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Abstract: Reversible circuits have applications in various research
areas including signal processing, cryptography and quantum compu-
tation. In this paper, a non-search based moving forward synthesis
algorithm (MOSAIC) for Boolean reversible circuits is proposed to con-
vert an arbitrary well-formed matrix into an identity matrix using a
set of reversible gates. In contrast with the widely used search-based
methods, MOSAIC is guaranteed to produce a result and can lead to
a solution in much fewer algorithmic steps. To evaluate the proposed
algorithms, different circuits and benchmarks were used that show the
efficiency of the proposed algorithm to lead a result.
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1 Introduction

The limitations of current CMOS technology for increasing the processing
power in the near future led researchers to work on new computational mod-
els [1]. Among various proposed models, quantum computing has the po-
tential to increase the rate of advances in computing power drastically [2].
However, a large quantum circuit requires a systematic synthesis algorithm [3,
4, 5, 6, 7].

Boolean reversible circuits can be viewed as a special case of quantum
circuits as quantum evolution is reversible in nature [1]. While the intrinsic
parallelism of quantum algorithms is not available without purely quantum
gates, popular universal quantum gate libraries often contain a set of Boolean
reversible gates [2]. As a result, working on automatic synthesis methods for
reversible circuits has received significant attentions recently [3, 4, 5, 6, 7].

In this paper, the characterizations of matrix representation of Boolean
reversible circuits are used to propose a moving forward strategy to synthesize
circuits fast.

2 Preliminaries

A quantum bit (or qubit) is typically derived from the state of a two-level
quantum system. An n-qubit quantum gate is a device that performs a
specific unitary operation on selected qubits in a specific period of time. An
n-qubit quantum gate is associated with a unitary 2n × 2n matrix, QMatrix,
describing its functionality.

An n-input, n-output CNOTn(x1, x2, · · · , xn) gate passes the first n-1
lines unchanged and flips the nth line if the control lines are all one. For n = 1,
n = 2, and n = 3 the gates are called NOT, CNOT and C2NOT (Toffoli),
respectively. These gates comprise an important class of quantum gates that
mainly used in Boolean reversible circuits [3, 4, 5, 6]. By combining some
primitive gates, any related quantum gate and circuit can be constructed [2].

Several algorithms have recently been proposed to synthesize a circuit.
Some authors used transformation-based algorithms, e.g. [3], which apply
local transformations to optimize the results of other algorithms. Several au-
thors, e.g. [7], used SAT-based formulations for the synthesis problem where
the application of these approaches is limited to circuits with a few gates
due to high complexities of resulted SAT clauses. Some authors proposed
search-based methods to synthesize a given specification, e.g. [4, 5, 6]. These
algorithms need a time-consuming procedure for the examination of all pos-
sible gates to lead to a result. In addition, the proposed algorithm did not
guarantee to reach a valid result.

3 Synthesis Algorithm

A QMatrix of an n-qubit quantum circuit is well-formed if its elements are
either zero or one and each column or row has exactly one element with a
value of 1 [4]. It has been shown that the set of well-formed matrices is
closed under tensor product and matrix multiplication [4]. As a result, the
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QMatrix of a C2NOT gate as well as the QMatrix of a circuit containing
only C2NOT gates are well-formed [4]. Since the C2NOT gate is universal
for Boolean reversible logic [2], the QMatrix of a Boolean reversible circuit is
also well-formed. Hereafter, a general k-qubit gate is represented as CkNOT
and n is used as the number of available qubits. The QMatrix M is also
denoted as M(x1, x2, · · ·) where xi is the row number of an element with the
value of 1 in the ith column.

Definition 1: The application of a k-qubit gate on a circuit is called
Lk-QTranslation. As the set of well-formed QMatrix is closed under matrix
multiplication, the result of using an Lk-QTranslation is also well-formed.

Definition 2: The ith and the jth rows of a QMatrix form a quantum
pair (QPairi,j) if the numbers i and j differ in only one bit position.

Definition 3: The 2k rows of a QMatrix whose row numbers have the
same value on their n-k bit locations form a single group called CkQPair.

Lemma 1: (a) The application of an Lk-QTranslation on M leads to
2n−k−1 row exchanges. (b) Equally, exchanging the locations of 2k QPairs of
the same CkQPair is equivalent to applying an Ln−k−1-QTranslation.

Lemma 2: Consider a CkQPair of a QMatrix having 2k rows where the
n-bit row numbers have the same value on their n-k bits and two QPair rows
differ from each other only in one bit position. Exchanging the locations
of each QPairi,j (QPairi,j ∈ CkQPair) has the same effect as applying an
Ln−k+1-QTranslation.

The proposed MOSAIC algorithm is shown in Fig. 1.
Variable flag is used to verify the requirement of further steps. A set of 2n

flags are used to mark the rows visited in previous steps. Initially, MOSAIC
set b = 1 and reset all rows to be unvisited rows. Then, the algorithm selects
a column c and set r to be the c row number which has a value of 1. If the

Fig. 1. MOSAIC synthesis algorithm
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bth bits in the binary expansions of c and r are identical, the algorithm does
nothing to mean that r and c have the same value in their bth bit locations.
Otherwise, MOSAIC tries to correct the bth bit of r by exchanging the rth

row with another row p where p ∈ QPairr,p and differs from r in its bth bit.
This process is continued to consider all 2n columns sequentially. Then b

is incremented to evaluate the next bit. An Lk-translation is also extracted
considering the exchanged rows. These steps are repeated until all rows are
placed at their right locations.

Example 1: Consider a 3-qubit circuit with QMatrix M(7, 0, 1, 2, 3, 4, 5,

6). Fig. 2 shows the application of the proposed algorithm. In this figure,
p, q and the exchanged QPair rows enclosed in {} are shown. The resulted
CkQPairs for each step are also demonstrated. The synthesized circuit of
this example is {NOT(c), CNOT(c’,b), C2NOT(b’,c’,a)}.

Fig. 2. The results of applying MOSAIC on Example 1

Theorem 1: MOSAIC converges to a valid circuit after several steps.
Proof: Assume that after a number of steps, several rows represented as a
set Σ, are placed at their right positions and the algorithm is working on the
kth bit (i.e. b = k) of the cth column and sets r to the column c row number
with the value of 1. Consider the case where r differs from c in its kth bit
(r /∈ Σ). Accordingly, the algorithm finds a row number p that differs from
r only in its kth bit.

If p ∈ Σ and p < r, the algorithm does nothing to avoid instability in
row locations. However, as the rth row is placed at a wrong position, there
must be another row, i.e. the tth row, which should be exchanged with the
rth row during the next steps. Consider the other cases (p /∈ Σ or (p ∈ Σ and
p > r)) where the algorithm exchanges the location of the pth row with that
of the rth row. Then, the kth bit of the row r is correct and the algorithm
moves forward. As each QTranslation does not change the previous results,
the algorithm will gradually place all rows at right positions.

To compare MOSAIC with search-based methods in relation to the time
complexity, assume a possible implementation of a QMatrix needs at most h

gates.
Theorem 2: A search-based synthesis method needs O(n × 2n)h steps.

Proof: For a quantum circuit of size n, there are C1
n possible NOT gates and

C2
n possible C2NOT gates in which one of its two inputs can be the target

output. On the other hand, as each of the C2NOT inputs could be used as
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the target qubit, the total number of 2 × C2
n gates can be obtained.

In contrast, for a (k + 1)-qubit gate, k ∈ (2, 3, · · · , n-1), there are Ck
n−1

possible gates when the target can be any ith (i ∈ [1, n]) qubit. Considering
all possible qubits as the target variable leads to the total number of n×Ck

n−1

(k +1)-qubit gates. Therefore, the total number of gates is C1
n +2×C2

n +n×
(Σi∈(2···n−1)Ci

n−1) = n× 2n−1. As at most h steps are required, search-based
methods need O(n × 2n)h node searches.

Theorem 3: MOSAIC needs at most O(h × 2n) steps to reach a result.
Proof: It can be verified that except the lines 2 and 5 of the algorithm, the
other lines take only O(1) time. The time complexities of line 5 and line 2 are
O(2n) and O(h), respectively. As a result, MOSAIC needs O(h × 2n) steps.

4 Experimental Results

All of the experiments were done on an Intel Pentium IV 3GHz computer
with 1GB memory. To evaluate the algorithm, we used several examples and
benchmarks taken from literature [3, 4, 5, 6, 8, 9]. Furthermore, we compared
the results of our algorithm with several recent papers including [3, 5, 6].

Table I shows the synthesized results of different algorithms for some
examples. For search-based algorithms the number of searched nodes and

Table I. Comparison of average results for some examples

No. of Steps vs. No. of Searched Nodes No. of Gates
QMatrix MOSAIC [3] [6] [5] MOSAIC [3] [6] [5]

1 40 32 15 11 5 4 4 4
2 16 24 300 761 3 3 3 3
3 32 24 10 7 3 3 3 3
4 32 56 786 156 5 7 5 5
5 96 224 8256 9515 7 14 7 7
6 16 24 4 4 3 3 4 3
7 48 32 5 5 4 4 4 4
8 32 64 139 230 4 4 4 4
9 112 288 16033 146244 10 18 12 11
10 256 256 - - 22 16 - -
11 400 192 - - 40 12 - -
12 32 80 66 - 6 10 7 -
13 40 96 77 - 10 12 6 -
14 40 56 4387 - 8 7 7 -
15 512 1408 > > 29 44 > >

16 1472 1664 > > 82 52 > >

17 480 1344 > > 30 42 > >

18 32 80 352 - 6 10 7 -
19 208 288 678 - 6 10 7 -
20 240 208 9712 - 20 13 14 -
21 144 368 74521 - 20 23 17 -
22 192 352 85191 - 21 22 16 -
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Table II. Comparison of results for available benchmarks

Circuit Benchmark No. of Gates Circuit Benchmark No. of Gates
[8] MOSAIC [5] [8] MOSAIC [5]

1 2of5 10 20 17 hwb7 404 -
2 rd32 4 4 18 decode24 10 11
3 rd53 16 13 19 shift10 22 27
4 rd73 15 - 20 5one013 22 19
5 3-17 6 6 21 5one245 27 20
6 4-49 14 13 22 6one135 2 5
7 alu 29 18 23 6one0246 2 6
8 cycle10-2 24 - 24 majority3 5 4
9 xor5 2 4 25 majority5 24 16
10 4mod5 2 5 26 graycode6 7 5
11 5mod5 8 11 27 graycode10 13 9
12 ham3 4 5 28 mod5adder 26 19
13 ham7 48 24 29 mod32adder 20 15
14 hwb4 14 15 30 mod15adder 25 10
15 hwb5 42 - 31 mod64adder 31 26
16 hwb6 124 - 32 6symd2 19 -

for MOSAIC and the algorithm of [3] the number of steps were reported to
have the same O(1) time complexity for all primitive operations. Number
of resulted gates for each algorithm was also shown and a time limit of 60
seconds was used for the experiments. The “−” and “>” symbols are used
when the circuit cannot be synthesized or required more steps, respectively.
To further evaluate the cost of generated circuits, reversible benchmarks are
also used and numbers of generated gates using both the method of [5] and
MOSAIC are reported in Table II.

As shown in these tables, MOSAIC not only has the ability to produce a
result for all of the attempted specifications but also it can reach a result in
much fewer steps. It can be seen that MOSAIC can also reach a circuit with
comparable cost. As the quality of search-based methods highly depends on
the application order of each possible gate at each step, if the number of
qubits increases or the resulted circuits need too many gates, search-based
methods may not lead to a result due to memory and/or time limits.

5 Conclusions

In this paper, a non-search based synthesis algorithm was proposed which
requires a few steps to synthesize a given specification. To evaluate the
algorithm, we used some examples and benchmarks taken from the literature
and compared the results with those generated by several recent methods. It
was shown that the presented algorithm could lead to valid results for all of
the circuits much faster on average with comparable gate counts.
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