (6 December 2007)
until the 6 January 2008 (Fig. 2a). Mats were not pre-
sent again until late February 2008, when the maxi-
mum percentage cover was less than 10%. Site 2 had
extensive Phormidium mat coverage at the time of ini-
tial sampling (peaking at 70%, 6 January 2008), this
steadily decreased until there were no Phormidium
mats observed (26 March 2008; Fig. 2b). Phormidium
mat coverage (up to 25%) was recorded in May and
June 2008 and then no mats were observed until
November 2008. No Phormidium mats were observed
at Site 3 in January and only minimal coverage (<15 %)
in February (Fig. 2c). In March 2008, Phormidium mat
coverage peaked at 60 %, and then occurred sporadi-
cally in April and May 2008 before consistent mats
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were observed between September and December
2008 (Fig. 2c). Site 4 experienced peak Phormidium
coverage in December 2007 (30 %) and patchy or low
(<10 %) percentage cover between January and March
2008 (Fig. 2d). Low (<15 %) Phormidium mat cover was
observed once in April and once in June 2008 with no
further mats recorded until December 2008. Consistent
Phormidium mat coverage (<40%) was observed at
Site 5 from December 2007 to the end of March 2008.
After that, Phormidium mats (5 %) were observed once
in June 2008 and were not recorded again until
November 2008 (Fig. 2e). Phormidium mat abundance
at Site 6 peaked at 60% in December 2007 and early
January 2008. Throughout the rest of the sampling
period, abundance was patchy and low (<10%;
Fig. 2f).

There was no Phormidium sp. mat coverage at Site 7
(Wainuiomata River) until February 2008. Consistent
coverage was then observed until the end of March
2008, where it peaked at 15% (Fig. 2g). Phormidium
coverage at Site 8 was low and patchy, with consistent
coverage only observed from late January 2008 to
early March 2008. No Phormidium mat coverage was
observed after June 2008 (Fig. 2h).

Predicting the presence of Phormidium mats

Using stepwise logistic regression, river flow and
water temperature were identified as the only signifi-
cant physicochemical parameters (p < 0.05) correlated
with the presence of Phormidium mats. Consequently
these were the only variables included in the logistic
model (Fig. 3). At a cut value of 0.5, the model success-
fully predicted 80.9 % of the observed results, correctly
predicting 82.6 % of the times where Phormidium mats
were absent and 78.8 % of the time they were present.
Using this model the probability of Phormidium mats
(P) occurring for any given river flow and water tem-
perature can be calculated (Fig. 3b). The model
demonstrates that with a yearly average river flow (1 in
the model: refer to Table 1 for yearly average river
flows) and water temperatures of 15°C, the probability
of Phormidium mats occurring is 31%. With a river
flow value of 0.5 and water temperatures of 20°C, the
probability is 71 % (Fig. 3b).

Spatial and temporal variation in anatoxin-a and
homoanatoxin-a

ATX and/or HTX were detected at all Hutt River sites,
and concentrations were highly variable, both within
and between sites (Fig. 2a—f). The highest concentra-
tions of ATX (1.7 mg kg™!), HTX (23.5 mg kg™!) ,and

dhATX (535 mg kg!) were all observed at Site 2 (13 Feb-
ruary 2008), and the highest concentration of dhHTX
(95.4 mg kg!) was detected at Site 6 (6 January 2008).
Some temporal similarities were observed, with maximal
ATX and/or HTX concentrations occurring at Sites 3 and
4 on 6 December 2007, at Sites 2, 5 and 6 on 6 January
2008 and Sites 1, 2 and 4 on 12 February 2008 (Fig. 2a-f).
ATX was only detected at Sites 2 and 6, while HTX was
observed at all sites, with the exception of Site 1. The

a
20 s Phorbidium sp. not detected
{ ® Phorbidium sp. detected
—~ 184
O b
O 164
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6 | 04 03 02 : —— Predicted probability
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River flow (times above average)

Fig. 3. Phormidium sp. (a) Scatter plot of water temperature
versus river flow where cyanobacterial mats were present
and absent. (b) Contour plot showing predicted probability of
mats being present in the Hutt River (New Zealand) given
different magnitudes of river flow and water temperature.
The model was derived from observed field data. The pre-
dicted probability (P) of the occurrence of Phormidium mats
can be derived using the logistic equation where river flow
(RF) and water temperature (WT) are known. Constants: , =
-1.208, B; =-1.821, B, = 0.150. Note, river flow has been stan-
dardised for different rivers as a ratio F/Fa and is thus
expressed as times above the yearly average flow (see
‘Materials and methods’)
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most common compound, dhATX, was found at all sites,
while dhHTX was observed at all sites except Site 1. At
all Hutt River sites degradation products (dhATX and
dhHTX) were always found in much higher concentra-
tion than their parent compounds, and dhATX was con-
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Fig. 4. (a) Scatter plot of water temperature versus river flow
showing the presence and absence of anatoxin-a (ATX) and
homoanatoxin-a (HTX) where Phormidium mats were de-
tected. (b) Contour plot showing the predicted probability of
ATX and/or HTX being present in the Hutt River and
Wainuiomata river (New Zealand) given different magni-
tudes of river flow and water temperature, when Phormidium
mats are present. The model was derived from observed field
data. The predicted probability (P) of the occurrence of ATX
and/or HTX can be derived using the logistic equation where
river flow (RF) and water temperature (WT) are known. Con-
stants: Bo= —5.172, B1= -1.585, B,= 0.320. Note, river flow has
been standardised for different rivers as a ratio F/Fa and is
thus expressed as times above the yearly average flow (see
‘Materials and methods’)

sistently found in higher concentrations than dhHTX.
ATX and/or HTX were only detected in the summer and
spring, i.e. December 2007 to April 2008 (Fig. 2a—f).

At the Wainuiomata River, no anatoxins were detected
at Site 8 except on 14 March when dhATX (0.5 mg kg!)
was detected (Fig. 2h). In contrast ATX, HTX, and their
degradation products were detected at Site 7 (Fig. 29).
The highest concentrations of ATX (3.4 mg kg™!) and
HTX (283 mg kg™!) at this site were both recorded on
4 April 2008 (Fig. 2g). This was the only site where the
parent toxins (ATX and HTX) were found in higher
concentrations than their degradation products.

Rapid temporal changes in anatoxin concentrations
were observed, despite there being little change in
Phormidium sp. percentage cover. For example, at
Site 2 the combined ATX, HTX, dhATX, and dhHTX
concentration increased from 201 mg kg™! on 6 Febru-
ary 2008 to 620 mg kg~! on 13 February 2008, without
any change in Phormidium mat coverage (Fig. 2b). At
Site 7, on 13 February 2008, the combined ATX, HTX,
dhATX, and dhHTX concentration was 129.8 mg kg™?,
but 1 wk later on 20 February, HTX was the only com-
pound detected (0.6 mg kg™}; Fig. 2g).

Factors contributing to anatoxin-a and
homoanatoxin-a presence/absence

Logistic regression was used to determine the best
predictors of ATX and/or HTX presence/absence
when Phormidium mats were present. Water tempera-
ture and river flow were the only significant (p < 0.05)
physicochemical predictors of toxin presence. The
logistic model successfully predicted 72.1% of the
observed results, correctly predicting 64.7% of the
times when ATX and/or HTX were absent and 81.5%
of the time when they were present. ATX and/or HTX
were observed to occur in water temperatures
>13.4°C. Furthermore, ATX and/or HTX were only
detected when river flows were low (below half the
yearly average) and stable. The logistic model shows
that when river flow is average (1 in the model) and
water temperature is 15°C, the probability of ATX
and/or HTX being detected when mats are present is
28 %. At a river flow value of 0.5 and a water tempera-
ture of 20°C the probability increases to 72 % (Fig. 4).

DISCUSSION

Phormidium mat presence and physicochemical
parameters

The data from the Hutt and Wainuiomata rivers
demonstrate that Phormidium mat coverage can be
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highly variable spatially and temporally within rivers.
Despite this variation, a seasonal factor contributing to
Phormidium mat coverage was apparent. Peaks in
Phormidium mat coverage for all sites were observed
in summer (December to March). Similar trends in total
periphyton (including cyanobacterial mats) have been
documented previously in New Zealand and have
been attributed to a lower frequency of flushing river
flows during summer (Biggs & Price 1987, Biggs &
Close 1989, Biggs 1990, Clausen & Biggs 1997).

In this study, river flow and water temperature were
found to be significant physicochemical parameters
predicting Phormidium mat coverage. High river flows
have the ability to pick up rocks and pebbles, and
thereby remove attached mat material from substrates
(Biggs & Close 1989). Water turbulence has been pre-
viously described as a major controlling factor for
benthic Cyanobacteria in river systems (Biggs 1990,
Milne & Watts 2006, Wood et al. 2007), lake systems
(Johnson & Castenholz 2000, Dasey et al. 2005), and
marine environments (Thacker & Paul 2001). The abil-
ity of river flow to flush Phormidium mats has led
local government agencies in the Wellington region to
adopt this measure as one of the factors used to predict
Phormidium mat percentage coverage (Milne & Watts
2006). Two weeks without a river flow of 3 times the
long term median is used as an early warning indicator
of the strong likelihood of benthic Phormidium mat
proliferation.

Water temperature was shown to have a strong posi-
tive relationship with Phormidium mat coverage. This
was consistent with Biggs (1990) who has previously
elucidated temperature as a significant parameter in
Lyngbya (a cyanobacterium that can also grow on the
benthos) proliferations in New Zealand rivers. Further-
more, this is consistent with previous planktonic
Cyanobacteria research, where optimal temperatures
maximise growth (Robarts & Zohary 1987, Song et al.
1998). The model developed in this study successfully
predicted 80.9 % of our field observations. The proba-
bility of Phormidium sp. being present dramatically
increased when river flow was half the yearly average
and water temperature above 14°C. These results
support Greater Wellington Regional Council's use of
river flow as a predictor of the presence of mat-forming
benthic Phormidium sp., and suggest that water tem-
perature should be incorporated into the model for
greater predicative power.

No other physicochemical parameters were signifi-
cant predictors of Phormidium mat presence. Research
on planktonic and benthic Cyanobacteria in marine,
lake, and culture environments has shown nutrients
such as phosphorus and nitrogen to be key parameters
responsible for growth (Paerl 1996, Downing & Watson
2001, Vilalta et al. 2003). In New Zealand, benthic

Cyanobacteria have previously been identified prolif-
erating in sites with low nutrients (Biggs & Price 1987,
Biggs 1990). Some Cyanobacteria from the LPP (Lyng-
bya, Phormidium, Plectonema) group possess the abil-
ity to fix nitrogen, therefore enhancing their ability to
persist in nitrogen poor environments (Bergman et al.
2006, Pankratova et al. 1998). Low levels of DIN ob-
served throughout this investigation may favour algal
species with the ability to fix atmospheric nitrogen. At
Site 2, expansive proliferations of chain diatom Melo-
sira varians were observed; coincidently, this was the
only site with elevated DIN levels. Those sites with the
highest cyanobacterial coverage (2, 3, 5 and 6) were
found to have high TN:TP ratios (above 20:1) providing
evidence that nitrogen, rather than phosphorus, may
be the nutrient limiting Phormidium mat growth (Bor-
chardt 1996). It has been suggested that essential
nutrients can be sourced from the geology of the sur-
rounding catchment (Leland & Porter 2000), and there-
fore it is plausible that nutrients can be dissolved from
the substratum and utilised. Biggs (1990) found that
Lyngbya proliferations were highly associated with
hard sedimentary rocks, which provide a potential
source of phosphorus.

Spatial and temporal variation in anatoxin-a and
homoanatoxin-a production

The presence/absence and concentrations of ATX
and/or HTX varied between sites and over time. In
New Zealand, some water managers use set thresholds
of Phormidium sp. percentage coverage to issue health
warnings (Wood et al. 2009). In this study, we found no
correlation between the coverage of Phormidium mats
and ATX and/or HTX concentrations. Previous investi-
gation have shown that cyanobacterial mats consist
of mixed toxic and non-toxic strains of Phormidium
autumnale (Cadel-Six et al. 2007, Heath et al. 2010). It
is possible that the variations in ATX and/or HTX con-
centrations observed in this study were due to changes
in the relative abundances of toxic and non-toxic
Phormidium strains in a mat, rather than changes in
the amount of ATX and/or HTX produced. Previous
studies have indicated that ATX quota's only vary 1 to
7 fold as environmental factors (i.e., temperature) are
manipulated (Sivonen & Jones 1999). Up and down-
regulations in ATX production are therefore unlikely
to explain the variability observed among sampling
sites in this study.

River flow and water temperature were the only sig-
nificant parameter in the logistic model used to predict
ATX and/or HTX presence. The model successfully
predicted 72.1 % of our field observations, successfully
predicting 81.5% of the times ATX and/or HTX was
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present. Toxins were only detected in mats when tem-
peratures were above 13.4°C and river flows were
below half the yearly average. Research on some
planktonic cyanobacteria has shown changes in ATX
production with temperature; however, even at low
temperatures, toxic genotypes still produce toxins
(Rapala et al 1993, Rapala & Sivonen 1998). Toxin pro-
duction at all temperatures, coupled with the presence
of non-toxin producing mats at low river flows and
warm water temperatures, suggests that these vari-
ables do not have a significant effect on the regulation
of ATX and/or HTX, rather that these conditions
encourage the growth of ATX and/or HTX producing
strains. There is currently no method to assess the pro-
portion of ATX and/or HTX producing strains within
mats. The recent discovery of a putative genes in-
volved in ATX and/or HTX production (Cadel-Six et
al. 2009, Méjean et al. 2010) provides the opportunity
to use quantitative molecular techniques to monitor
levels and expressions of this gene and will enable the
quantification of toxic strains within a sample. This
ultimately will assist in the development of predictive
models aimed at providing early warning of cyanobac-
terial mat proliferation and toxin production.

Dihydro- degradation product concentrations were
considerably higher than their parent compounds.
Anatoxin is unstable especially in sunlight and at high
pH, whereas the dihydro- degradation products are
more stable (Smith & Lewis 1987). On some sampling
occasions, degradation products were the only com-
pounds detected. The detection of these compounds
may provide information of previous or nearby toxic
mats and these compounds should be monitored in
routine cyanotoxin analysis. At Site 7, the concentra-
tions of degradation products were considerably lower
than that of their parent compounds. This site had
extensive shading provided by overhanging vegeta-
tion. In the reduced light environment there may have
been less degradation of ATX and/or HTX.

CONCLUSIONS

The results of this study revealed that percentage
coverage and presence of Phormidium mats are spa-
tially and temporally variable in the Hutt and Wain-
uiomata rivers. ATX and HTX concentrations were
also found to vary among sampling times and sites. In
contrast to previous reports, ATX and/or HTX con-
centrations did not correlate with Phormidium mat
coverage. River flow was shown to control Phormidium
mat coverage, and water temperature was identified as
important for Phormidium mat growth and ATX and/or
HTX production. Higher temperatures are likely to
result in faster growth rates and these conditions may

be more favourable for ATX and/or HTX producing
strains. The ability of Phormidium to obtain essential
nutrients for growth from sedimentary rock substrate
and via nitrogen fixation may give it a competitive
advantage in the mostly oligotrophic conditions in
these rivers.
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