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Abstract: The hardware complexity of digital filters is mainly dom-
inated by the coefficient multipliers. Implementing fixed-point coeffi-
cient multiplication as a network of adders, subtractors, and shifters,
yields lower power consumption. In such filters the number of adders
(and subtractors) determines the implementation cost. The reason is
that shifts are implemented as hard-wired inter-block connections and
are considered “free”. In transposed implementation of an FIR filter,
each input is multiplied by several coefficients. Considering all the coef-
ficients as a multiplier block and omitting the redundancies by sharing
the common fundamentals among different coefficients, yields great re-
duction in the number of arithmetic operations. This paper presents a
graph based algorithm to reduce the computational complexity of mul-
tiple constant multiplications. Simulation results show that using the
proposed method results good improvement in adder cost of multiplier
blocks.
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1 Introduction

Using an efficient number system to represent fixed-point coefficients can
make a significant reduction in computational complexity of a digital filter.

CSD (canonic signed digit) representation requires the fewest adders in
comparison to all other alternatives (since the hardware cost is similar for
adders and subtractors, both of them are referred as adders). On average
CSD representation uses 33% fewer nonzero digits than binary representa-
tion [1].

Graph representation can be used to further reduce hardware complexity.
The concept of graph representation of multiplier block was first introduced
by Bull and Horrocks in [2]. In this representation, each graph vertex shows
an adder with two inputs and each edge represents a multiplication by a
power of 2 which can be implemented as a binary shift.

The algorithm presented in [2] minimizes the number of adders in a mul-
tiplier block referred in this work as ‘BH’ algorithm. This algorithm has
been modified in [3] and is denoted in this work as ‘BHM’. The algorithm
in [3] uses more graph topologies than CSD representation and despite the
improvement, it is not optimum. To illustrate the point, consider the integer
75 as a coefficient. The CDS representation and the algorithm in [3] each
produces a cost of 3 as shown in Fig. 1 (a) and Fig. 1 (b) respectively, whereas
the optimum cost is 2 as shown in Fig. 1 (c).
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Fig. 1. Different representations of 75 as a coefficient. a)
CSD, b) BHM, and c¢) the optimum representa-
tion.

BHM contributes to an adder cost saving of 26.6% compared to CSD
representation for 32 bit coefficients [3].

Another graph-based method named MAG (minimum adder graph) is
represented in [3] to minimize the adder cost of a single coefficient. The
key to reducing the cost below that of CSD is the use of more diverse graph
topologies than CSD. To find the minimum adder cost for a particular integer
coefficient, all possible graph topologies have been considered in [3]. They
propose some rules for graph generation by using graph theory and generate
all graph topologies for different numbers of adders used to implement non-
zero bits of different coefficients. It is also proven in [3] that it is sufficient to
implement only odd integers and use shifts to produce even integers. Con-
sequently, the algorithm considers only odd fundamentals (the graphs with
odd vertex values). Using these graph topologies, a look-up table is produced
containing all coefficients which can be implemented with 1, 2, ..., N adders.
To implement a coefficient, one can search the look-up-table to find the odd
fundamentals (i.e. the odd number produced by successively dividing by two)
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of the coefficients with minimum adder cost and implement each coefficient
as proposed by the chosen graph structure. Ref. [4] nominates RAG (reduced
adder graph) algorithm, using the look-up table in [3] to minimize the adder
cost of a multiplier block. This algorithm consists of two parts, optimum
search and heuristic result completion. Our proposed algorithm utilizes the
optimum search part of RAG and proposes a new method for the heuristic
part.

In the transposed realization of FIR filters, the input is first multiplied
by all coefficients and then the results go through the registers. This allows
us to better consider all of the coefficient multipliers with the same input as
a single multiplier block and further optimize it. The power consumption of
a transposed FIR filter can be reduced by considering multiplier block and
employing fewer adders to implement the multipliers.

2 Graph generation

In graph representation, the input vertex shows the odd values that don’t
need any adder to implement (a cost 0 value). In MAG method, the input
vertex indicates to 1 for all graph topologies. It means that the input value
of all graphs is equal to the input sequence. Since 1 is the unique odd
amount with the adder cost of 0, there is no other way in single multiplier
implementation. But it is not the same in multiplier block implementation.
After implying a coefficient, the coefficient and its intermediate nodes can
be used as the input vertex of the next graph, because their adder costs
have been calculated for pervious coefficients and now they are available
to synthesize a new fundamental without any extra cost. Thus, the graph
topologies may have unequal input values. The input vertexes can be equal
to 1 or any prior implemented value (coefficients or their intermediate nodes).

There are some rules illustrated in [3] to generate the graph topologies.
We add an extra rule which states that “the output degree of input vertexes
must be equal to 1 to avoid redundant topologies”. Using these rules and
considering different values for input vertex, all possible graph topologies are
generated. In Fig. 2, the graphs for adder cost of 1 to 4 are presented. These
graphs are the base of our proposed algorithm. When the inputs are equal,
the first structure in each adder cost shows the CSD representation. These
structures cover all topologies shown in [3] and consist of more general cases.

There are some theories in [3] about using the graph topologies which
result in the following features. It is proved that following these features can
lead us to achieve the optimum structure faster.

(I) Only odd fundamentals are examined (i.e. only OF graphs are consid-
ered).

(IT) The cost of an even number is the same as that of its odd fundamental.

(ITI) When examining higher cost graphs, only sums of two odds and
sums of an odd and an even are considered.

(IV) Negative numbers are not examined explicitly, because the cost of a
negative integer is the same as its positive counterpart; there needs to be one
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Fig. 2. Possible graph topologies with different inputs for
cost 1 to 4.

negated edge in each path from the initial vertex to the terminating vertex
to change the sign of the output. These features are used in our proposed
algorithm. According to the above features, for all even coefficients and even
intermediate nodes, their odd fundamentals are substituted for the original
values.

3 Proposed algorithm

This algorithm is based on using the implemented integers as the input vertex
of a graph to implement a new coefficient. It checks different combinations
of realized nodes to generate a new coefficient with lower adder cost. At
the beginning, the only input value is one but after synthesizing the first
coefficient, this coefficient and its intermediate nodes can be used as the input
vertex too. At first it tries to implement the coefficients with minimum adders
(1 adder) and then checks the pair-wise combination of synthesized nodes to
find a new coefficient. If there is any coefficient that can’t be synthesized
during these steps, it tries to implement one of the unsynthesized coefficients
with 2 adders (using Fig. 1(b) topologies). In this step it tries to combine
two or three synthesized value to implement a new coefficient. After finding
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the first coefficient synthesizable with Fig. 1(b) topologies, it goes to the
beginning and checks the pair-wise combination of the new nodes and other
implemented nodes. The algorithm repeats these steps till no other coefficient
is synthesized. Then it uses Fig. 1 (c) topologies which use three adders and
the algorithm continues.

In RAG algorithm the pair-wise combination of synthesized fundamentals
are checked, but because they don’t have all topologies for more complex
combinations (e.g. combination of three fundamentals), they use the above
mentioned look-up-table to implement the next coefficient. It can ignore
some redundancies and requires more adders.

For fixed-point filter coefficients with least significant bits of 275, scaling
by 28 produces integer coefficients.

The algorithm can be expressed as follows:

1. Change the negative coefficients to positive. Reduce all the coefficients
to odd fundamentals. Store the results in the ‘incomplete set’ (the set
of coefficients not yet synthesized). In this level all the coefficients with
adder cost equal to 0 (powers of 2), reduce to 1. Remove 1 from the
incomplete set and add it to S which indicates the set of synthesized

values.

2. Using Fig. 2 (a), synthesize all the coefficients which can be imple-
mented by one adder. Use the members of S as the input vertexes.
According to Fig. 2 the cost 1 integers can be generated as

c=s(i)£28-5(j)  Vs(i),s(j) € S,
ij, k€N (1)

When s(i) = s(j) = 1 it is reduced to cost 1 structure in [3].

Remove the implemented coefficient from incomplete-set and put it in
S (if even, add the odd fundamental). Repeat this step until no more
fundamentals are added to S.

3. Using the members of S as the input values, search among the Fig. 1 (b)
topologies to find a synthesizable coefficient. For example, the first
topology shown in Fig. 2 (b), can generate the following numbers.

c=[s)£ 2" s()] - (1£2)  ¥s(i),s() €5,
i,j k€N (2)

Generate the numbers using these topologies till finding one of the
incomplete set numbers.

Remove the coefficient from the ‘incomplete set’ and add the coefficient
and its intermediate node to S (if each of them are even, add the odd
fundamental instead). After implementing each coefficient in this step,
go to step 2. If no coefficient can be implemented using these topologies,
go to step 4.
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4. Repeat the step 3 for Fig. 2 (c).

5. Repeat the step 4 for Fig. 2(d).

Theoretically, there are some coefficient sets that cannot be synthesized
during this algorithm and they need five adders or more to be implemented.
However, this case is less probable in this work than in RAG algorithm. In
our simulations, the maximum adder cost for 22 bit coefficients is 3. RAG
checks the combinations shown in Fig. 2 (a) and some special cases of Fig.
2(b).
comparison to RAG, it gives better results for a multiplier block. Further-

Because of more combinations covered by the proposed algorithm in
more, RAG needs the look-up table in [3] to implement the coefficients but
the proposed method doesn’t use it. This algorithm is considered as a mod-

ification of RAG and is called MRAG (modified RAG)

4 Case study

As a case study, we have used two FIR filters. The first is a sharp half-
band FIR filter with order of 147 which has 37 different 22-bit coefficients.
The second filter is an FIR filter with order of 25 and 13 different 20-bit
coefficients.

These filters are realized in transposed structure. The multiplier blocks
are realized using CSD, RAG, and our proposed method (MRAG). Coeffi-
cients of these filters and Simulation results are shown in Table I.

Table I. Number of adders used to implement the multi-
plier blocks and filter coefficients

Filter | Filter Filter #1 Filter #2
#1 #2 coeffs coeffs
F(1)=29 F(25)=4704  F(49)=59685 |F(1)=83
Order 147125 |pi3)=s3 F(27)=-6119 F(51)=-71089 |F(2)=149
F(5)=101  F(29)=7860 F(53)=84611 |F(3)=579
No. of coefficients 37 13 |F(7)=-176  F(31)=-9982 F(55)=-100805 |F(4)=1223
F(9)=288  F(33)=12545 F(57)=120482 |F(5)=-2074
Word length 2 20 |F(11)=-450  F(35)=-15617 F(59)=-144886 |F(6)=-5412
F(13)=678  F(37)=19276 F(61)=176031 |F(7)=4910
F(15)=-989  F(39)=-23609 F(63)=-217404 |F(8)=17303
CSD 146 | 52 1p(17)=1405 F(41)=28718 F(65)=275612 |F(9)=-8105
F(19)=-1953 F(43)=-34719 F(67)=-364847 |F(10)=-47858
Cost RAG 77 30 |F(21)=2662 F(45)=41757 F(69)=522055 |F(11)=5854
F(23)=-3567 F(47)=-50004 F(71)=-882824 |F(12)=165964
MRAG 58 24 F(73)=2667757 |F(13)=259980
F(n)=F(148-n) F(2n)=0 F(n)=F(26-n)

The first half-band filter shows 60% and 24.7% improvement in the adder
cost in comparison to CSD and RAG, respectively. For the second filter, the
improvements are 53.8% and 20% in comparison to CSD and RAG, respec-
tively.

5 Conclusion

This paper generates graph topologies with different inputs. A new algorithm
is proposed which checks all possible combinations of realized values to find
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a new coefficient. This algorithm tries to omit the redundancies to reduce
the adder cost of the multiplier block.

In our simulations, the maximum adder cost for each coefficient is three
and approximately most coefficients are implemented using one or two adders.
It is commonly known that RAG has the best performance among all other
methods proposed before this work. It is shown that the proposed method
(MRAG) has a lower adder cost in comparison to RAG especially in high
order filters and large fixed-point coefficients. Another interesting feature of
our proposed method is that it does not need a look-up table, as generating
the previously-used look-up tables for adder costs of more than 3 is difficult
because of long simulation time.
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