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Abstract 

For the development of a high-performance software system of membrane protein 
prediction, we analyzed the distribution of hydrophobicity and the amphiphilicity around 
transmembrane helices, using dataset of membrane proteins whose 3D structures or 
topologies are known.  The moving average of 7 residues showed that there are a 
hydrophobicity peak in the center of a transmembrane helix and two amphiphilicity peaks at 
both ends of the hydrophobicity peak.  The shapes of the peaks were asymmetric with 
respect to the center of the hydrophobicity peak.  The membrane protein prediction system 
SOSUI (Hirokawa and Mitaku, Bioinformatics, 1998) was improved on the basis of the 
asymmetric profiles of hydrophobicity and amphiphilicity, resulting in the accuracy of 98% 
for positive dataset and 96% for negative one of prokaryotes, and the comparable accuracy 
was obtained also for eukaryotes. 
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1. Introduction 

The theoretical prediction of the cellular localization of proteins from amino acid sequences 
alone will be very helpful for screening orphan sequences because experiments of functional 
genomics are time consuming.  The penetration of a protein into membrane is one of the most 
basic cellular localization, which is recognized by the translocation machinery in a cell.  Because 
of the functional importance of membrane proteins, several groups have investigated the common 
features of membrane proteins as well as transmembrane regions [1][2][3][4][5][6][7] and 
developed software systems for the prediction [8][9][10][11][12][13][14][15].  The systems which 
are available on the internet can be categorized into two types: informatics methods and 
physicochemical approaches to the discrimination problem.  
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The former methods include the score matrix method, the neural network and the hidden Markov 
model. The score matrix and the neural network methods mainly use local properties of amino acid 
sequences [9][10][11], whereas the hidden Markov model can take the information of non-local 
sequences into account [12][13][14][15]. Anyhow, the main purpose of the informatics methods is 
to adjust parameters so that the highest accuracy is attained indifferent of the physical mechanisms.  

In the physicochemical approaches, in contrast, physically well-defined parameters which give 
the best discrimination between soluble and membrane proteins are searched, taking care of the 
physical soundness of the combination. When a really good combination of such parameters is 
obtained, they lead not only to the information about the physical mechanism but also to a high 
performance software system of the prediction.  The membrane protein prediction system SOSUI 
by Hirokawa and Mitaku [8] is one of those methods. Three parameters were combined in SOSUI 
to discriminate a membrane protein from other types of proteins: the high average hydropathy index 
of at least one segment, the high amphiphilicity index at the end regions of the hydrophobic 
segment, and the size of the protein [1][2][3][4]. This system attained high accuracy of the 
discrimination between membrane and soluble proteins. Analyses of amino acid sequences from 
total genomes have shown that approximately a quarter of ORFs code for membrane proteins 
[16][ 17]. 

However, preliminary analysis of organella membrane proteins indicated that they had 
intermediate properties between cytoplasmic membrane proteins and soluble ones [18]. Thus, three 
problems should be solved for the complete prediction of membrane proteins. The first problem is 
to improve the accuracy of the discrimination between membrane and soluble proteins, neglecting 
the dataset of proteins targeted to other organella than endoplasmic reticulum which is a pool of 
cytoplasmic membrane proteins. The second problem is the discrimination of organella membrane 
proteins by searching signal sequences that are recognized by the targeting machinery. The third is 
to predict all transmembrane helices including hydrophilic ones, determining the transmembrane 
regions together with the membrane topologies of helices.  

In this work, we analyzed the detailed distribution of hydrophobicity and amphiphilicity indices 
of amino acids around transmembrane regions to help solve the first problem, which is improving 
the accuracy of the discrimination between membrane and soluble proteins. Then, we implemented 
the characteristic profiles of hydrophobicity and amphiphilicity indices into the algorithm of 
membrane protein prediction, making a new version of the SOSUI system.   

2. Datasets 

We used five sets of amino acid sequence data.  The first set included the most reliable data: 
that of membrane proteins of known 3D structure, whose atomic coordinates are recorded in the 
Protein Data Bank [19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35].  Table 
1 shows the names and PDB codes of membrane proteins, and the numbers of chains and helices 
they contain.  The total number of membrane proteins in this category was 36.  The topology of 
membrane proteins in these data is known.  Redundancy of data was removed with the cutoff of 
30% homology.  The distribution of physical properties was analyzed by using transmembrane 
helices in this data set. 

The second data set included 148 membrane proteins which were reported by Möller et al. [36]. 
Transmembrane regions and their topologies are experimentally confirmed for the proteins in this 
data set.  Some of data, 22 proteins with 63 helices, were also included in the first data set and, 
therefore, omitted from this data set.  Other data, 6 proteins with 22 helices, did not describe the 
information about membrane protein topology and omitted again from the data set.  Redundancy 
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of data was removed from the merged data set of 3D set and the Möller’s set with the cutoff of 30% 
homology. 3 data (3 helices) in Möller set were eliminated.  Finally, Möller’s set included 117 
proteins with 618 helices data (33 eukaryote proteins with 167 transmembrane helices and 84 
prokaryote proteins with 451 transmembrane helices).  The number of plasma membrane proteins 
with the information of topology consequently was 33 for eukaryotes and 101 for prokaryotes, 
which were used. 

The third data set contained 85 membrane proteins with 267 transmembrane helices in 
intracellular organelles: mitochondria, nucleus, peroxisome and chloroplast.  Combining these 
data with membrane proteins in organelle in the first and second dataset, the total number of 
organelle membrane proteins was 104.  Membrane proteins in endoplasmic reticulum were not 
included in this data set because they are mainly targeted to the cytoplasmic membrane.  Data was 
collected from Swissprot rel.40 by three conditions: 1) Keywords in "SUBCELLULAR 
LOCATION" of CC line are "MITOCHONDRIAL", "MITOCHONDRION", "NUCLEAR", 
"PEROXISOME" or "CHLOROPLAST".  2) A keyword "INTEGRAL MEMBRANE PROTEIN" 
is found in KW line and "TRANSMEM" in FT line. 3) There are not any keywords like 
"PROBABLE", "HYPOTHETICAL", "PUTATIVE", "THEORETICAL", "FRAGMENT" in 
"SUBCELLULAR LOCATION" of CC line.  After the collection, the redundancy of data was 
removed with the cutoff of 30% homology. 

The fourth data set is soluble protein set.  This data set is very important as the negative control 
data against membrane proteins.  This set is composed of two soluble protein data sets.  One is 
obtained from PDBselect [37].  In order to obtain the information about the signal sequences at 
amino terminus, we checked the data by Swissprot database and obtained 350 soluble proteins 
(eukaryote protein: 152 and prokaryote one: 198).  These data contained 1070 helices longer than 
19 residues. 

Table 1. Dataset of transmembrane proteins whose 3D-structure is known. 

F1F0 ATPsynthase (E. coli) 1A91 1 2

Cyto. bc1 complex (Bovine) 1BGY(Chain C,D,G,J,K) 5     8,1,1,1,1

Bacteriorhodopsin (H. salinarium) 1AT9 1 7

Ca ATPase, SR (rabbit) 1EUL 1 10

Cyto. C oxidase (bovine) 1OCC (I,II,III,IV,VIa, VIc,VIIa,VIIb,VIIc,VIII) 10   12,2,7,1,1,1,1,1,1,1

Cyto. C oxidase (Thermus thermophilus) 1EHK (Chain I,II ) 2 13,1

Fumarate Reductase (W. succinogenes 1) 1QLA (Chain C) 1 5

Fumarate Reductase (E. coli) 1FUM (15 kD anchor, 13kD anchor ) 2 3,3

Glycophorin A (human) 1MSR 1 1

Halorhodopsin (H. salinarium) 1E12 1 7

KcsA potassium channel (S. lividans) 1BL8 1 2

Light Harvesting Complex (R. acidophila) 1KZU (Chain A,B ) 2 1,1

Light Harvesting Complex (R. molischianum) 1LGH (Chain A) 1 1

MscL ion channel (M. tuberculosis) 1MSL 1 2

Reaction center (R. viridis) 1PRC (Chain M,L,H) 3 5,5,1

Rhodopsin (bovine) 1F88 1 7

Aquaporin (human) 1FQY 1 6

Glycerol Channel (E. coli) 1FX8 1 6

Total 36 129

# of helicesprotein ID                                                  # of chains
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The fifth set also used as negative control data included 156 soluble proteins which directly 
extracted from Swissprot rel.40 by the conditions: 1) A keyword, "MITOCHONDRIAL" or 
"MITOCHONDRION", is found in "SUBCELLULAR LOCATION" of CC line.  2) There are no 
keywords, "INTEGRAL MEMBRANE PROTEIN" in KW line and "TRANSMEM" in FT line.  3) 
Any of keywords, "PROBABLE", "HYPOTHETICAL", "PUTATIVE", "THEORETICAL" or 
"FRAGMENT", is found in "SUBCELLULAR LOCATION" of CC line.  This data set includes 
only soluble proteins in mitochondria.  After extraction, redundancy of data was removed with the 
cutoff of 30% homology. 

The forth and fifth set that included 198 prokaryote proteins and 308 eukaryote ones were used 
as negative control data for evaluation of prediction accuracy. 

These five datasets can be found at http://bp.nuap.nagoya-u.ac.jp/~tsuji/paper/01/index.html. 

3. Analysis of Transmembrane Helices 

 A previous work indicated that a transmembrane helix has a peak of hydrophobicity 
corresponding to the central region of membrane and two clusters of amphiphilic residues which 
probably stabilize the membrane-water interface [1][9][38].  However, this information could not 
exactly be implemented into the membrane protein prediction system SOSUI.  For improving the 
system by using the landscape of the physical properties around transmembrane segments, we 
analyzed in more detail the hydrophobicity and the amphiphilicity of around transmembrane 
segments dividing them into seven regions: three regions within a helix and two regions in N- and 
C-terminal loops next to the helical segment (Figure1).  The center region is defined 50% length 
of each transmembrane helix, end regions are defined 25% length each terminal of transmembrane 
helix. Loop1, 2 regions are five amino acid residues long.  When a loop segment was shorter than 
5 residues, all the amino acids in the loop segment were assumed to belong to Loop1 regions. 

We found that not only the helical regions but also loop regions of about 10 residues next to the 
helix region had characteristic profiles of the hydrophobicity [4] and the amphiphilicity indices [1].  
A peak of the hydrophobicity index was slightly asymmetric with the external end being more 
hydrophobic than the cytoplasmic end.  We defined two kinds of amphiphilicity indices of amino 
acids, A- and A’- indices, which are different in the strength of polarity [4].  The amino acids of 
nonzero A-index were His, Lys, Arg, Glu, Gln and those for A’-index were Trp and Tyr.  The 
profiles of A- and A’-indices had a common feature of twin peaks sandwiching the hydrophobicity 
peak.  However, the profiles of A- and A’-indices were different in several points: (1) A-index was 
very low at the central region of transmembrane helices, whereas A’-index was considerably high at 
the same region.  (2) A-index was much higher at the cytoplasmic side than the external side, 
while A’-index showed inversed profile.  (3) A-index was higher at the loop region than the inside 
of the helix.  In contrast, A’-index was larger at the end region of helix than          
the loop. 

These features of three profiles in Figure 1 seem to be physically sound and suggest the 
mechanism of the stability of typical transmembrane helices.  First, the high hydrophobicity of a 
sufficiently long segment is the basic requirement for the energy minimization of a transmembrane 
helix in the membrane.  Second, amphiphilic residues, namely A- and A’-index residues, prefer the 
interface between the nonpolar and the aqueous environments, and the twin peaks of A- and 
A’-indices contribute to the location of the terminals of transmembrane helices at the 
membrane-water interface.  Third, the asymmetric profile of the A-index seems reasonable, when 
we assume that the large peak of A-index at the membrane-water interface of the cytoplasmic side 
is a stop signal of the protein translocation.  This role of A-index amino acids is physically 
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reasonable because nonpolar hydrocarbon region of membrane with low dielectric constant forms 
the high energy barrier for strongly polar groups of A-index residues.  Fourth, A’-index residues 
are not so polar and can easily be translocated to the other side of membrane.  Therefore, residues 
of A’-index probably work as a stabilizing factor of transmembrane helices mainly at the external 
side.  

.Figure 1.  Distribution of hydrophobicity and amphiphilicity indices around transmembrane 
helices.  Average values of H-, A- and A’-indices in each regions, a center, two 
ends, two loop1 and loop 2 regions are plotted as histograms.   
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Table 2 shows the average values of three parameters, H-, A-, A’-indices, for seven regions 

defined in Figure 1.  In this table, all values are normalized by those at the central region of 
helices.  These profiles are the standard distributions of the hydrophobicity and the amphiphilicity 
around transmembrane helices obtained by averaging many membrane proteins, but the 
distributions for individual transmembrane helices should fluctuate around the standard 
distributions.  When the set of the H-, A- and A’-indices for seven regions are regarded as vectors, 
H
uur

, A
ur

 and 'A
uur

, respectively, the products, H , A  and 'A , of the vectors for an 
individual helix and the standard vectors can be used as good parameters, which indicate how an 
individual helix is similar to the standard one.  
 
     SH H H= •

uur uuur
 (1) 

     SA A A= •
ur uur

 (2) 

     ' ' 'SA A A= •
uur uuur

 (3) 
 
Here, sH

uuur
, sA
uur

 and 'sA
uuur

 represent the standard vectors whose elements are given by the numbers 
in Table 2.  

Figure 2 shows the histograms of three parameters, H , A  and 'A , for the most 
hydrophobic helices in every proteins, comparing the datasets of soluble and membrane proteins.  
The difference between soluble and membrane proteins is significant for the histograms of H , 

but all the pairs of H , A  and 'A  showed wide overlapping regions irrespective of 
prokaryotes and eukaryotes.  Therefore, a single parameter is not effective for the discrimination 
of membrane proteins from soluble ones. 

Table 2. Weight factors for discriminating transmembrane segments. 

loop2 loop1 end center end loop1 loop2
H -0.10 -0.40 0.33 1.00 0.54 -0.13 0.06
A 4.15 4.62 3.40 1.00 2.12 3.14 2.64
A' 0.90 0.97 1.58 1.00 1.81 1.77 1.60

Cytoplasmic End External End
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4. Discrimination of membrane proteins 

Principal component analysis by four parameters, H , A  and 'A  and protein size L, was 
performed for discriminating two kinds of proteins: soluble and membrane proteins.  We omitted 
the data set of organelle membrane proteins in the present analysis, since the additional analysis of 
targeting signals is necessary for the discrimination of organelle membrane proteins.  Principal 
component analysis involves a mathematical procedure that transforms a number of correlated 
variables into a smaller number of uncorrelated variables called principal components. The 
uncorrelated variables are linear combinations of the original variables.  
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Figure 2.  Histograms of three parameters, H , A  and 'A , for the most 
hydrophobic helices of soluble and membrane proteins in prokaryotes and 
eukaryotes.  
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  Table 3 shows the first and the second components for prokaryotes and eukaryotes.  The 
contribution of the first component is so large, 99.99 %, for both prokaryotes and eukaryotes that 
membrane proteins can be discriminated by a single component. 

According to the principal component analysis, the discrimination lines for prokaryotes and 
eukaryotes were determined as Eqs. (5) and (6), respectively.  

 
( , , ', ) 7.49 0.028 6.17 ' 0.005 11.1prof H A A L H A A L= + + − −   (5) 

 
( , , ', ) 6.55 0.548 4.52 ' 0.001 11.1eukf H A A L H A A L= + + − −  (6) 

 
in which prof  is the discrimination score for prokaryotes and eukf  is that for eukaryotes.  Figure 
3 shows the histograms of the discrimination score for the most hydrophobic segment in every 
soluble and membrane proteins.  Two kinds of proteins are very well discriminated by this 
parameter. 

Table 3. Results of Principal component analysis for prokaryotes and eukaryotes 

Component H A A’ L Contribution

First 2.936 0.0499 2.481 -0.0018 99.99% 

Second 0.505 1.137 -0.392 0.0019 0.01% 

Component H A A’ L Contribution

First 3.217 0.144 1.699 -0.0003 99.98% 

Second -0.5841 -0.1641 4.0118 0.0007 0.02% 

(1)  Prokaryotes 

(2)  Eukaryotes 
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The accuracy of the present system is compared with other membrane protein prediction 
systems in Table 4.  The performances of membrane proteins prediction was evaluated using a 
jack knife procedure.  The result showed that the accuracy of the prediction for membrane proteins 
was slightly lower than the values in the Tables, but the accuracy for soluble proteins were the same 
as the value in Tables.  The accuracy of the true positive prediction is almost the same among 
various systems.  However, the difference of the performance of the systems is well represented 
by the accuracy of the true negative prediction, that is the soluble protein prediction.  Many of 
false positive data from soluble proteins had signal peptide: 8 false positive data for prokaryotes 
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Figure 3. Histogram of discrimination score. 

Histogram of the highest discrimination score in amino acid sequences.  
Open bars are represented soluble proteins, solid ones are membrane proteins. 

Table 4.  Comparison of membrane protein predictors. 

TP FN Accuracy TP FP Accuracy
This Research 99 2 98.02% 190 8 95.96%
SOSUI 98 3 97.03% 184 14 92.93%
TMHMM2 98 3 97.03% 177 21 89.39%
TopPred 101 0 100.00% 66 132 33.33%
MEMSAT2 101 0 100.00% 106 92 53.54%

Prokaryote
Plasma membrane

proteins (101) Soluble proteins (198)

TP FN Accuracy TP FP Accuracy TP FN Accuracy
This Research 33 0 100.00% 303 5 98.38% 41 63 39.42%
SOSUI 32 1 96.97% 281 27 91.23% 63 41 60.58%
TMHMM2 33 0 100.00% 298 10 96.75% 72 32 69.23%
TopPred 33 0 100.00% 127 181 41.23% 104 0 100.00%
MEMSAT2 33 0 100.00% 206 102 66.88% 97 7 93.27%

Plasma membrane
proteins (33) Soluble proteins (308) Other membrane

proteins (104)

Eukaryote
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and 5 for eukaryotes.  Among those data 6 for prokaryotes and 3 for eukaryotes could be predicted 
as secretary proteins by SOSUIsignal, which will be reported else where.  Many amino acid 
sequences of soluble proteins are incorrectly predicted as membrane proteins in TopPred and 
MEMSAT2.  TMHMM2 is a considerably good system, but the prediction of soluble proteins has 
errors more than 10 %.  On the other hand, the accuracy of the true negative prediction of the 
present system is as good as 96 %.  The system is improved by about 3 % from the original 
SOSUI.  Because about three quarters of proteins are soluble ones, the false negative prediction of 
10 % means that about 30 % of membrane protein prediction is incorrect.  This is a very important 
point in the classification of all amino acid sequences from genome information, which includes 
many orphan sequences whose biological meaning is unknown.  

5. Discussion 

The purpose of this work is to reveal the distributions of two physical parameters, the 
hydrophobicity and the amphiphilicity around typical transmembrane helices and to develop a high 
performance method of the membrane protein prediction, which is the basis of the prediction of 
cellular localization of proteins.  Previously, we developed a membrane protein prediction SOSUI, 
which was one of the best systems in various methods, as shown in Table 4.  The basic concept of 
SOSUI was that a membrane protein has at least one transmembrane helix whose central region is 
hydrophobic enough and sandwiched by the clusters of amphiphilic residues.  In this work, we 
devised more systematic parameters that reflect the characteristic distribution of the hydrophobicity 
and the amphiphilicity indices of typical transmembrane helices.  The improved system realized 
higher accuracy than not only the original SOSUI but also various informatics methods.   

This result is important from two aspects: First, the improved system is practically very useful 
for the analysis of genome information.  There are still many unknown sequences in total amino 
acid sequences in spite of extensive investigation of functional genomics.  The improvement of 
the performance of the membrane protein prediction in this work provides more reliable data set of 
membrane proteins for those who want to carry out experiments of membrane proteins in genome 
scale.  Second, the concept of this method in which to physical properties were coarse grained can 
be used for various other problems of protein classification.  The membrane protein prediction in 
this work is based on the fact that clusters of hydrophobic residues and amphiphilic residues are 
substantial for stabilizing a transmembrane helix.  Similarly, dumbbell-type proteins, for example, 
could be accurately predicted by the coarse graining approach [39]. 

This work is the first step of the development of a system which predicts membrane proteins, the 
targeting to various organella, and the location together with the topology of transmembrane helical 
regions.  As shown in Table 4, the targeting to organella is still unsolved problem, and we will 
report in the next work a method for the targeting of proteins particularly to mitochondria. 
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