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ABSTRACT
Achilles Tendinopathy is a complex problem, with the most common conservative treatment being eccen-
tric exercises. Despite multiple studies assessing this treatment regime little is known about the mecha-
nism of effect. This lack of understanding may be hindering therapeutic care and preventing optimal 
rehabilitation. Of the mechanisms proposed, most relate to tendon adaptation and fail to consider other 
possibilities. The current consensus is that tendon adaptation does not occur within timeframes associated 
with clinical improvements, therefore the clinical benefits must occur through another unidentified path-
way. This clinical commentary critically reviews each of the proposed theories and highlights that muscle 
alterations are observed prior to onset of Achilles Tendinopathy and during the disease. Evidence shows 
that the observed muscle alterations change with treatment and that these adaptations have the ability to 
reduce tendon load and thereby improve tendon health. The purpose of this clinical commentary is to 
review previous theories regarding the mechanisms by which eccentric exercise might affect Achilles ten-
dinopathy and offers a novel mechanism by which the plantarflexor muscles may shield the Achilles 
tendon. 

Keywords: Achilles, eccentric exercise, efficacy, Tend*

Level of Evidence: 5

I
J
S
P

T
CLINICAL COMMENTARY

WHY ARE ECCENTRIC EXERCISES EFFECTIVE FOR 

ACHILLES TENDINOPATHY?

Seth O’Neill, MSc, BSc, PGCE HE, MSCP, MACP1

Paul J. Watson, PhD, PGCE HE, MSCP1

Simon Barry, PhD, PGCE HE, MCSP2

1 University of Leicester, Leicester, UK
2 Coventry University, Coventry, UK

CORRESPONDING AUTHOR
Seth O’Neill, MSc, BSc, PGCE HE, MSCP, MACP
Physiotherapy Lecturer
Department of Medical and Social Care 
Education
Maurice Shock Medical Sciences Building
G77
University of Leicester
PO Box 138
LE1 9HN
Tel 0116 252 3305
E-mail: so59@le.ac.uk



The International Journal of Sports Physical Therapy | Volume 10, Number 4 | August 2015 | Page 553

INTRODUCTION AND BACKGROUND
Tendinopathies of the Achilles tendon affect 2% of 
the general adult population,1 with a prevalence 
in active individuals between 9-40% depending 
on the type and level of sporting activity investi-
gated.2-4 Exercises that load the tendon are promoted 
as being beneficial for tendinopathy with isolated 
eccentric exercises receiving the most attention.5 In 
recent years researchers have attempted to deter-
mine the clinical effectiveness of eccentric exer-
cises, most authors reported successfully returning 
60%6-9 of participants back to sport, which contrasts 
with the 100% reported to have returned to sport in 
Alfredson’s10 original paper. The lower success rates 
observed in later trials is thought to be due to a poorer 
response to isolated eccentric exercises in non-ath-
letic and female individuals when compared with 
athletic subjects.11,12 A recent systematic review con-
firmed the success of eccentric exercises,13however, 
the mechanism by which the effect is achieved 
remains unclear;5,11,14,15 and an understanding of this 
may help the development of an optimal treatment 
regime and improve patient care.16 

The most commonly suggested mechanism through 
which eccentric exercises are believed to have an 
effect is the application of increased loads to the 
tendon stimulating structural tendon changes.17-24 
Currently, however, this view has been rejected 
based on level one evidence25 and most experts now 
accept that structural tendon change does not cor-
respond to clinical improvements.25 The purpose 
of this clinical commentary is to review previous 
theories regarding the mechanisms by which eccen-
tric exercise might affect Achilles tendinopathy and 
offers a novel mechanism by which the plantarflexor 
muscles may shield the Achilles tendon. 

MECHANISM OF EFFECT OF ECCENTRIC 
EXERCISES
This section will review each of the proposed mech-
anisms for effect of eccentric exercise on Achilles 
tendiopathy presented in Table 1 and outline the 
current evidence for each.

Structural tendon adaptation
Despite the many studies investigating eccen-
tric intervention regimes the mechanism of effect 
remains in question, although the original concept 

proposed by Stanish and Curwin24 and later Alfred-
son et al10 still remains the most popular.36,40 This 
concept suggested that greater load in the tendon 
occurs during eccentric training and this stimu-
lates the tendon to undergo structural adaptation, 
sometimes referred to as “hypertrophic” change. 
17-24 In response to this theory several authors have 
explored tendon change occurring during and after 
eccentric exercises using magnetic resonance imag-
ing (MRI) and Ultrasound (US).21,41-46 Tendon struc-
ture was shown to have been altered with rehab 
but this was after extended periods of time, often 
years.44,47,48 Further work has shown that eccentric 
exercises do not place greater strain on the Achil-
les tendon when compared with concentric exer-
cises suggesting that this mechanism may not be 
involved.36 The overall suggestion from current lit-
erature and a recent systematic review supports the 
notion that tendon structure does not significantly 
change during the treatment period25,29,42 and that 
changes do not correspond to improvements in pain 
or function.25 When viewed together these results 
clearly suggest that clinical improvements during 
rehabilitation occur through a mechanism distinct 
from structural adaptation.25,29 

Tendon length changes
Several authors have proposed that lengthening the 
Achilles tendon would help Achilles tendinopathy 
(AT),49-51 this premise was based upon observations 
of reduced active and passive dorsiflexion (DF) in 
patients with AT.52-54 It remains unclear why treatment 
should aim to lengthen the muscle or tendon unit 
as several prospective studies have shown increased 
DF to be a risk factor.55 This includes Kaufman et 
al’s52 seminal paper. It is known that eccentric exer-
cise regimes may increase DF ROM through sar-
comerogenesis, the addition of sarcomeres.33,56 This 
addition effectively alters the muscle’s length, while 

Table 1. Proposed mechanisims 
of effect of eccentric exercise on 
Achilles tendionopathy
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the tendon length remains the same. It is unclear 
why increasing the length of the muscle tendon 
unit (MTU) would alleviate tendon pain, and while 
some suggest that tendon loads may be diminished, 
there is no corroborating evidence for this sugges-
tion. An alternative explanation is that the addition 
of sarcomeres shifts the length tension curve thereby 
allowing the muscle to generate greater force later 
in its range,14,56 which would theoretically allow the 
muscle to decelerate eccentric loads and offload the 
tendon.57,58 The concept of muscle(s) being able to 
offload non-contractile tissue is not new but is infre-
quently considered in AT.58 This will be considered 
in greater detail later in the commentary. Observa-
tions of reduced DF in patients with AT may in fact 
be related to plantarflexor muscle weakness as sug-
gested by Mueller et al59 in their study assessing DF 
ROM during the gait cycle. Their data suggest that 
individuals with reduced plantarflexor torque reduce 
their DF range of motion, in order to maximize their 
plantarflexor moment during gait.59 This effectively 
suggests that the measurement of DF range of motion 
is not the issue, and that the real issue may rest with 
plantarflexor muscle strength (torque/power).

Muscle-tendon unit stiffness 
Often associated with length of the tendon is the con-
cept of tendon stiffness (or lack thereof). The cur-
rent suggestion is that making the muscle tendon 
unit more flexible (less stiff) is a desirable aim. It 
is unclear from the current literature why a reduc-
tion in tendon or muscle stiffness would benefit the 
tendon. Several studies have shown reduced tendon 
stiffness when comparing AT patients with healthy 
controls.60-63 Few researchers have examined the 
effect of eccentrics on stiffness. Mahieu et al33 tested 
stiffness of the MTU prior to and after an eccentric 
training regime and showed both an increase in 
weight bearing DF ROM and a reduction in passive 
stiffness of the MTU33, however this stiffness change 
was attributed to muscle rather than tendon adapta-
tion. In contrast, Morrissey et al64 have shown that 
eccentric exercises increase tendon stiffness. The 
contrasting results observed by Morrissey et al and 
Mahieu et al may be a result of differing ankle joint 
moment calculations and also different sample sizes. 
Sugiaski and co-authors recently showed that the 
force of plantarflexor contraction directly influences 

Achilles tendon stiffness,65 unfortunately this has not 
been accounted for in any of the studies measuring 
or modelling tendon stiffness making it very difficult 
to accurately understand in-vivo tendon stiffness in 
healthy or diseased tendons.

Neuro-vascular in-growth
The initial research findings of Ohberg and Alfred-
son (demonstrated strong correlations between the 
quantity of neuro-vascular in-growth and pain in 
subjects’ Achilles tendons.23 Further work showed 
that obliteration of these vessels through sclerosant 
injections,66,67 high volume saline injections,68-70 
or more recently “paratenon scraping” produced 
excellent clinical outcomes.71,72 Researchers then 
examined whether eccentric regimes altered these 
neo-vessels and reported that after 12 weeks of 
eccentric exercises the neuro-vascular ingrowth 
was reduced23 and the hypothesis was this reduc-
tion in neo-vessels directly leads to pain reduction. 
The mechanism proposed for this was shear forces 
between paratenon-fascial-tendon layers, which was 
damaging the microvascular circulation.23 Recently, 
authors highlighted that neurovascular bundles in 
muscles and tendons are important for load trans-
mission, suggesting that a loading modality (eccen-
tric or otherwise) may influence the neurovascular 
bundle and thereby possibly affect neovascularisa-
tion. However, whether this effect is beneficial or 
not needs further examination.73 It is important to 
note later studies determined a lack of correlation 
between pain and vascularity either as a predictor 
of recovery74 or as a direct measure of outcome 27,75 
suggesting these measures may be of little use.

NEURO-CHEMICAL INTERACTION
Heinemeier et al demonstrated a dose dependent 
effect of load on production of chemical mediators in 
tendon, and that this response does not vary when 
comparing concentric or eccentric contractions.76 
These neuro-chemical changes occur as a result 
of alterations in tenocyte activity reducing various 
chemicals and messenger molecules involved in 
pain sensitivity (various neurotransmitters).28,29,77,78 

Attia et al recently showed glucosaminoglycans 
(GAG’s) may be involved in tendon pain.79 Attia et al 
found a strong correlation between GAG content and 
pain and function.79 Interestingly, laboratory work 
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has highlighted that increases in GAG concentration 
leads to mechanical hypersensitivity of nociceptive 
neurons suggesting a possible pathway for the involve-
ment of GAGs on pain,80 this sensitivity coupled with 
the increased number of nerves in pathologic ten-
dons78,81-84 may explain some of the tissue hypersensi-
tivity clinically observed. Eccentric loading has been 
shown to reduce the volume of the Achilles tendon 
more than concentric loading, as measured using 
MRI.31 This volume change was thought to be due 
GAG content and may account for the associated pain 
reduction observed with loading.11

The role that the central nervous system may play 
in tendinopathy has also been addressed,85 and ani-
mal studies have shown a clear link between ten-
dinopathy in one limb and changes in the opposite 
limb.86 Similar findings have also been identified in 
humans with surgery on one limb improving the 
contralateral symptomatic tendon.87 Several authors 
have proposed that this finding is not related to limb 
use but rather changes in CNS output.85,88 How exer-
cise treatments may influence this remain to be 
investigated and further research is necessary.

Fluid dynamics
Changes in intra-tendon fluid dynamics have been 
proposed as a possible mechanism of effect for the 
benefits of eccentric exercise.31,32 Several authors have 
demonstrated that eccentric exercise reduces tendon 
diameter (anterior to posterior thickness), and that 
this may be related to changes in intra-tendon fluid 
content.31,32,85 The results of Grigg et al’s work sug-
gests that the change in tendon thickness was less 
in subjects with tendinopathy compared to a healthy 
control group.32 Whether this response is benefi-
cial or predictive of recovery has not been yet been 
established. However, other groups have shown that 
the Achilles tendon anterior to posterior (AP) diame-
ter increases with eccentric exercises.89 The differing 
results may be related to the mode of assessment, 
US versus MRI, or issues with reliability of measure-
ments. The findings of reduced volume are difficult 
to rationalize in the face of studies reporting immedi-
ate increases in tendon volume after loading, albeit 
in tendons other than the Achilles.90 Further stud-
ies need to address what substances (chemicals) are 
within the tendon and how they may be affected by 
short term and long term loading. 

NEUROMUSCULAR ALTERATIONS

Force fl uctuations within the tendon
Force fluctuations are alterations in tendon load 
occurring during muscle contractions. Many authors 
offer alternate names such as oscillations or vibra-
tions but effectively they are describing a motor 
pattern variation that influences tendon load and 
thereby affects the tendon biochemically. These 
fluctuations seem to occur more frequently during 
eccentric than concentric muscle activities.35-39

Rees et al36 and Henriksen et al37showed altered neu-
romuscular forces during eccentric activity in healthy 
participants but Griggs et al also showed higher levels 
in patients with AT.39 Griggs and Rees both suggest that 
these fluctuations may increase stress on the tendon 
and lead to advantageous tissue changes,36 however the 
reverse may in fact be true, that is, rather than helping 
recovery motor control issues may lead to structural 
overload and ultimately tendinopathy. It is important 
to understand the stretch shortening cycle (SSC) when 
considering the force fluctuations. The SSC is defined 
as pre-activated muscle undergoing a lengthening 
(eccentric) contraction followed by a muscle short-
ening (concentric) contraction.91,92 The SSC is associ-
ated with tendon lengthening due to its elastic nature, 
which allows temporary energy storage prior to recoil. 
During the SSC Achilles tendon forces may reach 
9000N (12.5 times bodyweight)93 and strain (percent-
age of tendon elongation) is reported as between 4.1-
12.8% levels,93-96 with tissue rupture reported at strains 
of 9.9% in the only study on the human Achilles ten-
don.97 Repetitive SSC’s have been shown to lead to tis-
sue failure and rupture of the Achilles with loads that 
are within in vivo limits.97 The reason that this may be 
possible is that muscle activation has been shown to 
increase tendon stiffness thereby increasing the force 
required to lengthen the tendon by a given amount 
effectively reducing tendon (elongation) strain.65 Stud-
ies assessing tendon strain to failure limits have not 
previously accounted for the muscles ability to affect 
tendon stiffness and have instead used passive testing 
protocols, this effectively makes many of the mod-
els used to assess tendon function/loading incorrect, 
which in turns limits the accuracy of the conclusions 
reached in many of the studies.

Force fluctuations are the result of non-optimal coordi-
nation of motor units,36-39 and these fluctuations appear 
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that the muscle function is essential to the SSC.57,58,91,105 
Work by Komi91 and Lindstedt et al57,58 has highlighted 
that the muscles also function as energy storage sys-
tems during the SSC by stiffening. This appears to be 
due to pre-activation and stretch reflex loops.91 This pre-
activation is a neuromuscular rather than structural 
adaptation. The suggestion from this data is that mus-
cle function, in addition to tendon characteristics, are 
essential for efficient functioning during the SSC. Fur-
ther work has shown that muscle function increases 
tendon stiffness thereby improving its response to 
strain.33,65 This in itself may actually serve as protective 
mechanism for the tendon, as without muscle activity 
the tendon is less stiff, equating to a given load bringing 
about a larger length change in the tendon. Lengthen-
ing of a tendon without muscle activity appears to pro-
duce higher tendon strains, possibly achieving levels 
that may be detrimental to the tendon health.106,107 

Lindstedt et al58,108 have studied MTU function during 
SSC contractions and they offer an alternative view 
to the commonly described model of tendons shield-
ing muscles.109 Their suggestion is that muscles can 
function as shock-absorbers, during which the mus-
cle absorbs energy as heat, or they can function as a 
time dependent spring and increase the elastic recoil 
potential, reducing energy requirements and heat pro-
duction. This proposed time dependent spring func-
tion can potentially be modified by eccentric training 
through alterations in neuromuscular function, which 
may effectively improve the economy of simple SSC 
tasks like hopping. It appears that hopping frequency 
is internally controlled within individuals and relates 
to the frequency that is most energy efficient, there 
is a strong relationship between body mass and pre-
ferred frequency.110,111 Externally controlled changes to 
hopping frequency have been shown to increase oxy-
gen demands, effectively showing reduced energy effi-
ciency.58 Interestingly the work of Linstedt et al showed 
that eccentric training led to an 11% increase in inter-
nally controlled hopping frequency. The observation 
of increased hopping frequency shows an alteration 
to the spring function of the muscle, which matches 
predictions of reducing body mass by 50%.58 A more 
efficient spring function of the plantarflexors would 
increase elastic recoil and reduce absorption of energy 
(heat) in the Achilles tendon. Heat has been linked to 
tendinopathy with several studies showing heat shock 
proteins to be involved in tendinopathy models.112-115 

to create “mini SSC’s” increasing the number of SSC’s the 
tendon is exposed to per loading phase. This phenom-
enon is likely to increase tendon load and initiate the 
cellular reaction associated with tendinopathy. There is 
currently no study that has investigated whether these 
force fluctuations are altered with eccentric (or other) 
rehabilitation techniques or whether these fluctuations 
are associated with other neuromuscular measures 
such as plantarflexor power.33,98,99

Muscle Power 
Muscle power deficits have been identified in correla-
tional studies assessing the plantarflexors.10,62,98,100-104 
A prospective study98 clearly showed that torque 
below a 50Nm (Newton- meters) was predictive of AT 
development.98 Mahieu et al examined army recruits 
prior to their six-week basic training and tested their 
concentric strength using isokinetic dynamometry, 
and determined that a value below 50Nm was 85% 
sensitive for predicting AT development. Despite the 
link between muscle power and AT only Alfredson’s 
original paper has used power as an outcome mea-
sure and none of these studies have suggested why 
changes to muscle power may benefit patients with 
tendinopathy. Alfredson showed a significant loss 
of power (13.6-23.7% reduction) in the plantarflex-
ors between limbs,10,100 which was resolved during 
rehab, but little consideration was given to how this 
may have influenced tendon pain.10 Whether the 
strengthening benefits from eccentrics somehow 
reduce tendon load or whether it simply changes DF 
ROM, as discussed earlier, thereby changing tendon 
load remains to be explored. These two possibilities 
need further investigation. 

STRESS SHIELDING – A NEW PARADIGM 
Plantarflexor muscle function has clearly been asso-
ciated with AT and prospective studies have further 
supported this cause and effect relationship, but 
despite this the current literature has failed to offer 
any reason why muscle weakness may cause tendi-
nopathy or why neuromuscular adaptions may lead 
to recovery from AT. This section discusses the role 
of the muscle in controlling tendon forces as a novel 
paradigm in tendinopathy treatment.

The SSC is one of the key principles associated with 
tendinopathy and is commonly described as a passive 
tendon only process,57 however studies clearly show 
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movement prior to maximum tendon strain at ter-
minal dorsiflexion. If the muscle is weak or poorly 
co-ordinated the muscle appears to undergo a stop: 
start eccentric type of contraction, identified by Rees 
et al as force fluctuations and Grigg et al as force fre-
quency characteristics in the 8-12 hz range. This is 
demonstrated clinically by a physiological tremor or 
fasciculation. These stop: start contractions expose 
the tendon to more frequent SSC’s during a given 
action. This un-coordinated eccentric contraction 
has been observed in healthy subjects36,37 and shown 
to be more frequent in AT.38,39 These neuromuscu-
lar co-ordination issues may expose the tendon to 
repeated SSC’s during a single functional movement 
i.e. walking or running. The amplitude of tendon 
strain is not yet known during these fluctuations but 
it may be that either the amplitude or accumulative 
load is greater than in healthy subjects with normal 

The involvement of heat shock proteins suggests ten-
dons heat up during activity; some authors have sug-
gested this reaches levels associated with catabolic 
activities.116 This has been further evidenced in Equine 
tendons with temperature levels reaching as high as 
45 degrees Celsius during exercise,117 a temperature of 
this level is damaging to tendon cells and is has been 
proposed as a potential key component of tendinopa-
thy.114,116,117 Mathematical modelling of human tendons 
also predict the same temperature changes.117

An alternative mechanism links to mechanical load 
on the tendon and the muscles ability to act as a 
shock-absorber. During eccentric movements mus-
cles lengthen, towards the end of their range mus-
cle lengthening ceases and the tendon undergoes 
a stretching period prior to a shortening – the SSC. 
This function allows the muscle to decelerate the 

Figure 1. Flow chart depicting the potential role muscle co-ordination may have in tendinopathy. The MTU as a whole can 
function as a shock-absorber and absorb energy in the form of heat. Changes in muscle stiffness associated with eccentric training 
or good pre-existing function leads to less energy absorption and more recovery of energy through elastic recoil, this may protect 
the tendon by preventing excessive heat absorption/production.
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