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INTRODUCTION

Viruses and bacteria are the most abundant micro-
organisms in aquatic ecosystems, with abundances
typically on the order of 1010 and 109 l–1, respectively
(Noble & Fuhrman 1998). Therefore, interactions be-
tween bacteria and viruses are one of the most impor-
tant trophic links in aquatic microbial food webs, not
only as a maintenance mechanism of high bacterial
diversity, as proposed in the ‘kill the winner’ (KW)
hypothesis by Thingstad & Lignell (1997), but also with
regard to the ‘viral loop’ (Bratbak et al. 1992), which
diminishes material flow from bacteria to higher
trophic levels (Fuhrman 1999). In the KW hypothesis,
viruses with high host specificity serve as the mecha-
nism that more frequently ‘kills’ hosts with higher
growth rates (the ‘winner’ of the competition for nutri-
ents), preventing competitive exclusion and thus main-

taining bacterial species richness (BSR). In contrast,
protozoan predators with non-selective grazing limit
only the total abundance of bacteria in the community
(Thingstad & Lignell 1997). Many observations and
experiments support this hypothesis, suggesting that
bacterial community composition (Fuhrman & Schwal-
bach 2003, Schwalbach et al. 2004, Winter et al. 2004)
and species richness (Hewson et al. 2003) are influ-
enced by the abundance of viruses. Furthermore,
Thingstad (2000) developed a theory using a simple
microbial food web model based on the KW hypothesis
and reproduced the observed patterns in structure and
nutrient cycling in microbial food webs, e.g. a 1:10
ratio of bacterial to viral abundance and losses of 10 to
50% of bacterial production into the viral loop. 

However, new evidence suggests that ecological
(KW) and biogeochemical (viral loop) functions of
viruses may be counterbalanced by an additional
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trophic link within bacteria–virus–protozoa interac-
tions. Several experiments have indicated that the viral
loss rate is enhanced by the presence of protozoa
(Suttle & Chen 1992, González & Suttle 1993, Manage
et al. 2002), suggesting the existence of intraguild pre-
dation (IGP; see Holt & Polis 1997) between protozoa
and viruses. Viruses are killed by protozoa, either indi-
rectly through grazing on infected host cells (coinci-
dental IGP; Polis et al. 1989) or directly through graz-
ing on free-living progeny (omnivorous IGP; Polis et al.
1989). These IGP processes, which we call ‘kill the
killer of the winner’ (KKW), have the potential to
reduce the abundance of the viruses that are the ‘killer
of the winner’, resulting in a decreased viral infection
rate. Nevertheless, few studies have explored its
consequences for biodiversity, community structure,
and biogeochemical cycling (González & Suttle 1993,
Fuhrman 1999), probably because the estimated inten-
sity of direct grazing (omnivorous IGP) is relatively low
(i.e. 2.6 to 4.8% of the grazing rate on bacterial cells;
González & Suttle 1993). In addition, the effects of
coincidental IGP in these systems are not clear.

In this study, we focused on the KKW processes and
on both coincidental and omnivorous IGP. Specifically,
we hypothesized that by deteriorating the KW process,
IGP reduces BSR, and that IGP reduces the contribu-
tion of the viral loop to nutrient cycling in the microbial
loop. We validated this hypothesis by using an ideal-
ized food web model, which is an extension of the food
web model based on the KW hypothesis (hereafter
referred to as the KW food web model; Thingstad
2000). Our new assumptions are that there are 2 popu-
lations of bacteria (uninfected and infected cells) and
that both free-living viruses and viruses with infected
bacterial cells are grazed on by protozoa. Assuming
the existence of uninfected and infected populations
(Binder 1999, Malchow et al. 2004, Singh et al. 2004) is
one of the natural generalizations of the KW food web
model, which neglects the latent period of viruses,
because a variable latent period has been observed
(Middelboe 2000, Lee et al. 2004). 

Using these additional assumptions, we evaluated
BSR in response to grazing on infected bacterial cells
(coincidental IGP) and free-living viruses (omnivorous
IGP). We also examined how the latent period affects
BSR through changes in the intensity of coincidental
IGP and food web structures. Note that increasing the
latent period makes it more likely that viruses in host
cells are killed by protozoa. As food web structures, we
focused on the virus to bacteria ratio, protozoa to bac-
teria ratio, and protozoa to virus ratio. Furthermore, we
examined how environmental changes cause changes
in food web structures and thus in BSR. We focused on
the changes in top-down regulation in protozoa and in
the trophic status that influences the resource avail-
ability for bacteria. 

METHODS

Model. We considered a chemostat model, which is
an open system with continuous inflow and outflow
(Smith & Waltman 1995). A constant dilution rate, D,
(i.e. flow rate per system volume) was assumed. For
trophic interactions among bacteria, viruses, and pro-
tozoa in the system, we adopted a type of idealized
food web model (Fig. 1), based on the KW food web
model by Thingstad (2000). The model system consists
of a set of m bacterial species, and 2 populations are
assumed for each species: uninfected cells with a
density Uj ( j = 1, …, m) and virus-infected cells with a
density Ij. All uninfected cells of all species compete
for a unique limiting nutrient with concentration N,
whereas infected cells do not reproduce and do not
consume any nutrients; our model deals only with lytic
infection. For each bacterial species, there is a host-
specific virus with density Vj. We also assume 1 gener-
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Fig. 1. Chemostat model of an idealized food web. N: nutrients
available for bacteria; Uj: uninfected cells of bacterial species j;
Ij: infected cells of bacterial species j; Vj: free-living viruses
whose host is bacterial species j; P: protozoa. Each process
shown is as follows; UP: uptake of nutrients; IN: incidence
process between uninfected cells and free-living viruses; LY:
viral lysis; GU: grazing on uninfected bacteria; GV: grazing on
free-living viruses (omnivorous intraguild predation [IGP]); GI:
grazing on infected bacteria (coincidental IGP); SP: supply of
nutrient, and immigration of bacteria, viruses, and protozoa;
and DL: dilution of nutrient, bacteria, viruses, and protozoa.
The set of m bacterial species and m viral species, and proto-
zoa is assumed to be the metacommunity. For each bacterial
species j, cells in the population are divided into 2 populations:
uninfected (Uj) and infected (Ij). Viruses ( j > n – 1) and hosts
( j > n) are competitively excluded from the system, as
indicated by the dashed lines, if there is no immigration of
bacteria, viruses, and protozoa. Natural losses of viruses and 

protozoa and recycling processes are omitted for simplicity
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alist protozoan predator with density P, which corre-
sponds to an idealized ‘heterotrophic flagellate’ graz-
ing non-selectively with the same attack rate on all
bacterial species. Furthermore, as an open system, we
assume not only the supply of nutrients into the sys-
tem, but also the immigration of bacteria, viruses, and
protozoa into the system from the metacommunity.
This assumption is reasonable, because it has been
suggested that these microorganisms generally have a
large distribution and high dispersal ability (see
Schlegel & Jannasch 1981, Bianchi & Bianchi 1995 for
bacteria, and Fenchel et al. 1997, Hillebrand et al. 2001
for protozoa). For simplicity, we set a constant and
common immigration rate iM for all microorganisms
(bacteria, viruses, and protozoa). We next describe the
dynamics of each component (Uj, Ij, Vj, P, N) in the
model using differential equations.

Uninfected cells of bacterial species j: Uninfected
cells of species j take up nutrients at rate αjN per unit
time per cell, where αj is the species-specific affinity of
the given nutrient. The growth rate is YB αj ρB

–1N,
where ρB and YB represent nutrient content per cell
and growth efficiency, respectively. For illustrative
purposes, we can arrange the bacterial species accord-
ing to decreasing nutrient affinity (α1 > α2 > … > αj

>…> αm). Thus, species 1 has the highest growth rate
and is the best competitor for the nutrient. Uninfected
cells are attacked by protozoa at a rate of αPU P per cell,
where αPU is the grazing rate (clearance rate) on unin-
fected cells. In addition, we assume that the infection
rate per cell is proportional to the density of free-living
viruses (βVj) (Middelboe 2000). Thus, the equation for
the dynamics is given by:

(1)

where iM represents the immigration of cells into the
system, and DUj the dilution of uninfected cells from
the system.

Infected cells of bacterial species j: Infected cells of
species j increase along with infection processes at a
rate of βUjVj per unit time, and they do not reproduce
because only lytic viral infection is considered. Infected
cells are lost by viral lysis at a rate of L–1 per unit time
per cell. This is the simplest and standard assumption
for the latent period in epidemic models (Anderson &
May 1992). L represents the average duration of the la-
tent period, hereafter simply referred to as the latent
period (Middelboe 2000). We assume that infected bac-
terial cells are grazed on by protozoa at a rate of αPI P.
Note that this process represents coincidental IGP. The
equation for the dynamics is given by:

(2)

where DIj is the dilution of infected cells from the
system.

Free-living virus j: We assume that 1 infected bacter-
ial cell contains nV viral particles of species j. The nutri-
ent content of the infected cell is ρB + nV ρV; we set the
nutrient content per virus as ρV. For simplicity, we as-
sume that viruses produce new viral particles by using
the nutrient content of infected cells only, without forcing
the bacterial host cell to take up additional nutrients.
Therefore, burst size per lysis can be calculated as
YV (ρB ρV

–1 + nV), where YV is the growth efficiency, and
the production rate of progeny viruses is YV ( ρB ρV

–1 +
nV)L–1Ij per unit time. We assume 3 loss processes:
viruses are lost by the attachment to uninfected cells at a
rate of nV βUj per virus, through natural decay at a con-
stant rate of λ per virus, or by grazing by protozoa at a
rate of αPV P per virus, representing omnivorous IGP.
Thus, the equation for the dynamics is given by:

(3)

where DVj is the dilution of free-living virus from the
system.

Protozoa: We can calculate the growth rate of proto-
zoa using nutrient content ρP and growth efficiency YP.
In addition, we assume a constant loss rate of δP. Thus,
the equation for the dynamics is given by: 

(4)

where the second term on the right-hand side of Eq. (4)
represents the growth process of feeding on all species
of bacteria (uninfected and infected cells) and viruses
from species 1 to species m, and DP is the dilution of
protozoa from the system. 

Nutrients: We assume that biomass lost from bacte-
ria, viruses, and protozoa, as well as unassimilated
nutrients during the growth of bacteria, viruses, and
protozoa, return immediately as available nutrients for
bacteria. The dynamics of nutrient concentration are
given by the following equation:

(5)

where sN is the continuous supply rate of nutrients, DN
is the dilution of nutrients from the system, αjUj N
is the total consumption rate by uninfected cells of bac-
teria from species 1 to species m, and ρV λVj and
ρP δP P represent the recycling of lost biomass of all
viruses and that of protozoa, respectively. The remain-
ing terms represent the recycling of unassimilated
nutrients during the growth of bacteria, viruses, and
protozoa, respectively. 
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Model analysis. We assumed a very low rate of
immigration (iM = 10–6 l–1 d–1), so that the abundance of
each species is determined almost entirely by interac-
tions within the local system. Generally, local commu-
nity composition is determined both by immigration
from the metacommunity (for a review see Leibold et
al. 2004) and by the interactions within the local com-
munity. We focused on how the interactions among
bacteria, viruses, and protozoa determine bacterial
community composition. We first examined the ap-
proximate theoretical equilibrium state of the model,

assuming there is no immigration. Based on this
assumption, we can calculate the density of bacteria,
viruses and protozoa, as well as the nutrient concentra-
tion (see Appendix 1), and then obtain the BSR at equi-
librium, following the calculations by Thingstad
(2000). Next, assuming a very low rate of immigration,
we examined the temporal dynamics by numerical cal-
culations using the 4th-order Runge-Kutta method, an
algorithm for numerically solving differential equa-
tions, which achieves high precision at low computa-
tional cost (Press et al. 1988). Although the density of
each group shows large oscillations (Fig. 2a), the immi-
gration from the metacommunity consisting of m bac-
teria–virus pairs and protozoa prevents the extinction
of any species, and the long-term average density
tends to approach some constant value that differs
from the equilibrium state (Fig. 2b). The question
addressed is how many species are able to dominantly
coexist in the community, which is assembled from the
very large metacommunity. Here we focused on the
number of dominant species whose average density
exceeded a certain critical value (SD = 106 cells l–1 >>
iM /D) and which were actually involved in community
dynamics. The number of dominant bacterial species
with an average density higher than the critical value
SD was counted when the average density approached
a certain value after a long transient phase, which did
not equal the theoretical prediction at equilibrium
under the assumption of no immigration. These dis-
crepancies may have been caused by the temporal
oscillations. We examined the effects of IGP on BSR
and on the food web structure from common trends in
theoretical analysis at equilibrium and numerical
analysis at non-equilibrium. From the discrepancies
between them, we also examined the effects of the
temporal oscillations themselves. We chose parameter
values that fell within realistic ranges according to the
literature and also checked whether the realized den-
sities of bacteria, viruses, and protozoa were reason-
able (Table 1). 

RESULTS

Community structure at equilibrium

At equilibrium, where dUj/dt = dIj/dt = dVj/dt =
dP/dt = dN/dt = 0, the community composition was
determined in the same way as in the KW food web
model (see Appendix 1, and Thingstad 2000). The total
density of both uninfected and infected bacterial cells
at equilibrium, which can be interpreted as the ‘carry-
ing capacity’, is bounded by the balance between the
grazing rate on bacteria and the loss rate of protozoa.
However, the density of each bacterial species is deter-
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Fig. 2. Model dynamics using the parameters in Table 1. (a)
Example of the temporal dynamics of the model food web.
This panel represents temporal fluctuations of some variables,
showing the dynamics of U1, U30, V1 and V30. (b) Temporal
changes in average values of each variable. Each point at
time t represents the average value from time 0 to t. Average
values tended to approach a stable level after the transient
phase, although these values were different from those pre-
dicted at equilibrium, which are represented by the 4 dashed 

lines (V1*, V30*, U1* = U2* =…U82*, and U83*)
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mined by the balance between the infection and loss
rates of specific viruses. Therefore, only a finite num-
ber of bacterial species can be supported by this carry-
ing capacity. Let this finite number be n (<m), then spe-
cies j ( j > n) are competitively excluded, as they are
less competitive than species k (k ≤ n) because of their
lower nutrient affinity. Among the bacterial species k
(k = 1, 2, …, n), which are members of the realized com-
munity, the first to (n – 1)th species are infected by their
specific viruses. The n th bacterial host is able to estab-

lish a population, but its density is not sufficient for its
virus to establish a population. It follows that (n – 1)
host-virus pairs, n th virus-free host, and protozoa will
coexist in the whole microbial food web at equilibrium
(see Fig. 1). Note that the density of the virus decreases
with decreasing nutrient affinity of its host (V1* > V2* >
… > Vn–1*; see Eq. A5 in Appendix 1; *value at theoret-
ical equilibrium with no immigration). This results in
decreasing the attack rate on hosts (βV1* > βV2* > … >
βVn–1*), which is the same prediction as made by

5

Symbol Definition Unit Default

Uj Density of uninfected cells of species j 109 cells l–1 –
Ij Density of infected cells of species j 109 cells l–1 –
Vj Density of viruses of species j 109 particles l–1 –
P Density of protozoa 109 cells l–1 –
N Concentration of nutrient µg P l–1 –
αMAX Affinity for P of species 1 l d–1 (109 cells)–1 0.1a

αMIN Affinity for P of species m l d–1 (109 cells)–1 0.01b

α j Affinity for P of species j l d–1 (109 cells)–1 ƒ( j, m, αMAX αMIN)c

m Size of metacommunity – 200b

αPU Clearance rate on uninfected cells l d–1 (109 cells)–1 100d

αPI Clearance rate on infected cells l d–1 (109 cells)–1 1.0 αPU
b

αPV Clearance rate on free-living viruses l d–1 (109 cells)–1 0.01 αPU
b

δP Loss rate of protozoa d–1 0.25b

β Infection rate l d–1 (109 cells)–1 1.0e

λ Loss rate of viruses d–1 0.5 f

L Latent period Day 1.0/24.0g

YP Growth efficiency of protozoa – 0.3h

YB Growth efficiency of bacteria – 0.3h

YV Growth efficiency of viruses – 0.5 i

ρB Nutrient content of bacteria µg P (109 cells)–1 1.0 j

ρV Nutrient content of viruses µg P (109 particles)–1 0.01k

ρP Nutrient content of protozoa µg P (109 cells)–1 100l

nV Number of virus per cell Particles cell–1 1b

sN Supply rate of nutrient µg P l–1 d–1 0.2b

D Dilution rate d–1 0.01b

iM Immigration rate of microorganisms 109 particles l–1 10–15 b

SD Threshold for counting BSR 109 cells l–1 10–3 b

Total B* Calculated default values 109 cells l–1 0.870262
Total V* Calculated default values 109 particles l–1 8.400775
P* Calculated default values 109 cells l–1 0.003362
TN* Total nutrient in the system (= D–1sN ) µg P l–1 20

aMaximum affinity for P was assumed for the growth rate YB αMAX N on the order of ~0.1 to 1.0 d–1

bAssumed values
c The affinity for P of species j was determined by ƒ( j, m, αMAX , αMIN) = αMAX – (αMAX – αMIN)m–1( j – 1)
dAssuming the protozoa density to be on the order of 10–3 × 109 l–1, values were assumed for bacterial mortality from proto-
zoan grazing (αPU P) to be on the order of 0.1 d–1

eThe value for bacterial morality from viral lysis was assumed to be on the same order as mortality from protozoan grazing,
assuming each viral density to be on the order of 10–1 × 109 l–1

f The value was determined by the lower value in Suttle & Chen (1992)
gTaken from Middelboe (2000)
hValues for protozoa and bacteria were determined from Sterner & Elser (2002) and del Giorgio & Cole (1998), respectively
i The value was assumed for the burst size YV (ρB/ρV + nV) to be on the order of 5.0 × 101

j The value was equivalent to 1.0 fg P cell–1, from the assumption of 20 fg C cell–1 and based on the C:P ratio = 50
kThe value was on the order of 0.01 fg P particle–1, from the data that 0.087 fg DNA particle–1 (Borsheim et al. 1990) and 8.7%
P in DNA (Sterner & Elser 2002)

l The value was on the order of 100 times that of bacteria

Table 1. Parameter values used to run the numerical calculations
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Thingstad (2000). It follows that the density of unin-
fected cells from the first to (n – 1)th bacterial species is
maintained equally despite decreasing nutrient affin-
ity, and that the density of the n th species is lowered
(U1* = U2* = … = Un–1* > Un*; see Eq. A3 in Appen-
dix 1). However, the density of infected cells of each
bacterial species decreases with decreasing affinity
(I1* > I2* > … > I n–1*; see Eq. A2 in Appendix 1), as
does the total density of each bacterial species (Uj + I j).
Using default values in Table 1, we confirmed that
total bacterial density, total virus density, and the den-
sity of protozoa fell into reasonable ranges, approxi-
mately on the order of 109, 1010 and 106 l–1, respec-
tively. In addition, for nutrient dynamics we introduced
the total nutrients (TN) into the system as follows: 

(6)

which represents the sum of nutrients available for
bacteria and nutrient biomass in uninfected and
infected bacterial cells (from species 1 to species m), in
viruses (from species 1 to species m), and in protozoa. 

Using Eqs. (1) to (5), we can then determine that the
dynamics TN are given by the following simple equa-
tion (Appendix 1): 

dTN/dt =  sN – DTN (7)

where DTN represents dilution of total nutrients. 
Therefore, from dTN/dt = 0, the following equation

should be satisfied at equilibrium with no immigration:

TN* = D–1sN (8)

where TN* represents the trophic status of the system.

Numerical investigation of the effect of IGP

Here, we must note again that the temporal dynam-
ics did not reach equilibrium (Fig. 2a); this is in contrast
to the stable behavior observed in the KW food web
model, which does not assume a latent period of
viruses (Thingstad 2000). The long-term averages of
each component approached certain values, but these
differed from the equilibrium (Fig. 2b). Fig. 2b shows
that multiple bacterial species were able to coexist,
suggesting that the KW processes, which prevent com-
petitive exclusion by the winner of the nutrient compe-
tition, are able to work effectively even with the exis-
tence of IGP. Numerical calculations showed that
realized BSR (nA, where A represents long-term aver-
age values) does not depend on the size of the meta-
community (m) if m is chosen as a number sufficiently
larger than the predicted species richness n* (BSR*) at
equilibrium.

Next, we examined how IGP processes influence
BSR. Fig. 3a shows how BSR is determined by the graz-
ing rate on infected cells (αPI) compared to the rate on
uninfected cells (αPU), i.e. the effect of coincidental IGP
on BSR. We can explain the common patterns in both
BSR* and BSRA because the difference between them
is very small. When the latent period is short (L =
10 min and 1.0 h), BSR is not influenced by the relative
grazing rate on infected cells (αPI/αPU). However, when
the latent period is long (L = 6.0 and 12 h), BSR
decreases with increasing rate of IGP. Here, αPI/αPU =
1.0 indicates completely non-selective grazing where
the grazing rate on both uninfected and infected cells
of every bacterial species is equal. When αPI/αPU < 1.0,
grazing is selective for uninfected cells, and when
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Fig. 3. Effects of coincidental and omnivorous IGP on bacter-
ial species richness (BSR). Each point represents the results
from numerical calculations (BSRA), and dashed lines are
based on the theoretical prediction at equilibrium (BSR*). Dif-
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grazing rate on free-living viruses compared to uninfected
cells (αPV : αPU). Parameters used were: (a) αPV = 0.01, (b) αPI = 

αPU. Other parameters as in Table 1
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αPI/αPU > 1.0, grazing is selective for
infected cells. Although Fig. 3a shows the
potential responses of BSR to an increase
in the relative grazing rate on infected
bacterial cells (αPI/αPU), it is likely that
protozoa cannot distinguish infected from
uninfected bacterial cells. Therefore, we
set αPI/αPU = 1.0 in the analyses when
investigating the effects of IGP. Fig. 3b
shows how BSR is affected by the grazing
on free-living viruses (the effect of omniv-
orous IGP). This suggests that BSR theo-
retically can decrease with an increasing
relative grazing rate on free-living viruses
(αPV/αPU). 

We also examined how the latent period
affects BSR through changes in the inten-
sity of coincidental IGP and the food web
structures. Although the analysis at equi-
librium (BSR*; Fig. 4a) predicts that BSR is
relatively constant, independent of the
latent period when infected cells are not
grazed (αPI/αPU = 0.0), the analysis at non-
equilibrium (BSRA; Fig. 4a) shows that
BSRA is lower than BSR* when the latent
period is long (L ≥ 2.0 d) and that it
decreases with increasing latent period.
This implies that this reduction is caused
by temporal oscillations in the system, not
by IGP. However, when infected cells are
equally grazed (αPI/αPU = 1.0), the degree
of reduction of BSRA is larger than for
those without IGP (αPI /αPU = 0.0). Thus,
the difference between the 2 values actu-
ally corresponds to the effects of IGP on
BSRA. This difference can be explained by
the different patterns of change in the
abundance of bacteria, viruses, and proto-
zoa. Fig. 4b shows that the changes in the
total abundance of bacteria (B), which is
the sum of uninfected and infected cells of
all species, the frequency of infected cells
(I:B), and the relative abundance of protozoa (P:B)
have the same patterns in food webs without IGP
(αPI/αPU = 0.0) and with IGP (αPI/αPU = 1.0). The total
density of bacteria and the relative density of protozoa
are constant, but the frequency of infected bacteria
increases with an increasing latent period. However,
compared to food webs with IGP, viral abundance in
food webs without IGP is less influenced by the latent
period, leading to a decreased reduction in BSR. This is
because infected cells are not vulnerable to grazing
by protozoa. However, with non-selective grazing
(αPI /αPU = 1.0), an increasing frequency of infected
cells (I:B) makes viruses in infected hosts more vulner-

able to being killed by protozoa, leading to a lower
abundance of viruses (lower V:B ratio). It follows that
the KW process is highly reduced. In addition, the pre-
dicted values at equilibrium when L = 0 d, which are
not shown in Fig. 4, are almost the same as when L =
0.01 d. In fact, L = 0 corresponds to the pure KW pro-
cess, because L = 0 represents immediate bacterial
lysis after viral infection (which is mathematically jus-
tified; see Appendix 2). 

Finally, we examined how environmental changes
cause changes in food web structure and thus changes
in BSR. We focused on the changes in the loss rate of
protozoa (δP), representing top-down regulation on
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protozoa (Fig. 5a), and in the supply rate of nutrients
(sN), which determines the trophic status (TN = D –1sN),
representing bottom-up regulation (Fig. 5b). In Fig. 5,
each bar (prediction at equilibrium) and point (predic-
tion at non-equilibrium state) represents the relative
change in each variable when δP or sN become 2 or 10
times higher, respectively, and where a value greater
(or less) than 1.0 indicates increases (or decreases) in
each variable with increased δP or sN. Fig. 5a repre-
sents changes in the abundance of bacteria (B), abun-
dance of protozoa (P), virus to bacteria ratio (V:B), virus
to protozoa ratio (V:P), and BSR when δP is doubled
from 0.25 to 0.5. This figure shows that increasing top-
down regulation on protozoa (heterotrophic flagel-
lates) by larger predators (e.g. ‘ciliates’) leads to a
decrease in the density of protozoa, resulting in an
increase in the total density of bacteria. At the same
time, the structure of the food web is changed; the V:B
and the V:P abundance ratios increase, resulting in an
increased BSR (e.g. from 84 to 166 when L = 10 min).

Note that the pattern of changes does not depend on
the latent period, i.e. it does not matter whether the
intensity of IGP is high (L = 24 h) or low (pure KW pro-
cess [L = 0] and L = 10 min, 1.0 h). However, the
response to eutrophication (total nutrient concentra-
tion increases 10 times, from 20 µg P l–1 to 200 µg P l–1,
by increasing the supply rate of nutrients from 0.2 to
2.0 µg P l–1 d–1) largely depends on whether the inten-
sity of IGP is high or low (Fig. 5b). When the latent
period is short (L = 10 min, 1.0 h), both protozoa and
viruses increase with increasing total nutrients in the
system, and then the V:P abundance ratio is relatively
constant, resulting in a constant BSR, as is the case
with the pure KW process (L = 0). However, when the
latent period is long (L = 24 h), increasing total nutri-
ents leads to a decrease in the V:P and V:B ratios,
resulting in a substantial decrease in the BSR (from 59
to 11). Increasing total nutrients leads to a higher pro-
duction of bacteria, which results in positive effects on
both protozoa and viruses. However, the increase in
protozoa abundance negatively affects viruses through
IGP. Fig. 5b shows that the net effect of eutrophication
on viruses is negative when IGP is strong with a long
latent period. 

DISCUSSION

In pelagic environments, relative body size is one of
the key factors influencing the direction and frequency
of trophic links (‘size-structured food webs’; Sheldon et
al. 1972, Azam et al. 1983). Therefore, protozoan
predators inevitably eat viruses when they eat the bac-
terial host. This coincidental IGP occurs frequently
between protozoa and viruses. However, omnivorous
direct IGP on free-living viruses is not as frequent
(González & Suttle 1993), probably because the differ-
ence in body size between protozoa and viral particles
is too large (Sherr & Sherr 2000). Using a simple exten-
sion of the KW food web model, we demonstrated that
coincidental IGP, with the same attack rate on unin-
fected and infected cells (αPI = αPU), causes a reduction
in BSR. We also predicted that preferential grazing on
infected cells (αPI > αPU) has a larger potential impact
on BSR than non-selective grazing (αPI = αPU). This
could occur if bacterial physiology or behavior
changed drastically after viral infection, and if this led
to increased vulnerability to protozoa, although no evi-
dence for this is available. In contrast omnivorous IGP
within the realistic range (αPV/αPU < 0.1, e.g. 2.6 to
4.8% of grazing rate on bacterial cells; González &
Suttle 1993) had little effect on BSR, although it had a
potentially negative effect on BSR (Fig. 3b). These IGP
processes can also be interpreted as an ‘eating your
competitor’ strategy of protozoa, which was previously
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proposed for mixotrophic protists (Thingstad et al.
1996). From this point of view, protozoa benefit from
grazing on viruses by (1) removing viruses as competi-
tors for bacteria, and (2) obtaining additional nutrients
from viruses, although the nutrient content of viruses
alone would be insufficient for protozoa. With these 2
mechanisms, increased IGP leads to decreases in the
abundance of the competitor (viruses) and indirectly
causes a reduction in BSR. 

The latent period of viruses (L) is also a key parame-
ter determining the intensity of coincidental IGP. The
difference in predicted BSR between a pure KW pro-
cess with no latent period (L = 0) and the KKW process
with a latent period (L > 0) is negligible when the latent
period is short (Fig. 4). However, the difference
increases with increasing latent period. Increasing the
latent period indirectly leads to a reduction in the
abundance of viruses by making viruses in host cells
more vulnerable to being killed by protozoa. In partic-
ular, Fig. 4b suggests that viral abundance decreases
with an increasing latent period, whereas protozoan
abundance remains relatively constant. It follows that
a decreased infection rate of viruses leads to looser
packing of each species of bacteria into the constant
carrying capacity that is maintained by the less vari-
able protozoan grazing rate, which results in a reduc-
tion of BSR. Furthermore, the changes in food web
structure and BSR along a trophic gradient can be very
different between a case with a long latent period, i.e.
in KKW processes with high IGP (L = 24 h), and a case
with a short or no latent period, i.e. in KKW processes
with low IGP (L = 10 min, 1.0 h) or in pure KW pro-
cesses with no IGP (L = 0). Changes in food web struc-
ture (e.g. V:B and V:P ratios) are also related to
changes in material flow within the microbial loop. A
high V:P ratio leads to higher BSR but also results in
greatly increased nutrient flow from bacteria to viruses
(viral loop; Fuhrman 1999) rather than from bacteria to
protozoa (microbial loop; Azam et al. 1983). When the
latent period is very short (L = 10 min), the model
analysis predicts that eutrophication (increasing total
nutrient concentrations) does not change the relative
flow from bacteria to viruses compared to the flow from
bacteria to protozoa, which is the same as the predic-
tion for the pure KW process (L = 0). However, when
the latent period is substantially longer, which is the
case in the KKW situation with high IGP, eutrophica-
tion will change the food web structure, leading to a
low V:P ratio. This also means that the nutrient path-
way from bacteria to protozoa and from viruses to pro-
tozoa will be strengthened, whereas the pathway from
bacteria to viruses will be diminished. This suggests
that viruses have much more impact on nutrient
cycling in relatively oligotrophic environments if the
latent period of viruses is not negligible, i.e. in a KKW

situation with high IGP. In addition to the impacts on
nutrient cycling, another important prediction is that
eutrophication leads to a reduction of BSR if the latent
period of the viruses is long. 

It is generally suggested that the viral loop enhances
the recycling of nutrients to bacteria, leading to
higher bacterial production compared to situations
without viruses (Fuhrman 1999). However, because
host-specific viral infection suppresses the growth of
bacterial species with a higher affinity for nutrients,
the existence of viruses leads to less effective use of
nutrients for production throughout the bacterial com-
munity, instead of higher species richness. In this
model, for example, in the case of Fig. 3a, total bacter-
ial production with αPI/αPU = 0.01 and L = 12 h (with
low IGP), and αPI/αPU = 10.0 and L = 12 h (with high
IGP) is 1.06  and 1.45 µg P l–1 d–1, respectively, and in
the case of Fig. 4a, production with αPI/αPU = 1.0 and
L = 0.01 d (with low IGP) and αPI /αPU = 1.0 and L =
1.0 d (with high IGP) is 1.07 and 1.21 µg P l–1 d–1,
respectively. This means that increasing IGP leads to
higher bacterial production. These opposing effects of
viruses on BSR and bacterial community production
are suggested only by this idealized food web model in
which every bacterial species competes for unique
nutrients. Therefore, for a generalization of the func-
tions of viruses, more realistic situations should be con-
sidered, in which bacteria use many types of resources. 

The BSR predicted by our KKW model ranges from
10 to about 160, which falls into approximately the
same order as previous predictions—100 in the model
based on the KW hypothesis (Thingstad et al. 1997)
and 160 based on the species rank-abundance curve
model (Curtis et al. 2002). We can compare these val-
ues to 2 observed extreme estimates of bacterial diver-
sity. From a PCR-based analysis of a small subunit of
rRNA, an estimate of 10 to 30 (e.g. Murray et al. 1996)
was obtained. However, from an analysis of the whole
genome shotgun sequence, the estimate was at least
1800 (Venter et al. 2004). Thus, our prediction is closer
to the PCR-based method than to the shotgun
sequence. Although this large discrepancy must be
carefully considered and solved empirically (for a
review see Curtis & Sloan 2004, Weinbauer & Ras-
soulzadegan 2004), here we will discuss one of the pos-
sibilities from a theoretical viewpoint. It is possible that
the estimate from the whole genome shotgun
sequence represents the size of the metacommunity,
because even very rare bacterial genomes in the envi-
ronment will be included in this estimate. In contrast,
PCR-based methods are able to detect only abundant
phylogenetic groups in the environment. The problem
that ‘universal’ primers are not universal is also
responsible for the underestimation of species richness
in PCR-based analyses (e.g. Hongoh et al. 2003). It is
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natural to assume that these methods can roughly esti-
mate the number of dominant bacterial species. The
estimated of ~10 to 30 species is in agreement with that
of our KKW model, which can be lower than the esti-
mate from the model based on the pure KW process,
depending on the relative grazing rate on infected
cells and the latent period. 

The equilibrium of this model is not locally stable
within the realistic region of parameter values, which
is quite different from the original KW food web model
(Thingstad 2000). This may be caused by the introduc-
tion of the infected population reflecting the latency of
viruses, which generates a time delay between viral
infection and bacterial lysis and results in the destabi-
lization of the system (Levin et al. 1977, Thingstad
2000). Because of large fluctuations, the densities of
bacteria and viruses sometimes become very low,
although they never reach zero even without immigra-
tion if the equilibrium value with no immigration is
positive (e.g. Uj never reaches zero if Uj* is positive).
However, this coexistence is not ecologically reason-
able, because stochastic environmental fluctuations in
natural ecosystems easily cause the extinction of spe-
cies whose density becomes very low. Thus, immigra-
tion is a crucial assumption for the maintenance of bac-
terial coexistence. Note that this type of dynamic
behavior is not usually observed in large natural sys-
tems, although some theoretical models of competitive
interactions and small biological treatment systems
often show unstable dynamics (for review see Curtis &
Sloan 2004). Therefore, some stabilizing factors should
be incorporated to better understand the community
dynamics in natural systems. We found that the analy-
sis at equilibrium with no immigration was a good
approximation for describing community composition
at non-equilibrium with a very small immigration rate.
Temporal oscillations did not affect most aspects of our
predictions of how IGP influences BSR through
changes in food web structures. Generally, because
temporal oscillations have both positive effects (by
relaxing interspecific competition; Huston 1979) and
negative effects (by posing stress on species with low
growth rates; Huston 1979), the net effect on the
number of coexisting species can be either positive or
negative (Huston 1979, Armstrong & McGehee 1989,
Huisman & Weissing 1999). In this model, the temporal
oscillations caused by latency have little effect on BSR
when the latent period is short (L ≤ 1 d), noting that
BSR* at equilibrium is almost the same as BSRA at non-
equilibrium. It is only when the latent period is long
(L ≥ 2 d) that temporal oscillations have negative
effects on BSR even without the influences of IGP
(Fig. 4a). 

Other recent studies have also begun to counter-
balance the notion of KW processes. Some studies

have suggested that the impact of viruses on bacterial
community composition is lower than expected
because of the existence of resistant strains of bacteria
(Middelboe et al. 2001, Schwalbach et al. 2004). This
bacterial resistance may also be another type of KKW
process in which bacterial cells themselves ‘kill’
viruses (‘killer of the winner’), thereby reducing viral
infection rate and leading to lower BSR. Wichels et al.
(1998) suggested that interactions between hosts and
viruses are not as specific as in the KW hypothesis;
these authors showed that 1 bacterial species (or
strain) can be infected by multiple viral species and
also that 1 viral species can infect multiple types of
host. The inter-specific competition among viruses for
hosts caused by low host specificity may lead to lower
species richness of viruses. This will also result in
lower BSR. Overly complicated modifications of the
simple KW model and new theories for the sake of pre-
senting theories should not be explored. However, our
study is one of the necessary steps in a natural expan-
sion of the KW model to further our understanding of
bacteria–virus–protozoa interactions and their effects
on biodiversity, community structure, and biogeo-
chemical cycling in microbial ecosystems.
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Here, we explain how we obtained the equilibrium En, in
which (n –1) pairs of host and virus, n th virus-free host,
and protozoa coexist with assumption of no immigration.
We consider the potential equilibrium Es in which only
(s–1) pairs of host and virus, s th virus-free host, and proto-
zoa coexist, where s ≥ 1. At Es, when the predicted abun-
dance of s th virus-free bacteria, Us,s*, is larger than the
abundance of virus-associated bacteria Us** (= U1,s* = 
U2,s* =…Us–1,s*), we can consider s th virus are also able to
establish populations, and we can then judge that poten-
tial equilibrium Es is not at equilibrium. We then proceed
to the next equilibrium Es+1, and iterate this until the
inequality Us,s* < Us** holds. The smallest s that satisfies
the above inequality is the realized species number n at
equilibrium (n*). 
From Eqs. (1) to (5), we calculate each component at the
potential equilibrium Es. From dP/dt = 0 (in Eq. 4), the total
abundance of uninfected and infected bacterial cells, and
viruses should satisfy the following equation:

(A1)

From dIj /dt = 0 (in Eq. 2), we obtain the density of infected
cells of the j th species:

( j = 1, 2,…, s – 1) (A2)

Substituting Eq. (A2) into dVj /dt = 0 (in Eq. 3), assuming
Vj,s* > 0, and rearranging it, we obtain: 

( j = 1, 2, …, s – 1) (A3)

From dUs /dt = 0 with Vs,s = 0, we obtain the density of
protozoa: 

(A4)

Using Eq. (A4) and dUj /dt = 0 (in Eq. 1), we obtain the
density of viruses: 

(A5)

Substituting Eqs. (A2) & (A5) into Eq. (A1), we can calcu-
late the density of the s th bacteria: 

Using Eqs. (1) to (6), we can find that the dynamics of total
nutrient TN is given by Eq. (7). This is calculated from the
following equation:

(A7)

Therefore, from dTN /dt = 0, the following equation should
be satisfied at equilibrium with no immigration:

(A8)

By substituting Eqs. (A2) to (A6) into Eq. (A8) and re-
arranging it, we can obtain a quadratic equation of Ns*
(not shown here). By solving this equation and using the
solution Ns*, we can check the inequality Us,s* < Us**. By
iterating these calculations numerically, we obtain the BSR
n at equilibrium n*.
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Appendix 1. How to calculate the equilibrium of the system

U Y D s Us s PU B P P P s, * ( ) ( ) **= + − −− − −α ρ ρ δ1 1 1 1

−− +
+ +

− − − −L Y n
DL L P

PU PI B B V B V

PI s

α α ρ ρ ρ
α

1 1 1 11
1

( )
*

αα α

α α

j
j

s

s s s

PV P

s N U
=

−

∑ − −
⎧
⎨
⎩

⎫
⎬
⎭

−

1

1

1( ) * **

UU B V B j
j

s

s sY s N− − −

=

−

∑ − −
⎧
⎨
⎩

⎫
⎬
⎭

1 1 1

1

1

1β ρ ρ α α( ) * (A6)

The equilibrium of our KKW model converges to the equi-
librium of the model of pure KW process when the latent
period L → 0. The corresponding pure KW process model
consists of Eq. (1) for the dynamics of bacterial cells, Eq. (4)
for the dynamics of protozoa, and Eq. (5) for nutrients by
setting Ij = 0, and the following equation for the dynamics
of free-living viruses, instead of the original Eq. (3):

(A9)
This equation is obtained by substituting the following
equation from dIj /dt = 0.0 into Eq. (3):

(A10)

Then, by solving dUj /dt = 0, dVj /dt = 0, and dP/dt = 0, we
can calculate the equilibrium of the pure KW process
model. Note that calculations at equilibrium are eventu-
ally identical to the calculations in the KKW model with
L = 0 and αPV = 0 (Appendix 1), although temporal dynam-
ics of the 2 models are of course different. Therefore, we
are able to discuss both pure KW process and KKW 
models at equilibrium
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Appendix 2. How to derive the model of pure KW process
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