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Abstract: In this paper, we study the effect of noisy links on the
steady–state performance of incremental recursive least-squares (RLS)
adaptive networks. In our analysis, using weighted spatial-temporal
energy conservation approach, we arrive a variance relation which con-
tains moments that represent the effects of noisy links. We evaluate
these moments and derive closed–form expressions for the mean-square
deviation (MSD) and excess mean-square error (EMSE) to explain the
steady-state performance at each individual node. The derived expres-
sions have good match with simulations.
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1 Introduction

The problem of estimating an unknown parameter from data collected by a
set of nodes arises in several applications. Among the proposed solutions in
the literature, adaptive networks are appealing solutions when the statistical
information about the underlying processes of interest is not available. Co-
operative processing in conjunction with adaptive filtering per node allows
the network to account for time variations in the signal statistics. Adaptive
networks may be referred to as incremental networks or diffusion networks,
depending on the manner by which the nodes communicate with each other.
The incremental LMS [1], incremental RLS [2], incremental techniques based
on the affine projection algorithm [3], are examples of adaptive networks with
incremental mode of cooperation. When more communication and energy re-
sources are available, a diffusion cooperative scheme can be applied. In these
schemes each node updates its estimate using all available estimates from its
neighbors, as well as data and its own past estimate [4, 5, 6].

In [1, 2, 3, 4, 5, 6], the communication links between nodes are assumed
to be ideal. In this paper we study the steady-state performance of incre-
mental RLS adaptive network with unreliable communications modeled by
noisy links. We first show that the performance of incremental RLS adaptive
network drastically deteriorates when links between nodes are noisy. Then,
we use the weighted energy conservation argument and derive closed-form
expressions to explain the steady-state performance at each individual node.
Simulation results are also presented to clarify the derived expressions.

Notation: We adopt boldface letters for random quantities. Symbol *
denotes complex conjugation (scalars) and Hermitian transpose (matrices).

2 Incremental RLS with noisy links

Consider a distributed network which is deployed to estimate an unknown
vector wo from measurements collected at nodes. Each node k has access to
time-realizations {dk(i), uk,i} of zero-mean spatial data {dk,uk}, where each
dk(i) is a scalar measurement and each uk,i is a 1×M row regression vector.
At each time instant i, the network has access to the following data

yi = [d1(i) d2(i) · · · dN (i)]T and Hi = [u1,i u2,i · · · uN,i]
T (1)

Note that yi and Hi are in fact snapshot matrices revealing the network data
status at time i. Collecting all the data (available up to time i) into global
matrices Yi and Hi yields

Yi = [y0 y1 · · · yi]
T and Hi = [H0 H1 · · · Hi]

T (2)

Now we pose regularized weighted least-squares (LS) problem to estimate wo

as follows
min

w

[
λi+1w∗Πw + ‖Yi −Hiw‖2Wi

]
(3)

where Π is a regularization matrix, and the weighting matrix is given by [2]

Wi = diag{λiD,λi−1D, . . . , λD,D} (4)
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with a spatial weighting factor D = diag{γ1, γ2, . . . , γN}, γi ≥ 0 and (time)
forgetting factor 0� λ ≤ 1. The solution of problem (3) is given by [2]

wi = PiH∗
iWiYi (5)

where
Pi =

(
λi+1Π +H∗

iWiHi

)−1 (6)

In [2] the incremental RLS adaptive network is introduced to estimate wo

recursively in a distributed manner which can be summarized as follows
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ
(i)
0 ← wi−1; P0,i ← λ−1Pi−1

ψ
(i)
k = ψ

(i)
k−1 + Γu∗k,i(dk(i)− uk,iψ

(i)
k−1)

Pk,i = λ−1
[
Pk,i−1 − Γu∗k,iuk,iPk,i−1

]
wi ← ψ

(i)
N ; Pi ← PN,i

(7)

where ψ(i)
k is the local estimate of wo at node k at time i and Γ is

Γ =
λ−1Pk,i−1

γ−1
k + λ−1uk,iPk,i−1u

∗
k,i

(8)

The given algorithm in (7) works as follows [2]: at each time i, the local
estimate ψ(i)

k at node k is the LS solution considering data blocks Yi−1 and
Hi−1 in addition to the data collected along the path. At the end of the
cycle, ψ(i)

N will contain precisely the desired solution wi. Note that in this
implementation ψ(i)

k is transmitted to the next node in the path, while Pk,i is
estimated locally and independent from the neighbor nodes. In the presence
of noisy links, ψ(i)

k in (7) is updates as

ψ
(i)
k = ψ

(i)
k−1 + qk,i + Γu∗k,iek(i)− Γu∗k,iuk,iqk,i (9)

where ek(i) = dk(i)− uk,iψ
(i)
k−1 and the M × 1 vector qk,i represents the time

realization of link noise between node k − 1 and k which is assumed to be
additive, zero-mean with covariance matrix Qk = E(qkq

∗
k). No distributional

assumptions are required on the noise sequence. The effect of noisy links on
the performance of incremental RLS adaptive network is obvious from Fig. 1.
(The simulation setup is described in section (4)). As it is clear from Fig. 1,
the performance of distributed adaptive estimation algorithm drastically de-
creases when links are noisy.

Fig. 1. The MSD learning curve for incremental RLS.
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3 Performance analysis

Our analysis relies on the energy conservation approach of [7]. To carry out
the performance analysis, we first need to assume a model for the data as
is commonly done in the literature of adaptive algorithms. Thus, in the
subsequent analysis we consider the following assumptions

A.1. Linear model dk(i) = uk,iw
o + vk(i) where vk(i) is white noise term

with variance σ2
v,k and is independent of {dl(j),ul,j} for all l, j.

A.2. uk,i are spatially and temporary independent and {uk} arise from a
source with circular Gaussian distribution with covariance matrix Ru,k.

A.3. qk,i is independent of {ul,j ,vl(j), ql,j} for all l, j.

Note that in steady-state analysis, it is desired to evaluate the MSD and
EMSE for every node k which are defined as

ηk � E(‖ψ̃(∞)
k−1‖2) = E(‖ψ̃(∞)

k−1‖2I) (MSD) (10)

ζk � E(|ea,k(∞)|2) = E(‖ψ̃(∞)
k−1‖2Ru,k

) (EMSE) (11)

where ea,k(i) � uk,iψ̃
(i)
k−1 and ψ̃(i)

k � wo−ψ(i)
k . By subtracting wo from both

sides of update equation (9) we get

ψ̃
(i)
k = ψ̃

(i)
k−1 − qk,i − Γu∗

k,iek(i) + Γu∗
k,iuk,iqk,i (12)

Equating the weighted norm of both sides of the previous equation, take
expectation of both sides and using assumptions (A.1)-(A.3) we obtain

E(‖ψ̃k‖2Σ) = E(‖ψ̃k−1‖2Σ′) + σ2
v,kE(‖uk‖2ΓΣΓ) + E(‖uk‖2ΓΣΓq

∗
ku

∗
kukqk)

+E(‖qk‖2Σ)− E(q∗kΣΓu∗
kukqk)− E(q∗ku

∗
kukΓΣqk)(13)

where
Σ′ � Σ− E(ΣΓu∗

kuk + u∗
kukΓΣ) + E(‖uk‖2ΓΣΓu

∗
kuk) (14)

Recursion (13) is a variance relation that can be used to infer the steady-state
performance at every node k. Note that Σ′ is solely regressors-dependent
and, therefore, decoupled from the weight error vector. Now using the eign-
decomposition Ru,k = UkΛkU

∗
k , (where Λk is a diagonal matrix with the

eigenvalues of Ru,k and Uk is unitary) we define the transformed quantities

ψk � U∗
k ψ̃k, ψk−1 � U∗

k ψ̃k−1, uk � ukUk, qk � U∗
kqk

Σ � U∗
kΣUk, Σ′ � U∗

kΣ′Uk, Γ � U∗
kΓUk (15)

Using the definitions in (15), Eqs.(13) and (14) can be rewritten as

E(‖ψk‖2Σ) = E(‖ψk−1‖2Σ′) + σ2
v,kE(‖uk‖2Γ ΣΓ

) + E
(‖uk‖2Γ ΣΓ

q∗ku
∗
kukqk

)
+E(‖qk‖2Σ)−E(q∗k ΣΓu∗

kukqk)−E(q∗ku
∗
kukΓ Σqk)(16)

Σ′ � Σ− E(Σ Γu∗
kuk + u∗

kukΓ Σ) + E(‖uk‖2Γ ΣΓ
u∗

kuk) (17)
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To proceed, we evaluate the moments in (16) and (17) which are

E(‖qk‖2Σ) = Tr
[
BkΣ

]
E(‖uk‖2Γ ΣΓ) = Tr

[
ΛkΓ Σ Γ

]
E(‖uk‖2Γ ΣΓ

q∗ku
∗
kukqk) = Tr[Bk(ΛkTr[Γ Σ ΓΛk] + δΛkΓ Σ ΓΛk)]

E(q∗kΣΓu∗
kukqk) = Tr[ΛkBkΣ Γ]

E(‖uk‖2Γ Σ Γ
u∗

kuk) = (ΛkTr[Γ Σ ΓΛk] + δΛkΓ Σ ΓΛk) (18)

where Bk = U∗
kQkUk and δ = 1 for circular complex data and δ = 2 for real

data. Replacing these moments, (16) and (17) can be rewritten as

E(‖ψk‖2Σ) = E(‖ψk−1‖2Σ′) + σ2
v,kTr[ΛkΓ ΣΓ] + Tr[BkΣ]

+Tr[Bk(ΛkTr[Γ ΣΓΛk] + δΛkΓ ΣΓΛk)]− 2Tr[ΛkBk ΣΓ] (19)

Σ′ = Σ− ( ΣΓΛk + ΛkΓ Σ) + (ΛkTr[Γ ΣΓΛk] + δΛkΓ ΣΓΛk) (20)

Note from (20) that choosing Σ to be diagonal, will be diagonal Σ′ as well,
suggesting a more compact notation. Thus, we introduce the M × 1 vectors

σ � diag{Σ} σ′ � diag{Σ′} bk � diag{Λk} (21)

Using the diagonal notation [1, 2] we obtain linear relation σ′ = F kσ where
F k is a M ×M matrix that includes statistics of local data as

F k = (1− 2βk + δβ2
k)I + β2

kbkc
T
k (22)

with ck = diag{Λ−1
k } and βk given by

βk =

⎧⎨
⎩

1−λ
γ−1

k

, for λ→ 1
1−λ

γ−1
k λ+(1−λ)M

, for smaller λ
(23)

As a result, expression (19) becomes

E(‖ψk‖2diag{σ}) = E(‖ψk−1‖2diag{σ′}) + gkσ (24)

where gk is a row vector as

gk = σ2
v,kβ

2
kc

T
k + (diag{Bk})TF k (25)

Comparing (25) with gk in [2] we can see that (diag{Bk})TF k explicitly
accounts for the noisy link effects. Thus, following the similar steps given in
[1, 2] we can obtain the following expressions for MSD and EMSE

ηk = ak(I −Πk,1)
−1r, (MSD) (26)

ζk = ak(I −Πk,1)
−1bk, (EMSE) (27)

where r � diag{I} and

Πk,l � F k+l−1F k+l . . . FNF 1 . . . F k−1, l = 1, . . . , N (28)

ak � gkΠk,2 + gk+1Πk,3 + . . .+ gk−2Πk,N + gk−1 (29)
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4 Simulation

In this section we provide computer simulations comparing the theoretical to
simulation results. To this aim we consider a network with N = 15 nodes
where each local filter has M = 4 taps. Each node accesses independent
Gaussian regressors uk,i where their eigenvalue spread is ρ = 5. The obser-
vation noise variances σ2

v,k and Tr[Ru,k] are shown in Fig. 2. We also assume
Qk = 10−4IM to model the covariance matrix of link noise and λ = 0.997.
The system evolves for 2000 iterations and the steady-state values are ob-
tained by averaging the last 200 time samples. The curves are obtained by
averaging over 100 experiments with λ = 0.997. In Fig. 3 the steady-state
of MSD and EMSE are plotted. It is clear from Fig. 3 that there is a good
match between simulations and theory which is an evidence that the derived
expressions can describe the steady-state performance of incremental RLS
adaptive network with noisy links.

Fig. 2. The Observation noise profile, σ2
v,k and Tr(Ru,k).

Fig. 3. The MSD and EMSE per node k – comparing sim-
ulation with theory.

5 Conclusion

In this paper, we studied the effect of noisy links on the performance of in-
cremental RLS adaptive networks. Using weighted spatial-temporal energy
conservation relation, we arrived a variance relation which contains moments
that represent the effects of noisy links. We evaluated these moments and de-
rived closed-form expressions for the MSD and EMSE to explain the steady-
state performance at each individual node. The derived expressions have
good match with simulations.
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