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ABSTRACT 
This study investigates the effect of bias-corrected estimators in analyzing real-world skewed data where 
categorization and transformation are necessary. It also reports a small-scale simulation study to indicate 
factors which can influence the bias correction to be small or large. For the complete data-set, it is 
observed that the maximum likelihood estimates and Schaefer’s bias-corrected estimates are not greatly 
different. However, when the original sample size is reduced by about 50%, the difference between the 
estimates is found to be much larger, possibly even large enough to influence the conclusions drawn. The 
impact of transformation and categorization is visibly present. However, the broad impression gained in 
categorization is the same though difference in types of categorizations can not be overlooked. A factor 
which seems to influence the size of the bias correction is identified. 
 
Keywords: Bias correction, Categorization, Log transformation , Small sample, Skewed data.  
 

1 INTRODUCTION 
 
The popular method used to estimate the parameters of a logistic regression (LR) model is the maximum 
likelihood (ML) method. The ML estimates are asymptotically unbiased. However, for small samples, 
these estimates have substantial bias and can thereby lead to incorrect conclusions concerning the effects of 
individual explanatory variables. Bias correction procedures are available in the literature (e.g., Schaefer 
(1983)). However, these bias corrections have found little use in practice which leads to some obvious 
questions. How much do these corrections affect the analysis of real-world data? If it is little, what is the 
justification behind advocating these corrections? Moreover, researchers do choose to categorize the 
continuous explanatory variable. One reason for this is to see how the logistic transform of the response 
probability varies over the levels of categories of an inherently continuous variable. Furthermore, for 
variables having substantial skewness, it is conventional to transform the data (e.g., using the log or square 
root transformation). 
 
This study aims to search for answers to the questions raised above. In doing so, we use a real-world 
skewed data set (see section 2 for description) obtained from the Tibblin et al. (1995) study. The 
explanatory variable in the data set is considered in its original continuous form, in logarithmic form and in 
categorized form of different types. The data is used in its full and 50% reduced size to see the effect of the 
sample size . We use Schaefer's bias correction and the maximum likelihood estimates for the LR model 
parameters. To see which factors can influence the bias to be small or large, small-scale simulation 
experiments are included.  
 
The limitations of such a study should be stressed. From a single real-world application, we can never 
obtain general results. What we can get is information on the size of differences in a situation when we 
know what the parameters stand for. This makes it easier to judge whether differences between methods 
are large or not, something which is not always easy to do in the artificial setting of a simulation 
experiment. A further application of the different methods to other real-world examples in combination 
with theoretical and simulation results should in due course give additional information so that it will be 
possible to judge whether the bias-corrected estimator has to be seriously considered in applied work. 
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Section 3 introduces Schaefer's bias correction while section 4 is devoted to a description of the 
categorization of continuous explanatory variable. In section 5, we present the results with discussion. 
Finally, we conclude in section 6.      
 
2 DESCRIPTION OF DATA 
 
Tibblin et al. (1995) present the results of a study which was performed to elucidate the performance of 
prostate-specific antigen (PSA) as a screening test (PSA, a blood test, is specific for the prostate, but not 
for clinically significant cancer). To investigate whether an increased PSA level predicts the subsequent 
occurrence of a clinical cancer and how long the clinical diagnosis can be advanced by PSA testing (the 
lead time), they performed a case-control study nested within a population-based cohort of men with 11 
years of follow-up. The study population consisted of all men born in 1913 and alive in 1980 (at the age of 
67) in Gothenberg, Sweden. The actual cohort, the men of 1913, consisted of all men meeting these criteria, 
who were born on a date divisible by 3. Out of 921 sampled individuals, 707 men participated in the study. 
The cases were the men who developed cancer during 1981-1992. Sera for 36 subjects who developed 
cancer were considered in the study. For each case, two individually matched controls were randomly 
selected from those still alive at the time of diagnosis of the case without themselves having had prostate 
cancer prior to that date. Because serum was lacking for some subjects, the final analysis included 36 cases 
and 68 control subjects. For further information about the study see Tibblin el al. (1995) and references 
therein. 
 

Table 1:  PSA Data 
 

PSA Controls Cases 
 ≤ 1.2 

1.3-2.5 
2.6-4.0 
    ≥ 4.1 

 20 
15 
17 
16 

 1 
 3 
  3 
 29 

Total 68 36 
 
Some summary data are presented in Table 1. Further summary statistics for PSA and log PSA (LPSA) are 
presented in Table 2. It is clear that the log transformed data is much more symmetric than the original 
strongly skewed data. The standard deviation of the original PSA variable is almost three times as large as 
the mean value, while for LPSA the standard deviation is slightly smaller than the mean value. 
 

Table 2:  Summary Statistics for PSA and LPSA Data 
 

   Mean SD Median Minm Maxm Skewness Kurtosis 
PSA 9.80 26.86 3.40 0.30 234.00 169.54 45.94 

LPSA 1.29   1.21 1.22 -1.20     5.46     0.85   1.15 

 
Table 3: Conditional and Unconditional ML Estimates (Standard Error in Parentheses) 

 
                  PSA LPSA TC  
    β̂1 β̂1 β̂1 β̂2 β̂3 

Conditional ML  0.38 
(0.12) 

1.67  
(0.47) 

1.26  
(1.29) 

0.82  
(1.18) 

3.31 
 (1.12) 

Unconditional ML 0.39 
(0.10) 

1.84 
(0.41) 

 1.39 
(1.20) 

1.26  
(1.20) 

 3.59 
(1.07) 

TC refers to data in categorized data as used in Tibblin et al. (1995) 
 
The basic study was a matched case-control study. Tibblin et al. (1995) present the results of conditional 
maximum likelihood method (for the LR model parameters βi); however, we show the results  (Table 3) for 
both conditional and unconditional ML. It is clear that there is no substantial difference between the 
conditional and unconditional ML estimates irrespective of whether we use original, log transformed or 
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categorized data. Therefore, in the following, we will not retain the matching and will consider several 
different estimates based on the standard logistic regression model. 
 

3 SCHAEFER'S BIAS CORRECTION 
 
Let Yi ∈ {0, 1} denote a dichotomous dependent variable, and let xi denote a k + 1 dimensional vector of 
explanatory variables, for the ith observation. The probability that Yi = 1, given the value of xi, is assumed 

to be  P(Yi = 1) = π(xi) and is defined by the logistic regression model as  π(x) = [1 + e-βΤx]-1 where βΤ = 
(β0, β1, ...., βk) is a vector of k + 1 parameters of interest, xT = (1, x1, ....., xk) is a vector of explanatory 
variables. The logit transformation in terms of π(x) is given by 
 

                               log 
π

1 - π  = β0 + β1x1 + ......+ βkxk.                                                 (1) 
 
The ML estimate of β can be obtained from the likelihood equation 
 
                                  XT(Y- π) = 0                                                                                                                (2) 
 
where X is an nx(k + 1) matrix of explanatory variables, Y is an nx1 vector of values of the dependent 
variable, π is an nx1 vector of πi's and 0 is a (k + 1)x1 vector of zero's. The likelihood equation is non-linear 
in β0, β1, ......., βk and is solved by suitable iterative methods. 
 
The Schaefer (1983) bias correction (SBC) formula is given by 
 
                                   β̂ SBC = β̂ ML - bias β̂ ML                                     (3) 
 
where β̂ML is a (k + 1)x1 vector of the ML estimates and 
 
                                    bias β̂ ML ≈ -1/2(XT V̂ X)-1XT V̂ {(1-2 π̂ j)xj

T(XT V̂ X)
-1

xj}.               (4) 
 
Here X is the nx(k + 1) matrix of explanatory variables, xj

T is the jth row of X, and V is an nxn diagonal 

matrix of the variances of π̂j, π̂j(1-π̂j ) that is V̂ = diag{π̂j (1-π̂j)}. The term in the brackets represents an  

nx1 vector with the jth element (1-2π̂j )xj
T(XTV̂X)

-1
xj.  

 

Using ML estimate π̂j in (4), an estimate of the bias is obtained and can be used in (3).  
 

4 CATEGORIZATION OF CONTINUOUS EXPLANATORY VARIABLE 
 
If we do not have any prior knowledge about the data (such as, for blood pressure data, it is roughly known 
that certain values represent dangerously low or dangerously high values), a common procedure is to 
categorize the data as quantiles.  
 
In categorizing continuous data, the first job is to estimate the ith quantile Qi, i = 1, 2, ....., k. We define the 
design variables (Table 4) for k = 4 where the quartiles are based on all observations. However, the Tibblin 
et al. categorization is based on certain natural cut-offs which is also an approximate quartile 
categorization using only control data. 
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In our case, Y is the cases and controls with Y = 1 for cases and Y = 0 for controls, and X is the PSA. The 
PSA is also considered  in its logarithmic form (i.e., X is the LPSA) and in categorized form where Xis are 
Dis, i = 2, 3, 4. The following logistic regression models are used  

                           log 
π

1 - π = β0 + β1 PSA,                                                                       (5) 

                           log 
π

1 - π = β0 + β1 LPSA,                                                                    (6) 

                           log 
π

1 - π = β0 + β1D2 + β2D3 + β3D4.                                            (7)  

 
Table 4: Specification of Design Variables for k = 4 Q1 = 1.7,  Q2 = 3.4, Q3 = 6.2 

 
Condition on explanatory variable (X)  Design variable  
Tibblin et al. 

categorization (TC) 
Quartile 

categorization (QC)
 

D0
 

D2
 

D3
 

D4 
 Xi ≤ 1.2 

Xi  ≥ 1.3 and ≤ 2.5 
Xi  ≥ 2.6 and ≤ 4.0 

Xi  ≥  4.1 

 Xi < Q1 
Xi  ≥  Q1 and < Q2 
Xi  ≥  Q2 and < Q3 

Xi >  Q3 

0 
1 
2 
3 

0 
1 
0 
0 

0 
0 
1 
0 

0 
0 
0 
1 

 
The design variable D0 is used to perform what is often called a trend-test for the variable in categorized 
form using 

                          log 
π

1 - π = β0 + β1D0.                                                                                                       (8) 

 

5 RESULTS AND DISCUSSION 
 
In order to analyze the data, maximum likelihood estimate (MLE) and Schaefer's bias correction estimate 
(SBCE) were used. To test the significance of the regression coefficients in the continuous variable case 
(or in its logarithmic form), the likelihood ratio test (LRT), the score test (SCT) and the Wald test (WALD) 
were used. However, only LRT was used to test the overall significance in categorized and linear trend 
cases. Results are presented in Table 5 through Table 9. 
 

Table 5: Results for LR model with PSA and  LPSA Data 
 

         PSA LPSA 
 β̂0 β̂1 β̂0 β̂1 

MLE 
95%   CI

OR 

-2.6271 
-3.6189  -1.6353 

 

0.3897 
0.2000    0.5794

1.48 

-3.2892 
-4.5985  -1.9799

 

1.8423 
1.0373     2.6472 

6.31 
SBCE 

95%   CI
OR 

-2.5789 
-3.5708  -1.5872 

 

0.3736 
0.1839     0.5633

1.45 

-3.2159 
-4.5252  -1.9066

 

1.7735 
0.9685   2.5784 

5.89 
CI = Confidence Interval 

 
For PSA the odds ratio (OR) associated with a unit change is 1.48 according to the ML method, while the 
corresponding figure for LPSA is 6.31 (regression coefficients estimated from the LR model are the 
logarithm of OR). The corresponding figures for the bias corrected method are 1.45 and 5.89. Compared 
with the lowest category of PSA values, doubtful and non-significant risks are seen for values less than 4.0. 
In contrast, a PSA value greater than 4.0 is associated with a more than 30-fold increased risk of 
developing cancer.    
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For the data set with PSA, the observed absolute difference between MLE and SBCE is found to be 0.0482 
(0.0161) for β̂0 (β̂1). However, for LPSA a much larger difference, 0.0733 (0.0688) for β̂0 (β̂1), is 
observed. The relative difference is rather similar, however (4.1 and 3.7% for the slope). These results are 
not exactly comparable to the simulation study results of Schaefer (1983) and Matin (1994). However, for 
the sample size 100, Matin (1994) obtained an absolute difference between mean MLE and mean SBCE of 
0.0407 (0.0830) for β̂0 (β̂1) for a model with β0 = -2 and  β1 = -2. 
 
To show the effect of sample size, the analysis (Table 7) is based on the diagnosis years 1981-86, which 
comprise 51 observations, and 1987-91, which comprise 53 observations. Thus we reduce the sample size 
by almost 50%. The difference between MLE and SBCE is now much larger than in the cases previously 
considered with 104 observations. This result is in agreement with Schaefer (1983) and Matin (1994, 2005) 
where in small samples the difference between MLE and SBCE is found to be larger. Compared with the 
original skewed data, a much larger difference between the estimates is obseved for LPSA. The relative 
difference is rather similar and markedly larger than for the complete data set (as expected). 
    

Table 6: Results for LR Model with Categorized Data 
 

 β̂0 β̂1 β̂2 β̂3 

Tibblin et al. Categorization 
MLE 

95%  CI 
OR 

-2.9957 
-5.0041  -0.9873 

 

1.3863 
-0.9739    3.7464

4.00 

1.2611 
-1.0926    3.6149

3.53 

3.5904 
1.4913   5.6895 

36.25 
SBCE 

95%  CI 
OR 

-2.9957 
-5.0041  -0.9873 

 

1.3863 
-0.9739    3.7464

4.00 

1.2611 
-1.0926    3.6149

3.53 

3.5764 
1.4773    5.6755 

35.74 
Quartile Categorization 

MLE 
95%  CI 

OR 

-2.5257 
-3.9660   -1.0854 

 

0.0408 
-1.9976   2.0793

1.04 

2.1893 
0.5361   3.8424 

8.93 

4.0073 
2.2703   5.7444 

56.00 
SBCE 

95%  CI 
OR 

-2.5257 
-3.9660   -1.0854 

 

0.0408 
-1.9976   2.0793

1.04 

2.1893 
0.5361   3.8424 

8.93 

3.9301 
2.1930   5.6671 

50.91 
CI = Confidence Interval 

 
Table 7: Results for LR Model with PSA and LPSA Data 

                     
        1981-86 1987-91 
 PSA LPSA PSA LPSA 
 β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 

MLE 
OR 

-2.7441 
 

0.3388 
1.40 

-4.1773
  

2.1860
8.90 

-2.7251
 

0.4816
 1.62 

-2.8250 
 

1.7005 
5.48 

SBCE 
OR 

-2.6138 
  

0.3014 
1.35 

-3.9162
  

1.9640
7.13 

-2.6589
 

0.4535
 1.57 

-2.7504 
1.00 

1.6178 
5.04 

 
Are the differences large enough to be practically meaningful? For n = 104 the ORs obtained are very 
similar. In small samples, the situation is somewhat different. For LPSA based on diagnosis year 1981-86, 
the difference between ORs (computed from MLE and SBCE) is found to be approximately 2 units (Table 
7). This may be a difference of some importance in practice. 
 
Regarding the significance of the regression coefficient (i.e., to test H0: β1 = 0) all the test statistics in the 
continuous variable case show significant results. For PSA the test statistics show the relationship SCT < 
WALD < LRT,  but for LPSA the relationship is WALD < SCT < LRT (Table 8). Matin (1998, 2005) 
found the later relationship true for the mean values of the test statistics although that does not hold in 
every sample. If LPSA rather than PSA is used in univariate analysis, all the test statistics have larger 
values (Table 8). This supports the logarithmic transformation of the PSA data. 
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For the Tibblin et al. categorized data, with a sample of size 104, the difference between MLE and SBCE 
is virtually nil except for the fourth category where the difference is found to be only 0.0140 (Table 6). 
Similar comments can be drawn for the quartile categorized data. These results are not surprising at all, 
since Schaefer's study (1983) confirms that as the number of explanatory variables (continuous) increases 
with sample size, the bias reduction becomes negligible. For the quartile categorized data, the difference 
between ORs (computed from MLE and SBCE of the fourth category) is found to be approximately 5 units 
(Table 6). As the ORs are large, it is doubtful if this difference is of any practical importance. A strongly 
significant overall effect is obtained for both categorizations of the data. 
 

Table 8:  Test Statistic for Test of Regression Coefficient 
     

 Continuous 
variable 

Categorized 
variable 

Trend 

        PSA LPSA TC QC TC QC 
WALD 

SCT 
LRT 

16.21  
 12.83 
 44.12  

20.12 
35.82 
45.22 

 
 

34.42 

 
 

47.33

 
 

30.97 

 
 

45.11 
 

Table 9:  Results about π̂j and 1 - 2π̂j value for Sample Sizes 51 and 104 
           

SN  Mean SD Minm Maxm Q1 Q3 MLE – SBCE 
β̂0               β̂1 

Sample Size 51 
1 π̂j 

1 - 2π̂j

0.3600 
0.3000 

0.3945
0.7890

0.0094
-1.0000

1.0000
0.9811

0.0341
-0.7860

0.8930
0.9318

0.3881 0.1108 

2 
 

π̂j 

1 - 2π̂j

0.3400 
0.3400 

0.3597
0.7195

0.0303
-1.0000

1.0000
0.9394

0.0650
-0.3239

0.6620
0.8701

0.1696 0.0502 

3 
 

π̂j 

1 - 2π̂j

0.4000 
0.2200 

0.4021
0.8041

0.0070
-1.0000

1.0000
0.9860

0.0346
-0.9396

0.9698
0.9307

0.3522 0.1111 

4 
 

π̂j 

1 - 2π̂j

0.3333 
0.3330 

0.3628
0.7257

0.0278
-1.0000

1.0000
0.9444

0.0615
-0.3542

0.6771
0.8769

0.1779 0.0527 

5 π̂j 

1 - 2π̂j

0.3200 
0.3800 

0.3692
0.7384

0.0193
-1.0000

1.0000
0.9613

0.0452
-0.2963

0.6481
0.9096

0.1845 0.0545 
 

Sample Size 104 
1 π̂j 

1 - 2π̂j

0.3495 
0.3107 

0.2912
0.5825

0.0798
-1.0000

1.0000
0.8405

0.1277
0.0814

0.4408
0.7447

-0.0472 0.0157 

2 
 

π̂j 

1 - 2π̂j

0.3398 
0.3301 

0.3010
0.6020

0.0652
-1.0000

1.0000
0.8695

0.1101
0.0834

0.4381
0.7798

-0.0494 0.0165 

3 
 

π̂j 

1 - 2π̂j

0.2718 
0.4660 

0.2817
0.5634

0.0575
-1.0000

1.0000
0.8849

0.0873
0.3975

0.2879
0.8255

-0.0487 0.0138 

4 
 

π̂j 

1 - 2π̂j

0.3398 
0.3301 

0.2926
0.5852

0.0743
-1.0000

1.0000
0.8514

0.1196
0.1137

0.4247
0.7607

-0.0642 0.0156 

5 π̂j 

1 - 2π̂j

0.4175 
0.1748 

0.3320
0.6639

0.0573
-1.0000

1.0000
0.8855

0.1221
-0.3837

0.6661
0.7558

-0.0642 0.0247 

SN = Sample Number 
 
With the Tibblin et al. categorization, we find higher risks (Table 6) in all other categories when compared 
with the first. The risk increases are not significant in the second and third categories. The very high fourth 
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quartile OR on the other hand is highly significant. With QC there is no difference between the risk in the 
first two categories. The third and fourth category risks on the other hand are larger and significant even in 
the third category case according to the QC. Obviously, the categorization has effect on the results obtained 
although the broad impression gained is the same. 
 
Categorizing the data on the basis of all observations as in QC or on the basis of the controls only (which is 
what is approximately done in TC) produces quite different results in a case such as the present one with a 
large risk associated with the explanatory variable. The large difference between the two categorizations 
can be seen already from the number of observations in the different categories, a very even distribution of 
25-27 in the case of QC, but a much larger variation (21,18, 20 and 45) in the case of TC. A consequence 
of this is the larger OR obtained in the former case for the fourth category compared with the first one.        
 
5.1 Factors which effect the bias correction 
 
Can we say anything about when the bias is large and when it is small given a certain sample size? The 
term 1 - 2π̂j in (4) is equal to 0 if π̂j = 0.5, if π̂j > 0.5 1 - 2π̂j assumes negative value, if π̂j < 0.5 1 - 2π̂j 

assumes positive value and 1 - 2π̂j ∈ (−1 1). For a particular j, when π̂j = 0.5, the term in curly brackets 

becomes 0 and contributes nothing to the whole term in (4). However, as the value of 1 - 2π̂j moves away 

from zero its contribution increases according to the sign of 1 - 2π̂j. To see how this term can influence the 
bias correction, we conducted a small-scale simulation study. In doing so, the original 104 PSA values 
were considered fixed and the values of Y were generated conditional on PSA as in equation (5), whereby 
Y = 1 with probability [1 + e - (β0 + β1PSA)]-1, and = 0 otherwise. The parameter pair β0 = -2.6271, β1 = 
0.3897 (given in Table 5 as the ML estimates of LR model parameters) was used to compute the 
probability mentioned above. Then the LR model (5) parameters were estimated with these new cases and 
controls and the π̂j 's were computed. This experiment was repeated five times. The same procedure was 
applied to PSA based on the diagnosis year 1981-86 with 51 observations and the parameter pair β0 = -
2.7441, β1 = 0.3388 (given in Table 7 as the ML estimates of LR model parameters). Results are presented 
in Table 9. To facilitate the comparison of these results, the difference between MLE and SBCE is included 
in the last two columns of Table 9. 
 
With n = 51, the differences are found to be larger for the sample numbers 1 and 3, which are accompanied 
by a smaller mean value of 1 - 2π̂j. The inter-quartile difference of 1 - 2π̂j is larger for the same sample 
numbers. With n = 104, sample number 5 provides similar results. Furthermore we know that the logistic 
function is essentially linear for π̂j ∈ (0.20 0.80), but outside this interval it becomes markedly non-linear 

(Collett, 1991). The case where π̂j ∈ (0.25 0.75) for 50% of the indices j, 1 ≤ j ≤ n is more favourable for 

ML estimates (Duffy and Santner, 1988). Now as a clue, if the value of π̂j ranges on both sides of 0.5 

symmetrically, then each positive contribution of the term 1 - 2π̂j is counterbalanced by a negative 
contribution at least for the linear components of the logistic function. Hence, almost no contribution needs 
to be added to the whole term in (4). Also, the closer the π̂j values are to 0.5, the smaller  the contribution 
to (4). Smaller contributions are more likely in large samples than in small ones, because cancellation of 
each positive contribution by a negative one is more likely due to the more symmetric nature expected in 
large samples. 
       

6 CONCLUSION 
 
With the explanatory variable in its original continuous form, a small difference between MLE and SBCE 
is observed. However, the conclusions are not affected by the method used. When the original sample size 
(104) is reduced by almost 50%, the estimated difference is larger. The differences are possibly so large 
that they may influence the conclusions drawn. The log transformed data is much more symmetric than the 
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original skewed one. Compared with the skewed data, a much larger absolute difference between the 
estimates is observed for the log transformed data, although the relative difference is not large. For the 
original sample size, the ORs obtained are very similar. However, in practice, for small samples the 
difference between ORs is found to be of some importance. The categorization has an obvious effect on the 
results obtained. However, no real difference is observed between the estimates of the two methods, the 
fourth category serving as the only exception. That is, the broad impression gained is the same although the 
large difference between the two types of categorizations can not be overlooked. It is observed (from the 
small-scale simulation study) that a smaller mean value of the term 1 - 2π̂j is accompanied by a larger 

difference between the estimates of the two methods used in the study. Thus, the term 1 - 2π̂j can influence 

the bias correction to be small or large. The closer the π̂ j values are to 0.5, the lesser will be the 
contribution to the bias correction. 
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