Jour nal of Computer Science 9 (6): 749-756, 2013

ISSN: 1549-3636

© 2013 Science Publications

doi:10.3844/jcssp.2013.749.756 Published Onlin@)2013 (http://www.thescipub.com/jcs.toc)

EVALUATION OF VARIOUS COMPILER
OPTIMIZATION TECHNIQUESRELATED
TO MIBENCH BENCHMARK APPLICATIONS

Jeyaraj Andrews and ?Thangappan Sasikala

!Department of Computer Science and Engineeringpy8hama University, Chennai, India
2SRR Engineering College, Chennai, India

Received 2013-01-22, Revised 2013-05-16; Accepte@-D6106
ABSTRACT

Tuning compiler optimization for a given applicatiof particular computer architecture is not arydask,
because modern computer architecture reaches highels of compiler optimization. These modern
compilers usually provide a larger number of optation techniques. By applying all these technigoes
given application degrade the program performamscegll as more time consuming. The performance of
the program measured by time and space dependseomachine architecture, problem domain and the
settings of the compiler. The brute-force methotryhg all possible combinations would be infedsijlas

it's complexity O(Z) even for “n” on-off optimizations. Even thoughany existing techniques are
available to search the space of compiler optiorfintl optimal settings, most of those approaclses e
expensive and time consuming. In this study, mach@arning algorithm has been modified and used to
reduce the complexity of selecting suitable compaltions for programs running on a specific handwa
platform. This machine learning algorithm is comgghmwith advanced combined elimination strategy to
determine tuning time and normalized tuning timlee Experiment is conducted on core i7 processasd h
algorithms are tested with different mibench benatkapplications. It has been observed that pedoo®
achieved by a machine learning algorithm is bettan advanced combined elimination strategy alyarit

Keywords. Machine Learning, Program Features, Compiler Qpttion, Mibench

1. INTRODUCTION effective orchestration algorithm to search for test
combinations of optimization options is desired.
Modern architecture designer strives to bring Automatically selecting the best set of compiler
satisfactory system level performance by applying optimizations for a particular program is a diffictask.
minimal power across a wide range of applicatids. Many existing framework available to select bedtafe
many compilers fail to deliver its performance hesea optimal compiler setting from larger set of options
of rate of change in hardware evolution. A compiler Andrews andSasikala (2012) used a new algorithm called
usually provides a larger number of optimizatiotians, as Advanced combined elimination which is a modifie
from which users has to pick up best set of avhdlab combination of batch elimination and combined eiition
options for a given application. Those who do nawéh which provides the complexity of GfnFursin and Temam
in depth understanding of the compiler options and(2011) used an algorithm called as Random searaiegy
interactions among compiler options, then it isllyea which picks up best set of combinations in quiakei
difficult to pickup best set of options. Compilersually Park and Cavazos (2011) used different modeling
provide three levels of optimization techniquesejfflare techniques to find best set of combinations foriverny
-01, -02 and -03. As compiler optimization intest benchmark applications.Combined elimination gives
unpredictable manner in different architecturedifiig an better results than other algorithms and only fewer

Corresponding Author: Jeyaraj Andrews, Department of Computer Sciendéeaigineering, Sathyabama University, Chennaialndi

///// Science Publications 749 JCS

Jeyaraj Andrews and Thangappan Sasikala / Jour@drmoputer Science 9 (6): 749-756, 2013

evaluations required to find optimal settings. Huare
these pure search or “orchestration” approacheaato
use prior knowledge of the hardware, compiler, or
program and instead attempt to obtain this knowdedg
online. Every time a new program is optimized, the
system starts with no prior knowledge. In this gtud

machine learning has been used in a modified form,
which has the potential of reusing knowledge across

iterative compilation runs, gaining the benefits of
iterative compilation while reducing the number of
executions needed. In this study we have selecte@ G
as the compiler infrastructure. GCC is currently tmly
production compiler that supports different arattiees
and has multiple aggressive optimizations making it
natural vehicle for our research. GCC provides ehre
levels of optimization techniques. To obtain thestbe
performance a user
optimization level-O3. In this level the compilegrform

the most extensive code analysis and expects the

compiler generated code to deliver
performance.
automated framework to select the compiler options
particular problem from large set options. Manyras
works consider only limited set of options. Forsthi
framework, we have implemented compiler optimizatio
selection algorithm advanced combined elimination
strategy. This algorithm is compared with machine
learning algorithm. Efficiency was evaluated to e

its tuning time and normalized tuning time. Thedgtis
organized as follows.

the highest

1.1. Framewor k Architecture

The optimization selection algorithm picks up best
set of optimization techniques from ‘n’ availablenmber
of optimization techniques. These techniques adplie
for a given benchmark applications and compilechwit

GCC compiler. The target code is then analyzed with®

performance tools using Intel Vtune performance
analyzer to collect set of program features. The
performance was analyzed for improving the
execution speed up and compilation time. This
information is then given feedback option selector
algorithm to pick up another best setgure 1 shows
detailed description of framework architecture.

1.2. Selection Algorithms

Given a set of “n” ON-OFF optimization options{F
F,...Fn), find the best combination of flags that miizies
application execution time and compilation time.

///// Science Publications 750

usually applies the highest

In this study we have proposed an

Option list

|

Option selector

———P

Selected set of options

v

GCClg++
compiler
|

v

Byte code

v

Performance
analyzer

4— Input

v
Performance profiler

Fig. 1. Optimization selection framework

In this study a novel performance tuning algorithm
advanced combined elimination algorithm is compavitial

a machine learning algorithm which picks up bestode
options to improve tuning time and normalized tgrtime.

1.3. Advanced Combined Elimination Strategy

Let S be the set of available optimization options:

Let B represents selected compiler options set

Find Tg, by applying all flags are on

Compile the program with gI' configuration and
measure the program performance

Calculate Relative Improvement Percentage (RIP)
for each and every optimization options. Relative
improvement percentage is calculated based on
finding the time required by applying particulaadi

ON and OFF with respect tgs T

Store all the values in an array based on ascending
order. i.e., the most negative RIP is stored igt fir
position of the array

Remove the first two most negative RIP’s from an
array instead of one. Now the value @fi$ changed

in this step

JCS

Jeyaraj Andrews and Thangappan Sasikala / Jour@drmoputer Science 9 (6): 749-756, 2013

¢ Remaining values in an array i.e., i vary from $1to inline functions and unrolling. Although optimizati level
Calculate RIP and store the negative RIP's in array 3 (-O3) can produce faster code, the increaseeisitte of
e If all values in an array represent positive values the binary image can have adverse effects onetsisp

then set of flags in B represents best set 1.6. Mibenchmark Programs

* Else
e Repeat steps ii until B contains only positive eslu The Mibench benchmark suite programs are used to
« Stop experiment the proposed algorithm. These benchmark
. . . suites are comparable with SPEC benchmark suite.
1.4. Machine Learning Algorithm
1.7. Bzip2

The logistic regression model is a machine learning
(Hung et al., 2009) technique used to pick up set of Bzip2 is a free and open source implementation of
options from a trained dataset. For a larger bemackm the Burrows-Wheeler algorithm. Bzip2 compressestmos
applications, finding the best set of compiler opsi will ~ files more effectively than the older LZW (.Z) and
take more amount of time. To find a best set withs| ~ Deflate (.zip and .gz) compression algorithms, st

number of evaluations, we proposed a machine legrni c_onsiderably slower. Bzip2 compresses data in blatk
strategy. Collect set of program features for aewiv size between 100 and 900 kB and uses the Burrows-

benchmark applications for a specific hardware rdyri \S/\éhiilﬁéérsai?igogmr:och??éeer;:‘irce;lfeetr:g?grecurrlhgracter
the training stage itself. q 9 '

For training we have collected more than 1000 et o 1.8. Consumer_jpeg _C

combinations. These combinations compiled with gcc The JPEG standard allows “Comment’ (COM)
g++ compiler and record the execution speed up. I:Orblocks to occur within a JPEG file. Although the

collecting program features Intel Vtune performance standard doesn't actually define what COM blocks ar

pr_ofiler used. For cqllecting s_tatic program f_eatur for, they are widely used to hold user-suppliedt tex
Milepost GCC machine compiler used (Fursin and gings This lets add annotations, titles, indenas, in
Temam, 2011). The model is evaluated based on ®@®e jpEG files and later retrieve them as text. CObtks

out cross validation procedure. i.e., if we havasider N do not interfere with the image stored in the JFG

=10 (Where N is number of benchmark applications), paximum size of a COM block is 64K.

the models are trained on N-1 benchmarks and tested Consumer tiff2bw Tiff2bw converts an RGB or
the N" benchmark. The models were trained with 9000 Palette color TIFF image to a grayscale image by
points. The programs were compiled with 1000 séts 0 compining percentages of the red, green and blue
compiler setting and the performance is measuredfo channels. By default, output samples are created by
specific hardware platform. The various information taking 28% of the red channel, 59% of the greemogh
such as compilation and execution time is storedhen 5nd 11% of the blue channel. To alter these pesgest

repository. After training stage if a similar kindf the -R, -G and -B options may be used.
program arrives by looking database one can who

guickly searches best set of optimal settings. 1.9. Qsort

1.5. Experimental Procedure The sorttest sorts a large array of strings into
e ascending order using the well known quick sort

In this study we have considered recent version ofalgorithm. The small data set is a list of worllhe large
GCC compiler. GCC provides different levels of data setis a set of three-tuples representinggofrdata.
optimization techniques. Previous work consideraly o .
limited set of optimization techniques. In thisdstumore 1.10. Dijkstra
number of optimization techniques consider€&dble 1 The Dijkstra benchmark constructs a large graph in
show different levels of optimization techniquesnfr -0 an adjacency matrix representation and then caésila
to -03.03 is the highest level techniques. Levebiisists the shortest path between every pair of nodes using
of important techniques such as floop-optimize, ddea repeated applications of Dijkstra’s algorithm.
code elimination, ftree-dce, dead store elimingtitnee- -
dse and scalar replacement of aggregates. Level }'11' Patricia
consists of important techniques such as globalnomm A Patricia tries is a data structure used in plziciell
sub expression elimination, gcse, peephole opttmiza trees with very sparse leaf nodes. Branches with an
fpeephole2 and various basic block optimizatiohréesues single leaf are collapsed upwards in the triesetduce
and scheduling optimization techniques. Level Simimof traversal time at the expense of code complexifierQ

///// Science Publications 751 JCS

Jeyaraj Andrews and Thangappan Sasikala / Jour@drmoputer Science 9 (6): 749-756, 2013

Patricia tries are used to represent routing taliles normalized tuning time is calculated using the a&bov
network applications. The input data for this banark equation. Architecture used for testing was Intetel7 -

is a Iist_of IP traffic from a highly activ_e webrser for a 2630 QM CPU 2.2 Ghz. With 8GB RAM, using ubuntu
2 h period. The IP numbers are disguised. operating system and the compiler was GCC 4.3.2.

1.12. Security Blowfish

3.RESULTS
Blowfish is a keyed, symmetric block cipher, irdga
in a large number of cipher suites and encryptimalycts. Table 1 shows list of chosen optimization techniques
Blowfish provides a good encryption rate in sofsvand for a GCC compiler. Results obtained from the
no effective cryptanalysis of it has been founddte. experiment are tabulated imable 2. Table 2 represents

Normalized tuning time.
1.13. Susan

SUSAN is an acronym standing for Smallest Univalve
Segment Assimilating Nucleus. For feature detegtion
SUSAN places a circular mask over the pixel todsted

Table 1. List of optimization techniques
Level-ol techniques Level-02 techniques Level-aBnégues
fcprop-registers falign-functions fgcse-after-reloa

. fdefer-pop falign-jumps finline-functions
(the nucleus). For corner detection, two furthepstare tyejayed-branh falign-loops funswitch-loops
used. Firstly, the centroid of the SUSAN is found. fguess-
. . branch-probability falign-labels
1.14. Metrics used for Evaluation fip-conversion fcaller-saves
fip-conversion2 fcross-jumping

Relative Improvement Percentage (RIP), RIP (Fi),

which is the relative difference of the executiones of f?&ﬂ;gf_ﬂ?&is fdelete-null
the two versions with and without Fi Equation 1: fmerge-constants fexpesive
-optimizations
RIP(Fi)= T(Fi= 0)- T(Fi= 1)+ T(Fi= 1)x 10(1) fomit-
frame-pointer fforce-mem
If Fi = 1 then Fi is ON, else OFF. froe-cop e m
The baseline of this approach switches on all free-copy-rename fgcse-sm
optimizations. ftree-dce foptimize-sibling-calls
Tg=T(Fi=1)=T(F1=1, F2 = 1,...Fn = 1),Where ftree-dominator-opts fpeephole2
TB represents base time Equation 2: ftree-dse fregmove
ftree-fre freorder-blocks
R (= 0 T(Fi= 0 T8 Tax 100% @ hemh e
ftree-ter frerun-loop-opt
If RIP (Fi = 0) <0, the optimization of Fi has a fsched-interblock
negative effect, so it is better to turn off thadtion. fsched-spec
fschedule-insns
1.15. Tuning Time fschedule-insns2
fstrength-reduce
It is the time taken by each probe, to determiree th fstrict-aliasing
effect of individual options in a set of candidafgtions. Ithread-iumps
tree-pre
1.16. Normalized Tuning Time fweb

It is the time taken for computing time needed to

L h - Table 2. Normalized tuning time in seconds
check the effects of individual options. It is adated d

. . . Benchmark Machine
using the following equation. applications Ace learning algorithm
NTT = tuning time for entire probe/(number of re Bzip2 0.000130 0.000020
executions*total candidates). Consumer_jpeg.c 0.000170 0.000030
Consumer_tiff2bw 0.000190 0.000030
Network_dijkstra 0.000025 0.000010
2.MATERIALSAND METHODS Network_Patricia 0.000080 0.000020
_ o _ Qsort 0.000140 0.000030
Advanced combined elimination algorithm and Security blowfish 0.000230 0.000035
machine learning algorithm is implemented. Thea th Susan 0.000170 0.000025

///// Science Publications 752 JCS

Jeyaraj Andrews and Thangappan Sasikala / Jour@dmoputer Science 9 (6): 749-756, 2013

4. DISCUSSION of an performance on the execution time. So byideriag
set of techniques from -02 improves execution tiiore
In this stydy, we compare advanced combinedmost of the benchmark applications. By applying -03
elimination algorithm with a machine learning aligfam techniques for a given application may increasepiiation
to find tuning time and normalized tuning tinkégure 2 and code size, but improves the program performance
shows comparison of ACE and a machine learning A good optimization algorithm should achieve both
algorithm. For most of the benchmark applicatiofRSVL program performance and short tuning and short
gives least tuning time when compared to advancednormalized tuning timeFigure 3 shows when compared
combined elimination algorithm, because program to different levels of optimization techniques, AQkes
features can be extracted and storea idatabase. least execution time for all the benchmark appiicet
So if a similar program arrives with help of datsd@ne Figure 4 shows comparison of normalized tuning time
can quickly select best set of techniques. Foresofn between ACE over LRM. Normalized tuning time is
the benchmark applications especially bzip2, digksind ~ calculated by finding tuning time for each probeidid
gsort advanced combined elimination gives morecastit by number of re executions multiplied by total
tuning time when compared to LRNFigure 3 shows candidatesTable 2 shows normalized tuning time for
comparison of execution time of different levels@EC every benchmark applicatiorfsigure 5 shows execution
compiler optimization techniques with advanced time speed up between different levels of optinizat
combined elimination algorithm. GCC compiler cotsis techniques over LRM.Figure 6 shows combined
of three different levels of optimization technigue execution time between ACE and LRM over different
They are -o0l, -02 and highest level optimization levels. FromFig. 6 we can conclude that LRM achieves
techniques -03. If by applying only the set of téghes both program performance and short normalized gunin
from -01 may reduce the compilation time but notrsech ~ time for most of the benchmark applications.

I I I I I I I -

§ LRM

Tuning time (sec)
[am] — (B L) EE L (o33 -] o o)

Bzip2
gsort
susan

Consumer ipeg.c

Network dijkstra
Network patricia

consumer tipp2bw

Secuirity blowfish

Benchmark applications

Fig. 2. Comparison of tuning time

///// Science Publications 753 JCS

Jeyaraj Andrews and Thangappan Sasikala / Jour@dmoputer Science 9 (6): 749-756, 2013

16 7
— 14 4
]
w
212
w
£ 10
g 8
= 6 W o0
2
w
5 4 o1
2
2
0 0oz
- =] = = = = =
o o = = o o - =
= e % £ 5 & = E W03
[= = o =
S o : : - |
= 35 B E 2 ACE
z = = = T
=} = =] = a
& S =z z 3
o Wl
Benchmark applications
Fig. 3. Execution time over ACE
0.00025 -
[b]
=
8=
sn o 0.0002 —
g
E
= 0.00015 —
5]
N
=
£ 0.0001
@]
=z
0.00005 —
0~ B ACE
‘T D =~ wn .E n = %
aal RE = =) = z 7!
D S 5 = B LrM
=R = = '
= E c S z
z = = = R
= W = = 5
“ O A
Benchmark applications

Fig. 4. Comparison of normalized tuning time

////// Science Publications 754 JCS

Jeyaraj Andrews and Thangappan Sasikala / Jour@dmoputer Science 9 (6): 749-756, 2013

16 -
14
12 «
2]
E 10 4
& 84
E; . 00
£ B-
S
2 -
0 T T 1 02
ol o =z = = = = =]
= & = = k= 2 Z Z
N = = 5 =
] 5 g ;_i 2 = E 5 — O3
- R s =
S 2 5) =
= = z z = e [RM
=} w 5] o =
O z z pa g
&) w2
Benchmark applications
Fig. 5. Execution time over LRM
16
14 1
12 4
@2
E 18-
g 8-
]
2 -
0] I | | | | l 02
1 o = = < = ¥ o, =
= @ A 7 2 2 & 7
= £ o = 3 =4 z A —
s, = 2 5 =
2 ! = = I
= 2 5 5 By
z 5 E E = s | RM
=) i o [=
5] = z z 2
5] 7 5]
Benchmark applications
Fig. 6. Comparison between different levels over ACE aRd/L
5. CONCLUSION Mibench benchmark applications. In this framework w

have integrated Milepost GCC v2.1 and Intel Vtune
In this study, an alternative framework proposed fo performance analyzer for extracting program feature
finding tuning time and normalized tuning time for upon training stage. These in formations are stameal

///// Science Publications 755 JCS

Jeyaraj Andrews and Thangappan Sasikala / Jour@dmoputer Science 9 (6): 749-756, 2013

repository. So with the help of this informationeocan Fursin, G. and O. Temam, 2011. Milepost GCC:
find best set of optimization techniques if a sanikind machine learning enabled self-tuning compiler. Int.
of program arrives. For this frame work we have J. Parallel Programm., 39: 296-327. DOI:
implemented advanced combined elimination strategy. 10.1007/S10766-010-0161
The results are compared with a machine learningyyng, S.H., C.H. Tu, H.S. Lin and C.M. Chen, 2048.
algorithm. The results show that machine learning automatic compiler optimizations selection
algorithm which improves the program performance, framework for embedded applications. Proceedings
tuning time and normalized tuning time. _ _ of the International Conference on Embedded
In the future, we incorporate more compiler option Software and Systems, May 25-27, IEEE Xplore
selection algorithms to improve tuning time and Press, pp: 381-387 DOi' 10 1109/ICI'ESS 2009.86
normalized tuning time. In future we incorporateMM, Park E a'ndJ. Cavazo.s 20'11 An evaluatioﬁ tﬁémﬁﬁt
ROSE and path64 and other compilers in our framkwor r,nodeling .techniqués for. iterative compilation

In future we include simulators in our framework to ; ;
enable software and hardware optimization. Procegdmgs of the_ 14th International Confer_ence on
Compilers, Architectures and Synthesis for
6. REFERENCES Embedded Systems, (ES’ 11), ACM Press, New
York, USA., pp: 65-74. DOl:
Andrews, J. and T. Sasikala, 2012. Performance 10.1145/2038698.2038711
enhancement of tuning time in GCC compiler
optimizations using benchmark applications. Int. J.
Artf. Intell. Syst. Mach. Learn., 4; 276-281.

///// Science Publications 756 JCS

