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INTRODUCTION

Coastal zones provide two-thirds of global ecosys-
tem services (Costanza et al. 1997), but anthropo -
genic stresses such as over-fishing, pollution and the
direct and indirect impacts of climate change com-
promise their sustainability (Hughes et al. 2005).
Maintenance of ecosystem functioning to provide the
services humans require is the goal of ecosystem-
based management (EBM; McLeod et al. 2005). EBM
necessitates the incorporation of ecosystem resili-

ence, i.e. the capacity of a system to absorb distur-
bance and reorganize while undergoing change, so
as to retain essentially the same functions, structure,
identity and feedbacks (Walker et al. 2004). These
concepts have been applied to coastal aquaculture,
where there are concerns that feeding and waste-
cultured animals such as bivalves or fish alter particle
and nutrient fluxes to the detriment of benthic health.
In the context of coastal bivalve aquaculture, the fil-
tration activity removes phytoplankton and has the
potential to impact top-down control of primary pro-
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ABSTRACT: Although models of carrying capacity have been around for some time, their use in
aquaculture management has been limited. This is partially due to the cost involved in generating
and testing the models. However, the use of more generic and flexible models could facilitate the
implementation of modelling in management. We have built a generic core for coupling biogeo-
chemical and hydrodynamic models using Simile (www.simulistics.com), a visual simulation en -
vironment software that is well-suited to accommodate fully spatial models. Specifically, Simile
integrates PEST (model-independent parameter estimation, Watermark Numerical Computing,
www. pesthomepage.org), an optimization tool that uses the Gauss-Marquardt-Levenberg algo-
rithm and can be used to estimate the value of a parameter, or set of parameters, in order to mini-
mize the discrepancies between the model results and a dataset chosen by the user. The other crit-
ical aspect of modelling exercises is the large amount of data necessary to set up, tune and
ground truth the ecosystem model. However, ecoinformatics and improvements in remote sensing
procedures have facilitated acquisition of these datasets, even in data-poor environments. In this
paper we describe the required datasets and stages of model development necessary to build a
biogeochemical model that can be used as a decision-making tool for bivalve aquaculture man-
agement in data-poor environments.
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duction, which in certain locations could exert a pos-
itive effect by mitigating eutrophication (Coen et al.
2007).

These effects have been studied by means of carry-
ing capacity, which is defined by 4 components:
physical, ecological, production and social (for pro-
duction carrying capacity: McKindsey et al. 2006,
Ferreira et al. 2012). Grant et al. (2007) and Grant &
Filgueira (2011) have combined the concepts of eco-
system functioning and resilience in an alternative
definition of carrying capacity, i.e. the bivalve stock-
ing density at which growth is not food limited and/or
some measure of ecosystem health is not compro-
mised, which is applied in this study using ecosystem
modelling. Ecosystem models are powerful tools for
exploring carrying capacity, allowing the study of
stocks, energy fluxes and potential interactions in
complex ecosystems (Dowd 2005). Models integrate
time and space, which is critical for understanding
ecological dynamics and therefore how natural sys-
tems provide ecosystem services (Palmer et al. 2004).
In addition, scenario building allows the exploration
of future situations where unanticipated stressors
generate new risks or opportunities and is thus an
important tool for managing those changes (Nobre et
al. 2010).

Consideration of resilience may be regarded as a
perspective for the analysis of social-ecological sys-
tems wherein optimization is an outcome-oriented
tool used to make rational and transparent decisions
about a well-defined problem (Fischer et al. 2009). In
ecosystem modelling, optimization works to make a
system as efficient as possible. However, common to
all applications of optimization in conservation ecol-
ogy is the quantitative identification of a conserva-
tion problem, that is, the precise definition of the lim-
its at which ecosystem health is not compromised
(Duarte et al. 2003, Fischer et al. 2009). These limits
are known as tipping points (Fig. 1), or the critical
thresholds at which a small perturbation can qualita-

tively alter the state or development of a system (Len -
ton et al. 2008). When a perturbation goes be yond a
tipping point the resilience is exceeded and the sys-
tem reorganizes (Crowder & Norse 2008), altering
ecosystem functioning and consequently ecosystem
services. Therefore, precautionary definitions of
these tipping points are crucial in order to optimize
ecosystem functioning. In this way, EBM has been
defined as a decision-making process based on alter-
ation of ecosystem functioning within the bounds of
natural variation (Grant & Filgueira 2011). This crite-
rion has been applied to aquaculture sites in order to
retrospectively compare density-dependent scenar-
ios and carrying-capacity variation in different years
(Filgueira & Grant 2009) and to prospectively predict
the optimal mussel standing stock biomass that
would satisfy a carrying-capacity criterion in a hypo-
thetical aquaculture scenario (R. Filgueira unpubl.
data).

Together, ecosystem modelling and optimization are
the ideal tools for marine EBM, because they allow
exploration of resilience and tipping points as well as
efficiency in providing ecosystem services without
compromising the sustainability of the ecosystem. In
the context of mussel aquaculture,  carrying- capacity
models have been around for many years but their
use in management has been limited. This is partially
due to the cost involved in creating and testing the
model, which includes development of the ecosystem
model itself and collecting input and validation data.
Increasing the model complexity attempts to bolster
ecological realism, but imperfect knowledge of rela-
tionships and parameters may also lead to greater
scientific uncertainty (FAO 2008). Therefore, the as -
sumption that extra details are beneficial appears to
be flawed when applied at the scale and number of
dimensions of end-to-end models (Fulton 2010). This
implies that modelling should re strict its focus to rel-
evant components and critical dynamics, which must
be defined based on the management question to be

addressed, available data, the im -
portant system features (including
forcing conditions) and the appropri-
ate scales (FAO 2008, Fulton 2010).
Bi valve carrying-capacity models
should in clude both ecosystem- and
local-scale information in order to
consider transport processes and sub-
models for organism and population
levels (Smaal et al. 1997).

Recently, Filgueira et al. (2012)
published a  physical−biogeochemical
coupled model for studying the long-Fig. 1. Scheme of natural variation in the context of ecological resilience
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term processes in shallow coastal ecosystems. The
bio  geochemical model is constructed in Simile
(www.   simulistics.com), a visual modelling en viron -
ment (VME) that includes an optimization tool (PEST,
model-independent parameter estimation, Water-
mark Numerical Computing, www. pesthomepage.
org). In Simile, the user can define the components
and processes by means of a graphical interface and
use PEST to optimize the parameters of the model. In
addition to the flexibility in defining and constructing
the biogeochemical model, the coupled scheme has
the flexibility to accept different scales in time and
space. The temporal scale can be easily modified
during the definition and construction of the model.
Regarding spatial scales, the coupled model can be
easily designed as a multiple box or a fully spatial
model, depending on the purpose of the modelling
exercise. Given the large influence of hydrodynam-
ics in marine systems, detailed spatial resolution is
often desired, for example, when a geographic fea-
ture exerts a large influence on circulation.

Although the generic trophic structure of the mo -
del can be re-used at different sites, circulation mod-
els are site-specific and must be tailored for each new
application, as are the appropriate datasets neces-
sary to set up, tune and groundtruth the ecosystem
components. Information used to characterize and
initialize the domain, far-field time series used to
force the model and datasets used to groundtruth the
results are critical for its execution and validation.
Despite the value of model predictions and scenario
building, it is impractical to design a new research
program for every application of carrying-capacity
models, especially given the growth of shellfish farm-
ing. These tasks can however be facilitated by novel
tools and techniques. For example, ecoinformatics
aims to facilitate environmental research and man-
agement by maintaining access to databases which
are often established by government agencies. Simi-
larly, satellite remote sensing of ocean color is a pow-
erful tool to supplement field data in providing time
series for forcing and groundtruthing models. The
use of satellite images for the study of the ocean is
continuously providing better spatial resolution and
new products that allow the creation of time series of,
e.g., temperature, salinity, chlorophyll, primary pro-
duction, turbidity and dissolved organic matter.
However, satellite remote sensing near the coast is
subject to limitations due to the optical complexity of
coastal waters (Moses et al. 2009). Recently, satellite
remote sensing has been used to feed individual-
based models in order to predict bivalve growth
(Thomas et al. 2011, Filgueira et al. 2013).

Based on this scenario, we used the available
 physical− biogeochemical coupling scheme published
by Filgueira et al. (2012) to construct a fully spatial
ecosystem model based on PNZ-type dynamics
(Phytoplankton− Nutrients−Zooplankton), with the ad-
dition of mussel and seston submodels. The model has
been simplified to consider the most important com-
ponents and processes; this significantly reduces the
cost of the study in terms of model complexity and re-
quired datasets. We have sought to streamline the
process of model implementation for data-poor envi-
ronments, which we define as sites with limited envi-
ronmental data but a reliable description of the aqua-
culture activity (i.e. culture practice and bivalve
growth), which is required for model set up and vali-
dation. Data limitations on the ambient environment
are overcome through the use of remote sensing, hy-
drologic modelling of the watershed and ecoinformat-
ics from government databases. The technical aspects
of data collection are extensively described in the
‘Materials and methods’ section for a general scenario,
so that they can be used as guidelines for further stud-
ies in aquaculture research. We demonstrated in a
case study of St. Ann’s Harbour (eastern Canada) that
these tools are sufficiently developed to make up for a
lack of field data and create a model of carrying ca-
pacity for bivalve aquaculture. Moreover, we showed
that ecosystem resilience can be ex plored in such a
model by means of different ‘what-if’ simulations us-
ing variable mussel stocking densities. Finally, we
used the model to optimize sustainable mussel pro-
duction as defined by conservation of ecosystem func-
tion, em ploying natural variation in chlorophyll as a
benchmark. These prerequisites were used to:

(1) Review and describe novel techniques such as
satellite remote sensing, geographical information
system (GIS) tools and optimization to collect and use
data for developing ecosystem models in aquaculture
data-poor sites.

(2) Apply these techniques to a case study of St.
Ann’s Harbour (eastern Canada) as proof of concept
in order to evaluate current aquaculture activity from
a sustainable standpoint.

MATERIALS AND METHODS

This section is organized in 2 sections: one section
describes a general scenario in which aspects related
to data collection, physical−biological coupling and
optimization tools are described and a second section
follows the same structure describing the case study
of St. Ann’s Harbour.
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Data collection for modelling bivalve
aquaculture sites

The information required to initialize and run a
model can be grouped into 3 categories: far-field,
model-domain and groundtruthing datasets. The fol-
lowing datasets (see Table 1 for a summary) are
among the minimum required to determine the car-
rying capacity of a bay with mussel aquaculture
activity.

Far-field

The datasets in the far field yield the characteristics
of the environment beyond the model domain, and
therefore are not affected by the domain itself. Con-
ceptually, the effects of processes that occur in the
model domain are rapidly diluted and would not be
expected to influence the far field. These boundary
conditions are used to force the model via time series
covering the simulation period as follows:

• Dissolved nutrients are the inorganic compounds
that support phytoplankton populations. In general,
pelagic estuarine productivity tends to be limited by
nitrogen (Boynton & Kemp 2008); therefore, nitrogen

time series in open waters are required for the model.
In some ecosystems, phosphorous and silicate could
also be limiting; therefore, in these specific cases,
characterization of these nutrients is also necessary.
The model domain in coastal environments may also
be connected to rivers. This is crucial for nutrient
input given that rivers are potentially rich sources of
nutrients, especially in agricultural areas. Time series
of nutrients can be generated either by regional cli-
matology or land-used modelling.

• Temperature exerts a significant effect on sev-
eral biological processes; for example, time series are
required to adjust physiological rates to environmen-
tal conditions. These temperature records can be
obtained by satellite remote sensing (Minnett et al.
2004).

• Chlorophyll concentration is used as a proxy for
phytoplankton abundance. Phytoplankton are the
base of the trophic web and the primary source of
food for bivalves. Time series of chlorophyll con -
tent can be generated by satellite remote sensing
(O’Reilly et al. 1998). As a component of model sim-
plicity, we considered no other food source for mus-
sels beside phytoplankton, a strategy that has been
successful in previous models (Filgueira et al. 2011,
Rosland et al. 2011, Saraiva et al. 2012).
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Data                               Potential sources                                        St. Ann’s study case

Far field
Dissolved nutrients      Climatology                                                Ocean: measured in near location (government database)
                                      Land-use modelling                                   River: not available, uncertainty analysis based on

‘extreme scenario’ analysis and land-use pattern

Temperature                 Satellite remote sensing                            Satellite: GIOVANNI

Chlorophyll                   Satellite remote sensing                            Satellite: GIOVANNI

Model domain
Hydrodynamics            Modelling                                                   Hydrodynamic model: AquaDyn
                                      Exchange coefficients based on 
                                      conservative/semi-conservative tracers

River flow                      GIS                                                              GIS (RiverTools)

Aquaculture activity    Farmers                                                       Farmers
                                      Regulators                                                   

Dissolved nutrients      Initial values must be collected in situ     In situ

Chlorophyll                   Initial values must be collected in situ     In situ

Primary production      Satellite remote sensing                            Satellite in conjunction with measurements in a near
location

Groundtruthing
Mussel growth              In situ                                                          In situ

Dissolved nutrients      In situ                                                          Not available

Chlorophyll                   In situ                                                          Not available

Table 1. Summary of minimum datasets that are required to construct an ecosystem model in bivalve aquaculture sites. Alter-
native sources to in situ measurements and tools used for the St. Ann case study. GIS: geographical information system
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Model domain

Specific information is necessary to accurately
describe the model domain and establish a realistic
initial point from which to run different simulations.
The following information is crucial:

• Hydrodynamics — Marine ecosystems are dyna -
mic environments due to winds and tides, and there-
fore the biogeochemical processes within them are
influenced by the circulation of the system. Water
exchange coefficients between the different regions
of the model domain, far field and river describe the
transport processes. A separate physical model is
generated based on Navier-Stokes equations, within
a grid system, e.g. finite elements. A fully spatial
physical model provides a high spatial resolution
and, therefore, a more accurate description of the
hydrodynamics. Digital coastline and bathymetry as
well as sea level data are the minimum inputs to a
numerical circulation model. The hydrodynamic
model must be independently validated using cur-
rent direction and velocity, sea level, temperature
and/ or salinity. At a coarser level, the estimation of
exchange coefficients between connected boxes can
be achieved by using temperature time series col-
lected with dataloggers in each box (Dowd 2005) or
gradients of natural conservative or semi-conserva-
tive tracers (Filgueira et al. 2010).

• River flow — Given the effect of seasonality in
river discharge, a detailed time series is required to
quantify the contribution of riverine nutrients to the
studied area. In addition to gauged stations in the
river, GIS tools, such as RiverTools software (rivix.
com), can be used to estimate river flow (Peckham
2009).

• Aquaculture activity — Detailed information on
aquaculture location, stocking and seeding/harvest
schedules is required to accurately allocate biomass
throughout the model domain and in time. In addi-
tion, information about the population structure is
desirable to establish year classes and improve the
accuracy of total biomass and its distribution.

• Dissolved nutrients, chlorophyll — Concentra-
tions of these variables are required to define the
state of the model domain at the beginning of the
simulation.

• Primary production (PP) — PP is the production
of the organic compounds derived from photosynthe-
sis and therefore informs phytoplankton dynamics.
Time series of PP can be obtained by field sampling
or satellite remote sensing (Behrenfeld & Falkowski
1997). The latter suffers from low spatial resolution
and poor coverage in nearshore areas. PP could be

also modelled, in which case time series of light and
turbidity would also be necessary.

Groundtruthing

The correspondence between modelled and ob -
served values must be analyzed to validate model
performance. More time series data generally result
in more robust groundtruthing. Ideally, components
of an ecological model should be groundtruthed in
multiple areas of the system. The groundtruthing
process has a focus on the following:

• Bivalve growth — The use of times series of dry
meat content in different locations is the best way to
carry out spatial groundtruthing. Bivalves occupy the
highest trophic level in these models and their
weight integrates the performance of the other sub-
models. In addition, time series of meat weight pro-
vide information that can be used by farmers for
management purposes. Bivalve growth time series
must be collected by field sampling.

• Dissolved nutrients, chlorophyll — These time
series can be used to groundtruth the model when
bivalve growth is not available. Although the nutri-
ent and phytoplankton submodels do not represent
the highest trophic level, the bivalves interact with
these components. Remote sensing tools are not suit-
able for groundtruthing in small bays where resolu-
tion is limited. The alternative in these cases is field
sampling.

Generic core for physical−biogeochemical
 modelling

Filgueira et al. (2012) described the steps for creat-
ing a generic and flexible core for physical−
biogeochemical modelling based on Simile (avail-
able upon request). The biogeochemical model can
be modified for specific study by means of Simile’s
user-friendly graphical interface. This generic core
(Fig. 4 in Filgueira et al. 2012) is fully functional for
use with multi-box models, where the spatial resolu-
tion is defined by large boxes that simulate different
parts of the water body and the hydrodynamics are
modelled by discrete water exchange between these
boxes. However, the authors also described a way to
couple the biogeochemical core constructed in Simile
with the results of a fully spatial hydrodynamic mo -
del (available upon request). Therefore, this gene ric
core is able to assimilate hydrodynamic information
in 2 different ways to construct either box or fully
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spatial models, depending on the purpose of the
study. This core has been successfully applied in sev-
eral studies (Grant et al. 2007, Filgueira & Grant
2009, Filgueira et al. 2010, R. Filgueira unpubl. data)
and coupled so far to 3 hydrodynamic modelling
packages; AquaDyn, RMA and FVCOM.

Optimization tools

The optimization process is carried out using PEST,
an optimization tool that is included in Simile. PEST
uses the Gauss-Marquardt-Levenberg algorithm to
estimate the value of a parameter or a set of parame-
ters, thereby minimizing the discrepancies between
the model results and a dataset chosen by the user.
PEST can be used with 2 objectives in mind: (1) tune
or estimate parameters in order to calibrate the mo -
del, avoiding ‘eyeball’ calibrations, and (2) optimize
management strategies according to a predefined
criterion. However, when a dataset is used to tune or
estimate parameters, a different one must be used for
groundtruthing, otherwise the tuning and the valida-
tion are not independent, which would invalidate the
groundtruthing. Filgueira et al. (2010) used both
capabilities of PEST in a box model to estimate water
exchange between different parts of a fjord and the
optimum biomass of mussels that could be cultivated
according to a carrying-capacity criterion based on
chlorophyll depletion. R. Filgueira (unpubl. data)

used PEST in a fully spatial model to estimate the
best location for mussel culture as well as the optimal
mussel density according to a  carrying- capacity cri-
terion based on chlorophyll depletion.

Case study: mussel culture in St. Ann’s Harbour
(eastern Canada)

Study site and simulation period (St. Ann’s Harbour)

St. Ann’s Harbour (46° 16’ N, 60° 33’ W) is a large
estuary located on the east shore of Cape Breton
(Canada), open to the Gulf of St. Lawrence (Fig. 2A).
It is characterized by a mean tidal height of 0.85 m
and a maximum tide of about 1.6 m. Depths generally
range from intertidal to 19 m, with a single deeper
hole (27 m) just inside the inlet (Fig. 3). The centre of
the harbour tends to be deepest, with shallower
depths in all of the arms. Its tidal prism (the volume of
water exchanged on a mean tide) is only 2.37 ×
107 m3, compared to a total estuarine volume (high
tide) of 2.87 × 108 m3, or 8.2% of the total estuarine
volume. These characteristics lead to a bulk flushing
time of 137 h (~6 d) for St. Ann’s Harbour.

Currently, there are 4 operating mussel leases in
the harbour (Fig. 2A), although the ‘old leases’ were
used until recently and are considered in the model.
The available register of mussel biomass prepared by
the growers since 2003 in the 5 leases provides de -
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Fig. 2. St. Ann’s Harbour, eastern Canada, including (A) location of mussel culture leases, (B) AquaDyn grid and (C) sampling 
stations for initial conditions of our model
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tailed information on the distribution of biomass in
the bay (Table 2). Two cohorts were considered in the
model, which were initialized in order to mimic the
situation in the harbour on 1 May as follows: (1) Year
1 mussels with 200 mg dry weight and (2) Year 2
mussels with 800 mg dry weight (R. Stuart pers. obs.).
At the beginning of the simulation period the bio-
mass in the estuary was approximately 60 t based on
farmers’ reports (R. Stuart pers. obs.). The distribu-
tion of mussel biomass within the bay was calculated
using the final biomass during the harvesting season

as described in Table 2. Defining distributions has
been challenging, because there have been changes
in stocked biomass among the different leases since
2003. For example, years without mussels in a partic-
ular lease have not been considered in the calcula-
tion of the average biomass in that lease, which could
overestimate the total standing stock biomass of the
bay. Consequently, the use of this scenario (Table 2)
provides a worst-case scenario for analyzing the
aquaculture impact on the environment, i.e. the max-
imum allocated mussel biomass. Available datasets
allowed for constructing time series for the period
from 1 May until 11 November (195 d), covering the
ice-free cultivation period. It was assumed that seed-
ing and harvesting activities exerted a negligible
impact on the total biomass allocated in the bay dur-
ing the modeled period (R. Stuart pers. obs.).

Far field (St. Ann’s Harbour)

The 8 d frequency time series of 9 km MODIS-
Aqua chlorophyll a and monthly 11 µm band night-
time sea-surface temperature (SST) values, averaged
within a region located just outside of St. Ann’s Har-
bour defined by the coordinates 46.492° to 46.359° N
and −60.243° to −60.409° E, were constructed for the
period of 2003 through 2009. These 2 time series
were produced with the Giovanni online data sys-
tem, developed and maintained by the NASA GES
DISC. Giovanni is a valuable resource for ecological
modelers, as it provides a simple web-based environ-
ment to access, explore, analyze and visualize
numerous types of Earth science remote sensing data
(Acker & Leptoukh 2007).

Although land-based nutrients can be modelled
from land use with tools such as N-SPECT (www. csc.
noaa. gov/digitalcoast/tools/nspect/index.html), dis-
solved nutrients derived from the coastal ocean
require water sampling or a nutrient climatology. In
this case, data from the Atlantic Zone Monitoring
Program (www.meds-sdmm.dfo-mpo. gc.ca/ isdm-gdsi/
azmp-pmza/index-eng.html) included a station on
their Cabot Strait Line (~60 km from St. Ann’s Bay).
Data from several years were compiled to generate a
time series of nitrate (10 datapoints for the modelled
period). In several years of sampling, we have never
found detectable ammonia in the bay, and this nitro-
gen source was not considered further.

There are no available time series of nutrients for
the rivers that discharge into St. Ann’s Harbour. The
land use in the watershed is predominantly sub-
boreal forest on rocky soils. Therefore, it is likely that

Lease         Dry meat Lease area (ha) Mussel density
                        (t)          Total   Used          (t ha−1)     (g m−3)

Old leases    36.6         77     77              0.48         5.98
1186              58.7         139     111              0.53         6.62
1187              32.0         72     72              0.44         5.55
1188              25.2         77     77              0.33         4.11
1189              38.9         203     101              0.38         4.80
Total             191.3         566     437              0.44         5.47

Table 2. Approximate mussel standing stock biomass during
the harvest season, total and used lease area and mussel 

density 

Fig. 3. Bathymetry of St. Ann’s Harbour
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the rivers carry a low amount of nutrients, and the
impact of the rivers’ contributions to the nutrient dy -
namics is minor. The major watershed draining into
the bay is from the North River. Using a digital eleva-
tion map, we defined the watershed with RiverTools
software (rivix.com). A hydrologic model with in
River Tools (TopoFlow) was used with nearby rainfall
data to estimate a representative flow rate for the
North River. In order to evaluate the maximum im -
pact of the river in the phytoplankton dynamics of the
harbour, the model was forced using time series of
river nutrients collected in Tracadie Bay (Prince
Edward Island, Canada; 46° 23’ N, 60° 59’ W) which is
located 187 km west of St. Ann’s Harbour. The water-
shed in Tracadie Bay is characterized by intense agri-
cultural activity, which results in a significant contri-
bution of nutrients to the river. Consequently, this
simulation exercise can be considered an extreme
scenario that calculates a maximum impact of rivers
on phytoplankton dynamics. The forced simulation
using Tracadie Bay datasets provided an average
increase of 4.59% in phytoplankton concentration
compared to a scenario without riverine nutrients,
demonstrating the likely very low impact of rivers
on St. Ann’s Harbour phytoplankton concentration.
Consequently, the river submodel was not consid-
ered in further simulations.

Model domain (St. Ann’s Harbour)

A 2-dimensional hydrodynamic model constructed
with AquaDyn (Hatch Ltd.) is available for the area
(J. Grant unpubl. data). The model is based on a spa-
tial grid of finite elements (Fig. 2B), a set of triangular
cells in which water volume is tallied at each tidal
stage. In the present model, water flux was due to
baroclinic circulation only. Turbulence, wind waves
and river input were not included, making the model
conservative with respect to flushing. Simulations
were run for up to 45 d, with time steps from 1200 to
3600 s, the last 29.53 d (lunar month) were consid-
ered in the coupling process.

In order to characterize the initial spatial distribu-
tion of total nitrogen, chlorophyll and particulate
orga nic matter within the harbour, spatial sampling
was carried out on 22 July 2010. Fourteen stations
were sampled (Fig. 2C), covering rivers that empty
into the harbour as well as the boundaries of the
model domain. Total nitrogen was measured using a
Timberline TL-550 ammonia/nitrate analyzer (Man -
sell et al. 2000). Two replicates were collected at each
sampling point in 25 ml pre-washed polyethylene

bottles and frozen (−20°C) until analysis. Water sam-
ples for chlorophyll analysis were collected in dupli-
cate. One litre of each replicate was filtered through
25 mm Whatman GF/F filters and kept frozen
(−20°C) until chlorophyll extraction. After ex trac tion
(90% acetone), chlorophyll was measured fluoromet-
rically (Welschmeyer 1994). Total particular matter
(TPM) and particulate organic matter (POM) were
measured gravimetrically on pre-ashed (450°C, 4 h),
25 mm Whatman GF/C filters. Two re plicates were
collected at each sampling point. One litre of each
replicate was filtered, and salts were eliminated by
washing with 100 ml of an isotonic solution of ammo-
nium formate (0.5 M). Subsequently, the filters were
dried at 110°C for 24 h and weighed to determine the
TPM. POM was determined after ashing the filters
for 4 h at 450°C.

There were no available direct measurements of
PP in the study area. The closest location with avail-
able time series of PP was Tracadie Bay (mentioned
above). Both bays share the same latitude, which is
crucial for determining the daily light cycle and,
therefore, PP. Satellite remote sensing was used to
establish a correlation between both bays. A monthly
time series of the mean net PP was constructed for
2003 to 2009 using satellite imagery. First, monthly
averages of global 9 km net primary productivity
imagery, based on the vertically generalized produc-
tion model, were obtained from the ocean productiv-
ity website (Behrenfeld & Falkowski 1997, www.
science. oregonstate.edu/ocean.productivity/index.
php). The imagery was then sub-scened to both
areas of interest, Tracadie Bay and St. Ann’s Har-
bour. Finally, the mean value of each monthly sub-
scened image was computed. Both satellite-gener-
ated time series followed the same pattern, and a
correction function was calculated using satellite-
generated time series to scale the measurements in
Tracadie Bay to those in St. Ann’s Harbour. A sensi-
tivity test showed that a variation of ±10% in PP
causes an average change of +2.57% / −2.55% in the
results of the phytoplankton submodel.

Groundtruthing (St. Ann’s Harbour)

The overall correspondence between observed and
model values was evaluated by comparing the aver-
age observed mussel growth in Year 1 and Year 2
classes with modelled estimations. Two available
datasets collected by farmers in all leases of the har-
bour during 2006 and 2010 (R. Stuart pers. obs.) were
used to validate mussel growth estimations.
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Physical−biogeochemical model (St. Ann’s Harbour)

The results of the hydrodynamic model constructed
in AquaDyn were coupled to the biogeochemical one
following Filgueira et al. (2012). The biogeochemical
model is based on a classical PNZ model (Kremer &
Nixon [1978]: phytoplankton [P]−nutrients [N]−zoo-
plankton [Z]), with the addition of mussel (M) and
detritus (D) submodels. However, given the absence
of zooplankton data and our previous experience that
this compartment is of minimal importance (Grant et
al. 2008, Filgueira & Grant 2009), zooplankton was
not modelled in our case study. The model is charac-
terized in terms of milligrams of C per cubic metre,
with the exception of dissolved nutrients, which are
ex pressed as milligrams of N per cubic metre. A brief
description of the different equations is given in
Table 3 with more details in Grant et al. (1993, 2007,
2008), Dowd (1997, 2005) and Filgueira & Grant
(2009). The differential equations are as follows:

(1)

(2)

(3)

(4)

The model was forced with daily time series, but
internally the model was run with a time step of
0.0001 d. Given that some datasets were not col-

lected at the same time resolution, linear interpola-
tion was used to calculate daily values.

Optimization procedures (St. Ann’s Harbour)

The horizontal water exchange between the model
domain and the far field was estimated using PEST,
performing a calibration between the results ob -
tained in AquaDyn and Simile. Both Simile and
AquaDyn were set up in the same way to run a ver-
sion of the model where a conservative tracer is the
only component. Assuming a constant concentration
of the conservative tracer at the model boundary
(10 U m−3) and a homogeneous initial distribution of
the tracer inside the harbour at Time 0 (1 U m−3), the
model was run until equilibrium was reached. PEST
minimized the discrepancies between the curves of
tracer concentration at different points of the harbour
in both approaches by adjusting the water exchange
coefficient between the model domain and the far
field in a coupled model constructed in Simile.

An optimization procedure was also defined to esti-
mate the carrying capacity, which was defined as the
standing stock of mussel biomass that maintained
chlorophyll concentration in the harbour within the
bounds of natural variation (Filgueira & Grant 2009).
The mussel density in the different leases that fulfills
this criterion was estimated using PEST by minimiz-
ing the discrepancies between the chlorophyll time
series observed in an aquaculture scenario and the
time series observed in a theoretical background

P
t

P P M P= + − − ±d
d

growth mortality grazing mixing

N
t

N M P N= + − − ±d
d

river excretion uptake mixing

D
t

M P D M D= + + − − ±d
d

feces mortality sinking grazing mixing

M
t

M M M= + − −d
d

grazing excretion feces
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Term         Definition                                                                                               Source

dP/dt         Phytoplankton change rate (mg C m−3 d−1)
Pgrowth        Phytoplankton growth                                                                         Eq. (7) in Grant et al. (2007)
Pmortality     Phytoplankton mortality
Mgrazing      Mussel grazing on phytoplankton
Pmixing        Exchange of phytoplankton with adjacent elements and far field  

dN/dt        Nitrogen change rate (mg N m−3 d−1)
Nriver          Nitrogen river discharge                                                                      River discharge × River nitrogen concentration
Mexcretion    Mussel nitrogen excretion                                                                   Eq. (17) in Grant et al. (2007)
Puptake        Phytoplankton nitrogen uptake                                                          Eq. (15) in Grant et al. (2007)
Nmixing       Exchange of nitrogen with adjacent elements and far field             

dD/dt        Detritus change rate (mg C m−3 d−1)
Mfeces         Mussel feces production                                                                      Eq. (5) in Grant et al. (2007)
Pmortality     Phytoplankton mortality                                                                      Eq. (7) in Grant et al. (2007)
Dsinking       Detritus removal by sinking                                                                Eq. (5) in Grant et al. (2007)
Mgrazing      Mussel grazing on detrital matter
Dmixing       Exchange of detritus with adjacent elements and far field              

dM/dt       Mussel change rate (mg C m−3 d−1)

Table 3. General model terms and sources for detailed explanations
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 scenario without aquaculture. These background
chlorophyll time series were adjusted to represent
the lower levels of chlorophyll that include the range
of natural variation observed in the harbour. In this
way, the mussel biomass at the calculated carrying-
capacity level may have reduced chlorophyll concen-
tration in the harbour, but never beyond the limit of
its natural variation.

The natural variation of chlorophyll in St Ann’s
Harbour was obtained by analyzing a 7 yr monthly
chlorophyll time series observed in the far field. The
highest and lowest chlorophyll values in each season
were removed from the analysis to eliminate poten-
tial outliers. This approach is a conservative way of
analyzing natural variation by reducing the disper-
sion of the data while maintaining average values.
Analysis of the time series yielded a minimum sea-
sonal Pearson’s coefficient of variation of 32.3%
(Table 4). This value is considered to be the natural
variation limit for the carrying-capacity aquaculture
scenario optimized by PEST.

RESULTS

Conservative tracer simulations

The tracer simulations in both AquaDyn and Simile
eventually resulted in a tracer concentration equilib-
rium between the bay and the far field, but prior to
that time, the distribution of tracer could be inter-
preted as a proxy for flushing. The tracer concentra-
tions after 25 d of simulation of both AquaDyn and
Simile models indicated that there was a strong gra-
dient from the mouth to the inner harbour (Fig. 4).
The penetration of the tracer was slightly asymmetri-
cal, and the average conditions used in Simile indi-
cated that there was reduced exchange on the south-
ern side of the harbour compared to the northern
side. These results demonstrated that Lease 1188 had
the highest flushing, followed by 1187, the old leases,

1189, and 1186, respectively. The optimization pro-
cess carried out to determine the instantaneous water
exchange between the model and the far field
yielded a value of 17.25 m3 s−1. A sensitivity test car-
ried out on this estimated water exchange parameter
of ±10% resulted in a change of +3.70% / −3.93% in
the average tracer concentration in the entire har-
bour after 25 d.

Groundtruthing

Mussel growth simulated by the model was within
the range of variation observed in the bay in both
year classes (Fig. 5). Mussel dry weight estimates for
the Year 1 class were within the confidence limits of
the observations with the exception of 1 datapoint on
13 July, which was higher than the modelled values
as well as the other field observations. Modelled val-
ues for Year 2 mussels were also within the confi-
dence limits of the observations, with the exception
of the sampling carried out on 30 September. The
observed mussel weight on 30 September indicated
negative growth during September which might
have been caused by spawning. The simplified
model used in this study did not include spawning,
and, consequently, the model could not explain the
growth pattern observed in September.

Implications of stocking biomass for mussel growth
and chlorophyll depletion

Scenario building was used to determine the effect
of variations in stocking biomass on mussel growth
and culture yield. The evolution of average individ-
ual growth within the bay is represented in Fig. 6 for
6 different scenarios, with initial stocking biomass
ranging from 15 to 90 t. At the start of these simula-
tions all scenarios showed the same performance.
However, after 50 to 75 d (19 June to 14 July), the

individual growth of both the first and
second year classes became density
dependent, i.e. reduced growth for
higher stocking densities. For exam-
ple, in Year 2 mussels there was a
growth penalty in individual weight
of up to 22.5% for the 90 t scenario
compared to the 15 t scenario. This
effect was even greater for Year 1
mussels, reaching a penalty of 28.1%
for this same stocking comparison.
This im pact on individual growth
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Season      Average           SD          Maximum     Minimum    Pearson’s CV 
               (mg C m−3)   (mg C m−3)   (mg C m−3)    (mg C m−3)            (%)

Winter         59.9            20.07            96.1               32.0                 33.5
Spring         111.9            54.81            211.8               61.1                 49.0
Summer      142.3            47.45            211.0               60.8                 33.3
Autumn       112.9            36.42            172.2               60.7                 32.3
                                                                                 Minimum            32.3
                                                                              Pearson’s CV

Table 4. Averaged seasonal chlorophyll concentration and natural variation 
analysis. CV: coefficient of variation
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reflected the limited capacity of the environment to
provide food and support the growth of an entire
population.

The evolution of averaged chlorophyll depletion
within the harbour is represented in Fig. 7 for the
same 6 scenarios. The percentage of chlorophyll
 de pletion increased through time due to the corre-
sponding increase in mussel biomass. Depletion was
compared to the minimum seasonal coefficient of
variation in chlorophyll in the far field, 32.3%.
Chlorophyll reduction by suspension-feeders below
this threshold (32.3%) was within the natural varia-
tion of the system. The different scenarios were
grouped into 2 classes: low initial stocking scenarios
of 15, 30 and 45 t, which never caused a depletion in
chlorophyll beyond the natural variation threshold,
and high initial stocking scenarios of 60, 75 and 90 t,
which passed this threshold on 25 September, 21
August and 24 July, respectively. The current sce-
nario in St. Ann’s was estimated to have a stocking
biomass at the beginning of the simulation of 60 t.
Therefore, depletion would be below the natural
variation threshold for about 75% of the studied
period.

Chlorophyll depletion at constant mussel standing
stock biomass

Changes in stocked biomass via growth and varia-
tion in boundary conditions may combine to cause
extreme values in chlorophyll depletion. In order to
estimate a steady state chlorophyll depletion in the
harbour, new simulations were run with constant
mussel biomass in the whole harbour. This approach
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Fig. 4. Conservative tracer concentration in AquaDyn and 
Simile after 25 d of simulation

Fig. 5. Modelled mussel growth patterns in the current sce-
nario for both year classes (red lines) and for mussel weight
in Year 1 (open circles) and Year 2 (filled circles) classes, 

observed in 2 available datasets (2006 and 2010)

Fig. 6. Modelled mussel growth pattern for 6 different
 scenarios in Year 1 (bottom lines) and Year 2 (upper lines)
with initial stocking biomass ranging from 15 to 90 t

Fig. 7. Time series of chlorophyll depletion for 6 different sce-
narios with initial stocking biomass of mussels ranging from
15 to 90 t. The horizontal grey line represents the sustain -
ability threshold (32.3%) based on natural variation analysis
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assumes that mussel biomass interacts with the eco-
system model as a forcing function rather than a
response variable (Dowd 2005). The mussel compart-
ment was fully functional in the model, but its bio-
mass remained constant through time. Following this
approach, maps of averaged chlorophyll depletion
through time were generated for several constant
standing stock scenarios. For a constant standing
stock of 60 t, average chlorophyll at bay-scale was
reduced by ~24.9% (Fig. 8A). Doubling of this den-
sity yielded bay-scale chlorophyll depletion levels in
the range of ~41.2% (Fig. 8B). For the very high
standing stock density (180 t), bay-scale chlorophyll
was severely reduced to ~51.7% (Fig. 8C).

These results can be summarized in a curve of
average depletion versus cultured biomass (Fig. 9).
With increasing crop size, chlorophyll depletion
reached an asymptote. It should be noted that the
asymptote was <75% depletion since all of the water
and its chlorophyll was not accessible to the farm
sites. In some senses this was a worst-case scenario,
since mussel biomass was continuously high rather
than building through growth. The current produc-
tion scenario was estimated to have a stocking bio-
mass of 60 t at the beginning of the simulation, which
produced an averaged maximum depletion of 24.9%,
below the natural variation threshold. The worst-

case scenario according to actual aquaculture activ-
ity (Table 2) resulted in an averaged standing stock
biomass at harvest of 191.3 t, and an averaged
chlorophyll depletion of 53.3%, beyond the natural
variation threshold. Following the current distribu-
tion of biomass within the bay (Table 2) and accord-
ing to the results in Fig. 9, the natural variation
threshold would be reached with a constant standing
stock biomass of 82.2 t.
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Fig. 9. Average chlorophyll depletion in different biomass
scenarios in terms of constant standing stock biomass of 

mussels

Fig. 8. Average chlorophyll depletion in 3 different scenarios with constant mussel standing stock biomass: (A) 60, (B) 120 and 
(C) 180 t
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Carrying-capacity estimation: 
sustainable aquaculture scenario

An optimization procedure carried out using PEST
was performed to estimate the standing stock bio-
mass that fulfills the carrying-capacity criterion
(depletion within natural chlorophyll variation). The
averaged standing stock biomass predicted by PEST
was 84.5 t and the spatial distribution was 1.35, 1.71,
2.29, 0.00 and 2.89 g m−3 in the old leases, and Leases
1186, 1187, 1188 and 1189, respectively. This distri-
bution implied a significant change from current
practices because it recommended that culti vation of
mussels in Lease 1188 be avoided. The spatial distri-
bution of averaged chlorophyll depletion through
time is presented in Fig. 10, and the averaged value
for the whole harbour was 32.3%. The optimum
standing stock biomass predicted by PEST was close
to the calculation derived from the current distribu-
tion of biomass within the bay (Table 2) and the
results in Fig. 9, 82.2 t.

Actual scenario with population dynamics

According to the current scenario, 60 t at the begin-
ning of the simulation following a proportional allo-

cation according to Table 2, the cultured biomass
reached the natural variation threshold on 25 Sep-
tember (Fig. 11). This indicated that chlorophyll
depletion in the harbour was higher than the natural
variation for ~25% of the year. This may have been
caused by the absence of population dynamics in the
model design. There were no local data to initiate a
population dynamic model, so a simple component
was added to the main model in order to explore the
consequences of mortality. Following Mallet &
Carver (1989), a mortality rate of 20% yr−1 was used
for both year classes. The 60 t scenario using these
mortality rates resulted in a maximum chlorophyll
depletion lower than the natural variation threshold
(Fig. 11), reducing the depletion by ~7% by the end
of the simulated period compared to the scenario
without mortality. Thus, mortality may be an impor-
tant factor for evaluating the potential ecosystem
implications of mussel aquaculture.

DISCUSSION

Sustainable mussel culture

Maintaining the percentage of phytoplankton de -
pletion within the bounds of natural variation is a
straightforward way to manage sustainability from
an ecosystem standpoint. Given that phytoplankton
are the base of marine food webs and that filter-
feeder populations are important for their control
(Cloern 1982, Dame & Prins 1997), the stress that
bivalve aquaculture exerts on the ecosystem has
been quantified in terms of seston depletion (Camp-
bell & Newell 1998, Pouvreau et al. 2000, Bacher et
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Fig. 10. Average chlorophyll depletion for the optimal
 carrying-capacity scenario according to optimization by
model-  independent parameter estimation (PEST, www.
pesthomepage.  org). Lease areas outlined and lease num-
bers shown. No mussels were allocated in lease 1188 

(grey) in PEST scenario

Fig. 11. Time series of chlorophyll depletion in the 60 t sce-
nario with and without mussel mortality. The horizontal grey
line represents the sustainability threshold (32.3%) based on 

natural variation analysis
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al. 2003, Ferreira et al. 2007, Duarte et al. 2008). We
propose the use of ecological resilience as a frame-
work for quantifying the limits beyond which ecosys-
tem health is compromised (Fig. 1). We assume that
the natural variation of ecosystem variables is below
tipping points beyond which the stability of the sys-
tem is endangered. Consequently, managing within
natural variation thresholds provides precautionary
limits that are capable of supporting unexpected dis-
turbance without reaching the tipping points and,
therefore, of guaranteeing ecosystem sustainability.

According to the simulations that included mortal-
ity rates, the current aquaculture level in St. Ann’s
Harbour resulted in maximum chlorophyll depletion
of 29.6%, which was within the threshold of natural
variation, 32.3%. The optimization procedure ap -
plied using PEST to calculate standing stock bio-
mass that fulfills the carrying-capacity criterion pro-
vided a different distribution of biomass in the
leases compared to the actual one. Re-distribution
of the biomass according to the optimized solution
allowed an overall increase of 0.3 t. The change in
spatial biomass allocation suggested by PEST did
not substantially change chlorophyll depletion com-
pared to the existing farm arrangement. Therefore,
the actual mussel distribution among the leases
seems acceptable from a sustainability perspective.
However, given the limitations in model parameteri-
zation and validation derived from the use of data
with high uncertainty, such as the nutrient time
series (ocean and river) or scarce groundtruthing
data, the results generated for St. Ann’s Harbour
cannot be considered a final and static outcome. On
the contrary, the results should be understood as the
best objective scientific assessment that is possible
to create with the available data. Further experi-
ments must be performed to reduce uncertainty in
forcing time series, as well as to carry out a full and
rigorous validation of all the components of the
model. St. Ann’s Harbour was chosen as a very
challenging example of a data-poor environment
and, consequently, was an ideal testing ground for
the techniques described in this study. The case
study is considered as proof of concept; however,
calculations should be understood as initial assess-
ments of carrying capacity rather than conclusions
for decision-making.

Collecting datasets and uncertainty analysis

Modelling exercises demand an extensive amount
of data. In this work we emphasized 3 aspects re -

lated to data collection: collaboration with industry,
generation of time series using remote-sensing
techniques and collation of existing sources. Collab-
oration with stakeholders is vital for marine spatial
planning, for instance, in the case of farms providing
the information needed to resolve biomass distribu-
tion within the bay. In addition, protocols for track-
ing biomass allocation, seeding and production can
facilitate the use of datasets in future research pro-
jects. For example, the 7 yr time series used in this
study to estimate the mussel biomass distribution
throughout an entire bay is an exceptional dataset
for use in aquaculture-related modelling exercises.
The absence of these datasets would increase the
cost of further research, as well as the uncertainty of
the results.

Satellite remote sensing data are particularly ad -
vantageous for modelling exercises, since these data
allow consistent synoptic observations of a study area
for periods ranging from years to decades. In addi-
tion, the data are typically free and easily accessible,
and many tools exist to facilitate analysis and visual-
ization (e.g. Giovanni). There are limitations, how-
ever, to the use of satellite remote sensing data, par-
ticularly regarding the resolution in coastal regions.
For example, MODIS Aqua spatial resolution of
chlorophyll is at best 500 m per pixel and 250 m per
pixel for turbidity, requiring processing of level 0
data (Hu et al. 2004, Chen et al. 2007). In addition,
although satellite remote sensing is widely consid-
ered to be successful in the open ocean, particularly
regarding biological parameters, in coastal waters
that are typically more optically complex there has
been variable success. This is due to the fact that the
algorithms used to retrieve water constituents from
satellite re mote sensing data, as well as essential
atmospheric corrections, are not necessarily applica-
ble to coastal waters (Moses et al. 2009).

The use of historical datasets complemented with
sensitivity tests to evaluate the impact of source vari-
ability on the model’s outputs could be a solution in
data-poor environments. Another possible tool for
application in data-poor environments is the use of
‘extreme scenarios’. For example, given the absence
of nutrient time series in the main river that empties
into the harbour, values collected in a nearby loca-
tion, but one with intensive agricultural activity, can
be used instead. This model configuration provides
an extreme situation with regards to the land-use
pattern in the watershed of St. Ann’s Harbour. How-
ever, it allows the analysis of an ‘extreme scenario’
and the quantification of the maximum uncertainty of
the modelling exercise.
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Ecological modelling for ecosystem-based
 management

Ecological modelling has been successfully applied
to aquaculture sites to evaluate the potential of new
cultivation areas (e.g. Brigolin et al. 2006, Filgueira et
al. 2010), optimize the profitability of existing farms
(e.g. Héral 1993, Ferreira et al. 2009) and manage
ecosystem-level impacts (e.g. Grangeré et al. 2010,
Byron et al. 2011). These models vary in complexity
from simple ratio-based budgets (e.g. Dame & Prins
1997) and box models (Pastres et al. 2001) to sophis-
ticated fully spatial hydrodynamic−biogeochemical
coupled models (e.g. Ferreira et al. 2008). The ap -
proach described in the present paper combines ex -
isting models, historical time series and remote sens-
ing datasets into a fully spatial model to provide a
management strategy for optimizing aquaculture
production from a sustainable ecosystem standpoint,
according to FAO recommendations (Soto et al.
2008). Similarly, Silva et al. (2011) have carried out a
study to evaluate the best site for shellfish aquacul-
ture in Valdivia (Chile), which combines GIS-based
models with a farm-scale carrying-capacity model
(Ferreira et al. 2007). As in our work, Silva et al.
(2011) developed a modelling exercise for a study
site with limited data availability, simplifying the
model according to available datasets. Despite the
simplification, Silva’s approach is focused on critical
dynamics of the domain area, consequently provid-
ing valuable results for decision-makers in the prac-
tical application of ecosystem-based aquaculture. A
simplification in the model design could optimize the
trade-offs between the effort needed to carry out the
modelling exercise and the uncertainty of model out-
comes (Nobre et al. 2010).

Anticipating future conditions is an important goal
of ecosystem-based management and marine spatial
planning (Polasky et al. 2011). Ecosystem modelling
is the perfect tool to anticipate future conditions, but
implementation of ecosystem models has many data
requirements, which are both time consuming and
costly. Our study reviews the minimum datasets that
are needed to construct a model to evaluate the im -
pacts of bivalve aquaculture in data-poor environ-
ments, as well as alternative techniques for collecting
these datasets. Tools such as ecoinformatics, remote
sensing, scenario analysis and optimization can help
fill these data gaps. However, the use of these tech-
niques increases the uncertainty of model results,
and, consequently, straightforward application to
decision-making is not trivial. Model outcomes in
data-poor environments should be understood as the

best objective scientific assessment that is possible to
provide with the available data, which is crucial in
the field of applied sciences (Polasky et al. 2011).
This is the case for St. Ann’s Harbour, which has been
chosen as a testing ground for the techniques de -
scribed in this study. Therefore, the results of the St.
Ann case study must be considered in the context of
high uncertainty as the best scientific assessment of
carrying capacity rather than a final outcome for
decision-making. In addition, the results could be
used to provide feedback for planning processes via
adaptive management (Polasky et al. 2011, Halpern
et al. 2012), which relies on the understanding of
marine spatial planning as a dynamic process rather
than a static outcome.
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