
CPU-GPU hybrid computing
for feature extraction from
video stream

Sungju Lee1, Heegon Kim1, Daihee Park1, Yongwha Chung1a),
and Taikyeong Jeong2b)
1 Dept. of Computer and Information Science, Korea University, Sejong, Korea
2 Dept. of Computer Science and Engineering, Seoul Women’s University, Korea

a) ychungy@korea.ac.kr

b) ttjeong@swu.ac.kr

Abstract: In this paper, we propose a way to distribute the video analytics

workload into both the CPU and GPU, with a performance prediction model

including characteristics of feature extraction from the video stream data.

That is, we estimate the total execution time of a CPU-GPU hybrid comput-

ing system with the performance prediction model, and determine the

optimal workload ratio and how to use the CPU cores for the given work-

load. Based on experimental results, we confirm that our proposed method

can improve the speedups of three typical workload distributions: CPU-only,

GPU-only, or CPU-GPU hybrid computing with a 50:50 workload ratio.

Keywords: CPU, GPU, heterogeneous computing, feature extraction

Classification: Integrated circuits

References

[1] D. Tian: International Journal of Multimedia and Ubiquitous Engineering 8 [4]
(2013) 385.

[2] M. Krulis, J. Lokoc and T. Skopal: MMM LNCS 7733 (2013) 446.
[3] S. Ohshima, K. Kise, T. Katagiri and T. Yuba: VECPAR LNCS 4395 (2007) 305.
[4] C. Lee, W. Ro and J. Gaudiot: IEEE INTERACT (2012) 33.
[5] X. Lu, B. Han, M. Hon, C. Xiong and Z. Xu: Adv. Eng. Softw. 70 (2014) 90.

DOI:10.1016/j.advengsoft.2014.01.010
[6] W. Sodsong, J. Hong, S. Chung, Y. Lim, S. Kim and B. Burgstaller: ACM PMAM

(2014) 80.
[7] L. Wan, K. Li, J. Liu and K. Li: ACM PMAM (2014) 70.
[8] B. Chapman, G. Jost and R. Van: Cambridge MA MIT Press (2008).
[9] B. Gaster, L. Howes, D. Kaeli, P. Mistry and D. Schaa: Revised OpenCL 1.2

Edition Morgan Kaufmann (2012).

1 Introduction

High-performance video analytics is an important challenge for big data processing.

Feature extraction in video analytics is an important method to identify and

recognize real-world objects. Its purpose is to encode simple geometrical forms

© IEICE 2014
DOI: 10.1587/elex.11.20140932
Received September 29, 2014
Accepted October 17, 2014
Publicized November 4, 2014
Copyedited November 25, 2014

1

LETTER IEICE Electronics Express, Vol.11, No.22, 1–8

http://dx.doi.org/10.1016/j.advengsoft.2014.01.010
http://dx.doi.org/10.1016/j.advengsoft.2014.01.010
http://dx.doi.org/10.1016/j.advengsoft.2014.01.010
http://dx.doi.org/10.1016/j.advengsoft.2014.01.010
http://dx.doi.org/10.1016/j.advengsoft.2014.01.010
http://dx.doi.org/10.1016/j.advengsoft.2014.01.010


such as straight lines in different directions [1]. Many computer vision applications

such as feature extraction, object tracking, and recognition have been parallelized

by using multicore platforms such as a CPU or GPU in order to reduce execution

time [2].

Typically, when an application is running with a GPU system, only one thread

is assigned to a “host CPU core” (i.e., a core of CPU for executing a host program)

in order to control a GPU and manage data copy operations; remaining CPU

cores are in an idle state while the GPU performs the application-specific tasks.

This leads to large amounts of wasted CPU resources. Therefore, it is important to

find an effective method to make full use of all the available computational

resources of both the CPU and GPU. Recently, some approaches [3, 4, 5, 6, 7]

have been developed to perform a specific task using both multi-core CPU and

GPU simultaneously, instead of the CPU or GPU alone. In this paper, we present a

way to distribute the workload into both the CPU and GPU, with a performance

prediction model (i.e., a static strategy) including characteristics of feature extrac-

tion from the video stream data.

In order to parallelize feature extraction and determine the optimal workload

distribution into both the CPU and GPU, we consider two important characteristics

of feature extraction. First, feature extraction is affected by non-negligible parallel

overhead such as data copy time, since feature extraction for a single image frame

has relatively short execution time. However, feature extraction used for object

tracking requires a large number of frames and has data dependency in each frame.

Thus, we should parallelize the feature extraction of one image frame for satisfying

the real-time requirement of video stream processing. In addition, since the video

streaming data are continuous within the static workload, the static strategy can be

efficient to distribute the workload into both the CPU and GPU for feature

extraction without complicated scheduling overhead.

In this paper, for a given machine (i.e., a multi-core CPU and GPU combina-

tion), we derive a performance prediction model of the given machine by using

linear interpolation, and determine the optimal CPU:GPU workload ratio by using

the performance prediction model. Also, we improve the performance of a CPU-

GPU hybrid computing by reducing the idle time of CPU and GPU. Based on our

experimental results, we confirm that the proposed method using the optimal

workload distribution can perform feature extraction more efficiently than CPU-

only, GPU-only, or CPU-GPU hybrid computing with a 50:50 workload ratio.

The rest of the paper is structured as follows: Section 2 describes computational

characteristics of feature extraction, and Section 3 describes the CPU-GPU hybrid

computing with optimal workload distribution. The experimental results are given

in Section 4, and conclusions are provided in Section 5.

2 Computational characteristics of feature extraction

Feature extraction consists of the operations SmoothedImage, Gradients, and

TrackabilityEachPixel, and has two important computational characteristics. First,

feature extraction is affected by parallel overhead such as data copy time, which is

non-negligible. Fig. 1 illustrates parallelized feature extraction using CPU-GPU

© IEICE 2014
DOI: 10.1587/elex.11.20140932
Received September 29, 2014
Accepted October 17, 2014
Publicized November 4, 2014
Copyedited November 25, 2014

2

IEICE Electronics Express, Vol.11, No.22, 1–8



hybrid computing. Typically, a single image frame at the host CPU core is divided

in two parts and assigned to the “remaining CPU cores” (i.e., the remaining cores of

CPU for computing a workload) and GPU, respectively. Although the GPU

requires data copy time in order to compute the workload, it should be noted that

a GPU can provide better performance than a multicore CPU for many applications

having no data dependency. While a GPU requires data copy time from the host

CPU core, the data copy time is negligible in the large-scale, compute-bound

problems in scientific applications. However, in the feature extraction, the parallel

overhead sensitively affects the total execution time of feature extraction, since

each operation of feature extraction (i.e., SmoothedImage, Gradients, and Track-

abilityEachPixel) has relatively short execution time (i.e., tens of millisecond) for

one image frame.

For example, Fig. 2 shows the computational characteristics of CPU (with four

cores) and GPU hybrid computing, and the effect of data copy time. In general, the

data copy time is negligible in the large-scale, compute-bound, scientific problems

as shown in Fig. 2(a). However, if the data copy time is non-negligible and amount

of the host CPU core’s computation and data copy time is much longer than the

computation time of the remaining CPU cores as shown in Fig. 2(b), it significantly

affects the total execution time. In this case, since the data copy time is relatively

large, the remaining CPU cores have a long idle time. To reduce this idle time, we

can distribute the host CPU core’s workload into the remaining CPU cores as shown

in Fig. 2(c). Since three of the CPU’s cores (i.e., remaining CPU cores) are used for

additional workload execution, the host CPU core (i.e., core 4) can perform the data

copy without any workload execution. Ideally, the workload of the remaining CPU

cores can be redistributed into the host CPU core (See Fig. 2(d)). However, the

performance improvement from Fig. 2(c) to Fig. 2(d) may be much smaller than

the performance improvement from Fig. 2(b) to Fig. 2(c).

Fig. 1. An example of computational characteristics of feature
extraction.

© IEICE 2014
DOI: 10.1587/elex.11.20140932
Received September 29, 2014
Accepted October 17, 2014
Publicized November 4, 2014
Copyedited November 25, 2014

3

IEICE Electronics Express, Vol.11, No.22, 1–8



Further, since feature extraction is performed with continuous video stream

data, a static strategy can efficiently distribute the workload into both the CPU and

GPU without complicated scheduling overhead. In this paper, we apply the

performance prediction model by using linear interpolation based on a pre-experi-

ment test (i.e., for a given CPU-GPU hybrid computing system, we measure the

execution time for feature extraction of an image frame size), and then determine

the optimal CPU:GPU workload ratios for other image frame sizes.

3 Proposed method

3.1 Determine the optimal CPU:GPU workload ratio

In this paper, we predict the execution time by using linear interpolation based on a

pre-experiment test, and then determine the optimal CPU:GPU workload ratio. To

accurately predict the execution time of feature extraction, we analyze the computa-

tional characteristics of the CPU and GPU, including data copy time to and from

the GPU. First, the execution time is measured with various CPU:GPU workload

ratios for a given CPU-GPU hybrid computing system, and then the performance

prediction model can be derived by using linear interpolation. For example, we

measure the execution time with a 640 � 480 image, and then the performance

(a) scientific problem (b) feature extraction

(c) feature extraction (d) feature extraction

Fig. 2. An example of the computational characteristics of CPU-GPU
hybrid computing, showing the effect of data copy time.

© IEICE 2014
DOI: 10.1587/elex.11.20140932
Received September 29, 2014
Accepted October 17, 2014
Publicized November 4, 2014
Copyedited November 25, 2014

4

IEICE Electronics Express, Vol.11, No.22, 1–8



prediction model (i.e., linear equations) is derived by using linear interpolation.

These equations can predict the execution time for the feature extraction of various

image frame sizes. Also, we can determine the optimal CPU:GPU workload ratio

for feature extraction of various image frame sizes by using the performance

prediction model. The method to find the optimal CPU:GPU workload ratio is as

follows:

The total workload (i.e., the size of a given image frame) WTOTAL is represented

with WCPU and WGPU , as shown in equation (1).

WTOTAL ¼ WCPU þWGPU ð1Þ
The total execution time of hybrid computing TCPUþGPU ðWCPU þWGPU Þ is

represented by the maximum execution time of TCPU ðWCPU Þ or TGPU ðWGPU Þ as
shown in equation (2).

TCPUþGPU ðWCPU þWGPU Þ ¼ max½TCPU ðWCPU Þ; TGPU ðWGPU Þ� ð2Þ
Since the execution time for feature extraction of CPU and GPU increases or

decreases linearly according to workload size, we can represent TCPU ðWCPU Þ and
TGPU ðWGPU Þ with equation (3) and equation (4) by using linear interpolation. To

obtain the parameters α, β, γ, and δ (i.e., coefficients and constants of linear

equations), we should measure the execution time for feature extraction of an

image frame size on CPU and GPU at least once, and then the performance

prediction model (i.e., linear equations) is derived with the parameters. Note that,

to accurately predict the execution time, the GPU’s execution time should include

the data copy time.

TCPU ðWCPU Þ ¼ �WCPU þ � ð3Þ
TGPU ðWGPU Þ ¼ �WGPU þ � ð4Þ

The performance of hybrid computing TCPUþGPU ðWCPU þWGPU Þ is maxi-

mized, when TCPU ðWCPU Þ is approximately equal to TGPU ðWGPU Þ. Therefore, using
above equation (3) and equation (4), we can represent the TCPU ðWCPU Þ ¼
TGPU ðWGPU Þ as equation (5).

�WTOTAL � �WGPU þ � � ð�WGPU þ �Þ ¼ 0 ð5Þ
Finally, the optimal workload OWCPU and OWGPU are represented with

equation (6), and we can determine the optimal CPU:GPU workload ratio.

OWGPU ¼ �WTOTAL þ � � �

ð� þ �Þ
OWCPU ¼ WTOTAL � OWGPU ð6Þ

3.2 Determine how to use the CPU cores

To reduce the idle time of CPU and GPU, Algorithm 1 shows the workload

distribution method. First, the performance prediction model is derived, and the

optimal workload ratio of CPU:GPU is determined as shown in step 1 and step 2

(See Fig. 2(a) or (b)). In step 3, we determine how to use the CPU cores. If amount

of the host CPU core’s computation and data copy time is much longer than the

remaining CPU cores’ computation time, OWCPU and OWGPU should be updated

© IEICE 2014
DOI: 10.1587/elex.11.20140932
Received September 29, 2014
Accepted October 17, 2014
Publicized November 4, 2014
Copyedited November 25, 2014

5

IEICE Electronics Express, Vol.11, No.22, 1–8



by using equation (3), (5), and (6) (See Fig. 2(c)). Finally, some workload of the

remaining CPU cores is redistributed into the host CPU core for the ideal workload

distribution (See Fig. 2(d)). That is, we treat the host CPU core managing the non-

negligible data copy time differently from the remaining CPU cores. On the

contrast, if the data copy time is negligible (i.e., step 3-2), CPU-GPU hybrid

computing is executed with OWCPU and OWGPU computed by step 2.

Algorithm 1: workload distribution into CPU and GPU

Step 1: Construct the each performance model for CPU and GPU

1-1: Use remaining CPU cores and host CPU core for CPU computation (with n cores)

1-2: Obtain parameters α, β, γ, and δ

Step 2: Determine OWCPU and OWGPU

Step 3: Determine how to use the CPU cores

3-1: IF OWCPU
n þ data copy time > OWCPU

n�1
Use remaining CPU cores for CPU computation (with n � 1 cores)

Update performance prediction model for CPU by using equations (3), (5), and (6)

Update OWCPU and OWGPU

Assign OWCPU
n�1 � TGPU ðWGPU Þ to the host CPU core

Execute CPU-GPU hybrid computation with OWCPU and OWGPU

3-2: ELSE

Use remaining CPU cores and host CPU core for CPU computation (with n cores)

Execute CPU-GPU hybrid computation with OWCPU and OWGPU

4 Experimental results

To evaluate the proposed method, we conducted the experiment with an Intel Core

i5-3570 CPU (having 4 cores) and a GeForce GTX 660 GPU (having 960 cores).

We used 120 image frames, and the image frame sizes were 1440 � 1080,

1280 � 720, 800 � 600, 720 � 480 and 640 � 480. In addition, we used OpenMP

[8] and OpenCL [9] in order to parallelize feature extraction on the CPU and GPU.

Note that, although OpenMP does not require the data copy time within a CPU, it

does not provide the detail operations for asymmetric workload assignment

between the host CPU core and the remaining CPU cores. Also, the performance

improvement from Fig. 2(c) to Fig. 2(d) may be much smaller than the perform-

ance improvement from Fig. 2(b) to Fig. 2(c). Thus, we distributed the workload

into both the CPU and GPU such as Fig. 2(c).

To obtain the parameters for the linear equations, we measured the execution

time for feature extraction of CPU and GPU with a 640 � 480 image frame size,

and the parameters used for linear equations of CPU (i.e., α and β) and GPU (i.e., γ

and δ) are summarized in Table I.

Table I. Parameters for performance prediction model of feature
extraction

For CPU For GPU

α β γ δ

2:78 � 10�4 1:61 � 10�4 7:25 � 10�5 5:63 � 10�3

© IEICE 2014
DOI: 10.1587/elex.11.20140932
Received September 29, 2014
Accepted October 17, 2014
Publicized November 4, 2014
Copyedited November 25, 2014

6

IEICE Electronics Express, Vol.11, No.22, 1–8



To validate the performance prediction model, we compared the estimated (i.e.,

using equations (3) and (4)) and the measured execution times as shown in Fig. 3.

The results show that the performance prediction model can be accurate enough to

estimate the execution time for the optimal CPU:GPU workload ratio. For example,

the optimal CPU:GPU workload ratio was 78%:22% for 1440 � 1080 image

frames. For larger image frames, the GPU’s optimal workload size should be

decreased in order to provide better performance, due to the increased effect of the

data copy time. Note that, since the sequential execution time of feature extraction

for 1440 � 1080 image was 760ms, we should parallelize the feature extraction for

satisfying the real-time requirement of video stream processing. In the case of

1440 � 1080 image frames, the sequential execution provides 1.3 FPS (i.e., frames

per second), whereas the parallel execution provides 16.3 FPS with the proposed

CPU-GPU hybrid computing method.

To evaluate the proposed method in detail, the performance (i.e., speedup) of

the proposed CPU-GPU hybrid computing method is compared with those of three

typical workload distributions (i.e., CPU-only, GPU-only, or CPU-GPU hybrid

computing with a 50:50 workload ratio). Fig. 4 shows that even if there is data

copy time overhead for the GPU, the GPU-only method still provides better

performance than the CPU-only method for various image frame sizes. We also

considered the performance of the straightforward hybrid method (i.e., using all

four of the CPU’s cores for workload execution and CPU-GPU computing with a

50:50 workload ratio). In the proposed method, however, we used three of the

CPU’s cores for workload execution, and the optimal workload ratios were 75:25,

77:23, 78:22, and 78:22 for 720 � 480, 800 � 600, 1280 � 720, and 1440 � 1080

image frames, respectively. In the results, the straightforward hybrid method

provided even worse performance than the GPU-only method. However, we

confirmed that the proposed hybrid method can improve the performance of the

GPU-only method by up to 23% for 1440 � 1080 image frames.

Fig. 3. Comparison of estimated and measured execution times of the
proposed CPU-GPU hybrid computing method

© IEICE 2014
DOI: 10.1587/elex.11.20140932
Received September 29, 2014
Accepted October 17, 2014
Publicized November 4, 2014
Copyedited November 25, 2014

7

IEICE Electronics Express, Vol.11, No.22, 1–8



5 Conclusions

In this paper, we efficiently parallelized video feature extraction by using the CPU

and GPU simultaneously. We estimated the total execution time with a performance

prediction model, and determined the optimal CPU:GPU workload ratio between

CPU and GPU and how to use the CPU cores for the given workload. To the best of

knowledge, this is first report on treating the host CPU core (i.e., managing the non-

negligible data copy time) differently from the remaining CPU cores. Based on the

experimental results, we confirmed that the proposed method can improve the

performance of CPU-only, GPU-only, or CPU-GPU hybrid computing with a 50:50

workload ratio.

Acknowledgments

This research was supported by BK21 Plus Program.

(Corresponding authors: Y. Chung and T. Jeong)

Fig. 4. Performance comparison of workload distributions

© IEICE 2014
DOI: 10.1587/elex.11.20140932
Received September 29, 2014
Accepted October 17, 2014
Publicized November 4, 2014
Copyedited November 25, 2014

8

IEICE Electronics Express, Vol.11, No.22, 1–8


