
Review Article · Übersichtsarbeit

Breast Care 2008;3:409–414 Published online: December 17, 2008

DOI: 10.1159/000181160

Doz. Dr. Martin Funovics 
Abteilung für Kardiovaskuläre und Interventionelle Radiologie, 8F 
Universitätsklinik für Radiodiagnostik
Medizinische Universität Wien 
Währinger Gürtel 18–20, 1090 Wien, Austria
martin.funovics@meduniwien.ac.at

© 2008 S. Karger GmbH, Freiburg

Accessible online at: 
www.karger.com/brc

Fax +49 761 4 52 07 14
Information@Karger.de
www.karger.com

BreastCare

Schlüsselwörter
Brustkrebs · Molekulare Bildgebung · PET · MRT · 
Optische Bildgebung · Rezeptor

Zusammenfassung
Molekulare Bildgebung verwendet auf bestimmte Mole-
küle gerichtete Sonden, um bestimmte krankheitsspezifi-
sche Marker und Stoffwechselwege zu visualisieren und
oft auch zu quantifizieren. Modalitäten wie die intravitale
konfokale oder Multiphotonenmikroskopie, die Fluores -
zenzbildgebung im nahen Infrarot, entweder als oberflä-
chengewichtete Reflexionsbildgebung, als Endoskopie,
oder als Fluoreszenz-mediierte Tomographie, und Isoto-
penbildgebung mit Positronenemissionstomographie
(PET) und Single-Photon-Emissionstomographie (SPECT)
werden in immer größerem Ausmaß für Kleintiere ge-
nutzt. Die Anwendungen umfassen Selektionierungen
mit hohem Durchsatz, Medikamentenentwicklung und
die Beobachtung von Gentherapieexperimenten. In der
klinischen Behandlung von Brustkrebs sind PET und
SPECT sowie Magnetresonanz-basierende molekulare
Bildgebung bereits für das Staging von Fernmetastasen
und für den intrathorakalen Lymphknotentatus etabliert,
sowie für die Patientenselektion hinsichtlich Rezeptor-
 gerichteter Therapien und um frühe Informationen über
die Effektivität einer Behandlung zu erlangen. In der
nahen Zukunft können die Bildgebung von Reporterge-
nen während der Gentherapie und weitere räumliche
und qualitative Charakterisierung der Erkrankung mit iso-
topenbasierten und optischen Methoden klinisch mög-
lich werden. Letztlich kann erwartet werden, dass jede
Ebene der Brustkrebsbehandlung von molekularer Bild-
gebung beeinflusst wird, einschließlich des Screenings.
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Summary
Molecular imaging employs molecularly targeted probes
to visualize and often quantify distinct disease-specific
markers and pathways. Modalities like intravital confocal
or multiphoton microscopy, near-infrared fluorescence
combined with endoscopy, surface reflectance imaging,
or fluorescence-mediated tomography, and radionuclide
imaging with positron emission tomography (PET) and
single-photon emission computed tomography (SPECT)
are increasingly used for small animal high-throughput
screening, drug development and testing, and monitor-
ing gene therapy experiments. In the clinical treatment of
breast cancer, PET and SPECT as well as magnetic reso-
nance-based molecular imaging are already established
for the staging of distant disease and intrathoracic nodal
status, for patient selection regarding receptor-directed
treatments, and to gain early information about treat-
ment efficacy. In the near future, reporter gene imaging
during gene therapy and further spatial and qualitative
characterization of the disease can become clinically pos-
sible with radionuclide and optical methods. Ultimately,
it may be expected that every level of breast cancer treat-
ment will be affected by molecular imaging, including
screening.
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Introduction

Current concepts of clinical diagnosis and treatment are in-
creasingly influenced by the continuous progress in cellular
and molecular biology techniques. The understanding of the
molecular mechanisms underlying many pathologic processes,
the capability to decipher and translate whole genomes, the
identification of a multitude of receptors, enzymes and other
molecules as effectors for targeted diagnosis and therapy have
altered our understanding and management of disease today.
Over the past 2 decades, imaging has played an ever increasing
role in these processes by bridging the gap between new meth-
ods discovered at the bench on a molecular or cellular level
and their direct, non-destructive visualization in a living
macroscopic organism. Consequently, molecular imaging has
become a rapidly emerging and heavily funded research disci-
pline. While there is (and will be) no entirely satisfying defini-
tion discriminating it from ‘morphologic’ or ‘physiologic’
imaging, most authors agree that molecular imaging comprises
the visualization (and often quantification) of biologic
processes at the cellular or subcellular level by defined molec-
ular interactions of an imaging probe with a target [1, 2].
Traditionally, imaging was aimed at visualization of anatomic
(e.g. tumor) or physiologic (e.g. hypervascularization) changes
to identify pathologies or to assess reaction to treatment. Such
changes, however, occur only as late manifestations of the cel-
lular and molecular alterations causing the disease. The visual-
ization of these early changes would allow for earlier detec-
tion and intervention at a stage where the result is more likely
and easily influenced [3]. A number of different imaging
modalities are currently used in the treatment of breast cancer
in oncologic research or in the clinical setting.

Radionuclide Imaging Modalities

The two main modalities for molecular imaging using radioac-
tive isotopes are single-photon emission computed tomogra-
phy (SPECT), and positron emission tomography (PET). In
SPECT, a rotating gamma camera visualizes a single high-en-
ergy photon from a gamma emitter. In PET, a coincidence
camera visualizes only pairs of high-energy photons travelling
in opposite directions which have been created by the annihi-
lation of a positron from a beta+ emitter and an electron from
the surrounding matter. PET can more easily be corrected for
the attenuation effects of the surrounding tissue and is about
an order of magnitude more sensitive than SPECT, mainly be-
cause of the lack of collimators which are inherently neces-
sary for SPECT imaging. 
The most common form of molecular PET imaging employs a
labeled glucose analog, 18fluorodeoxyglucose (FDG). This
molecule is actively transported into the cell by the Glut-1 glu-
cose transporter where it is irreversibly phosphorylated by
hexokinase, trapping it within the cell where it does not pro-
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ceed further down the glycolytic pathway. The glucose trans-
porter is overexpressed in many cancers including breast can-
cer, resulting in increased FDG uptake compared to normal
tissue. [4]. 
In other approaches, several intra- and extracellular proteins
(enzymes or receptors) [5] have been targeted, mostly with ei-
ther radiolabeled ligands (fig. 1) or substrates that change
their membrane permeability upon interaction with a target
enzyme [6, 7]. While extracellular targets face less penetration
barriers and therefore the probes have more favorable phar-
macokinetics, the reaction product with intracellular targets is
less likely to interact with the immune system and more likely
to locally accumulate [1, 8]. In addition, the interaction with an
enzyme can provide an important amplification step because
enzymes can repeatedly react with multiple substrate mole-
cules [5–7, 9].

Magnetic Resonance Imaging

Magnetic resonance (MR) imaging visualizes the relaxation
time of hydrogen atoms, mainly in body water, in a static mag-
netic field. This time is altered by the chemical environment of
the hydrogen atom (native imaging), and by local irregularities
of the magnetic field, induced by the presence of paramagnetic
or superparamagnetic substances (contrast-enhanced imaging).
Compared to radionuclide imaging, MR imaging offers higher
spatial resolution and limited sensitivity. Consequently, a high-

 

Fig. 1. Micro-PET
image of a mouse
 injected with 26μCi
of a 64Cu-labelled
anti-CEA minibody.
Note the uptake in
the CEA-positive
tumor in the left
shoulder (arrow),
while no significant
uptake occurs in the
CEA-negative
 control tumor in the
right shoulder
 (arrowhead). Unspe-
cific uptake occurs in
the liver. Adapted,
with permission, from
[53].
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er molar concentration of the molecular imaging probe is nec-
essary for efficient detection in the target tissue [10]. Usually,
amplification strategies have to be incorporated into the de-
sign of a MR molecular imaging probe. This can be accom-
plished by targeting a receptor which undergoes endocytosis
and receptor recycling upon interaction with the probe, there-
by accumulating the probe in the cytoplasm [11]. A different
approach is to employ a superparamagnetic nanoparticle, with
between 20 and 50 binding sites per particle [12]. These sites
can then be bound to antibodies, minibodies, or peptide frag-
ments with a known high affinity to a cell membrane target
[13]. By multivalent attachment, the probe reaches a dyspro-
portionally higher affinity to the target, thereby achieving a
higher concentration [1].

Optical Imaging Modalities

Optical imaging visualizes bioluminescence or differences in
absorption, reflection, or fluorescence of tissues. Newer tech-
niques used in molecular optical imaging include diffuse opti-
cal tomography [14], molecular endoscopy, and intravital 
microscopy with confocal [15, 16] or multiphoton imaging
[17–19].
Due to the absorption of light in living tissue, optical imaging
methods generally suffer from limited penetration depths cur-

rently in the order of 1–10 cm. While a human whole-body op-
tical imaging system will not be available in the foreseeable fu-
ture, optical imaging is routinely practiced in small animals
such as mice and rats [20]. In addition, proof-of-concept for
minimally invasive approaches with fiberoptic systems or in-
traoperative applications exists. While some optical imaging
methods such as fluorescence-mediated tomography are in-
herently quantitative, optical imaging offers the unique capa-
bility of a multichannel approach. By simultaneously imaging
at 2 or more wavelengths, different probes can be visualized at
the same time. This concept was used to determine the pres-
ence and at the same time to quantify the degree of dysplasia
in precancerous and cancerous lesions in the murine colon in
vivo (fig. 2) [21, 22].
The advent of probes that are optically silent and only become
fluorescent upon interaction with one specific enzyme has
considerably increased the signal-to-noise ratios by avoiding
the enormous amount of unspecific signal during the applica-
tion of the probe, which is common in most other imaging
modalities [23].

Molecular Imaging in Breast Cancer Therapy

In the past years, new treatments have been developed that
prolong survival, induce remission, and provide better quality

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

White light image          protease activity (NIR) protease/perfusion ratio image  H&E histology 

Fig. 2. In vivo mouse colonoscopy. In the first
row, normal colon is shown. Neither in the NIR
channel nor by ratio imaging a signal is detect-
ed. Second row, small APCMin/+ adenoma, 3rd
row, large APCMin/+ adenoma, 4th row, invasive
cancer. The NIR channel shows constantly
areas of high signal intensity and high signal- 
to-background ratio corresponding to the areas
of neoplasia. Ratio imaging shows moderately
elevated values for small adenoma with moder-
ate dysplasia, markedly elevated values for
large adenoma with severe dysplasia, and high
values for invasive cancer. The corresponding
H and E sections demonstrate adenomatous
formations with moderate or high dysplasia
and tumoral invasion of the muscular layer.
Adapted, with permission, from [21].
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ing modalities in staging of mediastinal, internal mammary,
and distant disease [30–32] both in sensitivity and in specifici-
ty. In whole-body lymph node staging, the application of lym-
photropic superparamagnetic nanoparticles with subsequent
whole-body MR imaging has yielded excellent sensitivity and
specificity in the detection of renal and prostate cancer metas-
tases [33–35]. This concept can likely be transferred to breast
cancer patients in the near future.

Molecular Imaging of the Estrogen Receptor
Hormonal therapy is one of the earliest and still most impor-
tant targeted therapies of breast cancer. The estrogen receptor
(ER) is up-regulated in most breast cancers, and halting the
receptor-triggered cell proliferation is associated with tumor
regression [36]. Current therapeutic concepts aim at either re-
ceptor blockade (tamoxifen), induction of ER down-regula-
tion (fulvestrant), or by lowering ligand concentration (aro-
matase inhibitors) [37]. 
Since low or absent ER expression predicts a low likelihood of
therapeutic response [38], molecular ER imaging could pri-
marily function in directing hormonal therapy to receptor-pos-
itive tumors. A substantial percentage of patients with an ER-
positive primary tumor can have one or more sites of ER-neg-
ative metastatic disease [39], thus, a complete ER status can-
not be provided by biopsy in multicentric disease. A recent
calculation assuming a hypothetical diagnostic algorithm in-
cluding molecular ER imaging in the decision for hormonal
therapy could double response rates without withholding 
appropriate therapy to potential responders [40].
Currently, no approved agent for PET ER imaging exists, but
several compounds have been investigated [37]. Quantitative
results correlating with in-vitro assays have been achieved
with 16-fluoroestradiol-17β, an estrogen analog [41]. 

Molecular Imaging in Breast Cancer Research

Perhaps the most important potential contribution of molecu-
lar imaging in breast cancer treatment is to affect therapy by
visualizing and quantifying fundamental tumor cell processes
such as proliferation, apoptosis, angiogenesis, and hypoxia
[24].

Angiogenesis Imaging
Angiogenesis, the tumor-driven formation of new vessels by
the host, is a fundamental prerequisite for tumor growth and
metastatic spread [42]. Several receptors are up-regulated by
endothelial cells during angiogenesis, and have been visual-
ized with a receptor-targeted approach. The alpha(v)beta(3)
integrin (αVβ3) has been targeted with nanoparticles linked to
peptides with the R-G-D motif or conjugated to antibodies
[43]. Such conjugates have also been effective in localizing
melanoma micrometastases in mice [44]. Endothelial selectin,
which is up-regulated in inflammation and tumor angiogene-

of life for cancer patients [24]. The earliest studies on the use
of FDG-PET in the diagnosis of breast cancer were in 1989
[25]. Since then, FDG-PET imaging has become the dominant
molecular imaging modality for breast cancer, demonstrating
its worth with advanced-stage disease, determining response
to therapy, and in cases of suspected recurrent and metastatic
involvement (fig. 3) [4, 26]. 

Axillary Node Staging
In the clinical setting, several studies have compared conven-
tional MR imaging to FDG-PET in axillary lymph node stag-
ing. Generally, MR imaging showed higher sensitivity, and
PET showed higher specificity in the detection of axillary
nodal disease. This is due to the lower spatial resolution of
PET, and the missed foci were correspondingly below 15 mm
in size [27]. While there seems to be consensus that FDG-PET
alone is not yet sensitive enough to allow the avoidance of ax-
illary node dissection (AND) in negative studies [28], poten-
tially the combination of sentinel node biopsy with FDG-PET
may prove to have enough sensitivity for this purpose.
Optical imaging using near-infrared fluorescent (NIRF)
macromolecular probes administered either intravenously or
intracutaneously has given promising results in lymph node
detection in the animal model [29]. However, due to its limited
depth penetration, NIRF will likely have to be used in con-
junction with endoscopic approaches or during partial dissec-
tion in human applications.

Staging Distant Disease
Contrary to its limited role in axillary staging, FDG-PET has
been shown to be consistently superior to conventional imag-

Fig. 3. Maximum-intensity projection of ans FDG-PET scan with exten-
sive left pleural involvement A before and B after 1 dose of fulvestrant,
with resolved pleural uptake. Note unspecific cardiac uptake (arrow).
Adapted, with permission, from [4].
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sis, has been successfully imaged in a similar approach using
an optically active nanoparticle conjugated to a peptide se-
quence with high affinity to the receptor [45].

Apoptosis Imaging
Apoptosis or programmed cell death is as important as cell
proliferation in the development, regeneration, and homeosta-
sis of an organism. Carcinogenesis is as much a breakdown of
apoptotic mechanisms as it is a result of growth stimulation
[46]. In addition, the development of blocks in the apoptotic
signal cascade is the main reason why tumors develop resis-
tance to chemo- and radiotherapy [47, 48]. A marker for apop-
tosis is annexin V, a protein that binds to externalized mem-
brane components characteristic for apoptotic cells. It has long
been used in histopathology, and recently, the feasibility of ra-
dionuclide [49, 50] and optical in-vivo imaging of apoptosis
has been demonstrated [51].

Gene Therapy Imaging
In cancer treatment, gene therapy is aimed at the introduction
or alteration of the cellular genome in the target tissue in an
effort to either correct specific genetic alterations, to induce
tumor cell death, or to provide a point of attack for targeted
therapies. Experiments have been conducted on suppression
of oncogenic products, alterations of receptor expression [52,
53], activation of apoptosis or tumor suppressor genes [54–56].
In a phase I clinical trial, a viral transcriptional regulator was
introduced into cancer cells by a liposomal delivery system
and has been shown to effectively target and repress tumoral
ErbB-2 overexpression and induce apoptosis [57]. 
Reporter gene imaging has formed a substantial part of gene
therapy from its beginning. Briefly, the vector which intro-
duces the therapeutic gene also includes a gene whose protein
product is expressed under the same promotor and in the
same location and concentration as the therapeutic gene. It
can be visualized in a molecular imaging modality, thereby
helping to determine the efficiency of transfection, and the

amount and location of the transfected tissue. Such reporter
genes typically include luciferase for visualization by biolumi-
nescence [58], or an intracellular enzyme which converts a
prodrug which is able to cross the cell membrane into the ac-
tive imaging probe which can not pass the membrane and ac-
cumulates in the cell. Prodrugs include radiolabeled uracil nu-
cleoside derivatives or acylguanosine derivatives, which can be
phosphorylated by the HSV-thymidine kinase [53].
A different approach of gene therapy termed molecular
chemotherapy aims at introducing effective pathways for drug
delivery into the tumor via receptor expression or the induc-
tion of intracellular enzymes [52]. These products can then be
visualized by MR imaging, near-infrared fluorescence, or fluo-
rescence-mediated tomography [9].
An inherent problem with gene therapy is that each cellular
transfection in itself has no effect on the surrounding tissue,
thus, the majority of the tumor cells must be transfected for a
clinical effect. Molecular imaging can potentially aid in the re-
finement of such protocols. 

Conclusion

In the near future, we anticipate a growing availability and
prevalence of molecular imaging techniques in breast cancer
therapy. FDG-PET is already established as an effective clini-
cal tool for the staging of intrathoracic and distant disease,
while it can not yet replace sentinel node biopsy or axillary
dissection. Whole-body ER imaging may be superior to biopsy
in selecting patients for hormonal treatment, and radionuclide
and MR-based modalities will aid in the monitoring of clinical
studies of gene therapy. In laboratory research, optical imag-
ing provides a high-throughput modality for drug develop-
ment and monitoring of therapeutic efficacy. It can be expect-
ed that methods of molecular imaging, probably with optical
probes, will ultimately even provide reliable screening tools
for breast cancer.
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