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INTRODUCTION

Natural abundances of carbon and nitrogen isotopes
are now routinely used to infer food web linkages and
to trace sources of nitrogen enrichment across a wide
range of ecological systems. These applications of sta-
ble isotopes are of great benefit to many field-based
ecological studies, although the utility of the overall
approach hinges upon the tendency of isotopes of
nitrogen and carbon (14N versus 15N and 12C versus
13C) to assimilate into tissues of organisms (and pass
through ecological systems) in a predictable manner.
Provided this occurs (and there is sufficient variability
in stable isotopes among different source pools),

researchers can use isotope ratios (δ15N and δ13C) to
infer feeding patterns of consumers and the distribu-
tion of terrestrial carbon and nitrogen sources (e.g.
Ben-David & Schell 2001, Dunton 2001, Usui et al.
2006, Fry 2006, Catenazzi & Donnolly 2007).

Many marine studies that employ stable isotope
approaches will necessarily rely upon a known (or at
least a consistent) relationship between δ15N and δ13C
ratios in the tissues of marine algae (i.e. the primary
producers) and those of inorganic sources of carbon
and nitrogen in coastal environments. For stable iso-
tope ratios to be useful as tracers of pollutants or
energy flow through marine food webs, signatures
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associated with different primary producers (e.g. spe-
cies of marine plants and algae) should be relatively
consistent and distinct from one another (e.g. Raven et
al. 2002).

For marine plants and algae, one of the processes
that determines tissue isotope ratios (i.e. signatures),
including among-species variability and relationships
with concentrations in the surrounding seawater envi-
ronment, is known as ‘fractionation’; effectively, this is
the pattern of discrimination between 14N versus 15N
and 12C versus 13C that occurs as nitrogen and carbon
are assimilated into tissues.

Relatively few studies have examined variability in
nitrogen fractionation for marine macroalgae (but see
Cohen & Fong 2005, Cornelisen et al. 2007). Previous
work on other photoautotrophs suggests that light
availability (Wada & Hattori 1978, Heikoop et al. 1998,
Needoba & Harrison 2004), growth rate (McKee et al.
2002), nutrient availability (Waser et al. 1998b, McKee
et al. 2002), turbulence (Trudeau & Rasmussen 2003)
and nitrogen source (Waser et al. 1998a) may all have
some effect on fractionation of nitrogen during its
incorporation in photoautotrophs. Similarly, other stud-
ies have shown that fractionation of carbon by algae
may vary as a function of the physical environment as
well as taxonomic difference (Wiencke & Fischer 1990,
Raven et al. 2002). In those species of algae capable of
assimilating HCO3

–, changes in irradiance may also
alter the proportion of total carbon that is derived from
HCO3

–, rather than isotopically lighter CO2 (aq), leading
to changes in tissue δ13C values (Kubler & Raven 1995,
Cornelisen et al. 2007).

Studies that use nitrogen and carbon stable isotope
signatures in coastal environments would therefore
benefit from an improved understanding of the pat-
terns, magnitude and drivers of variability in the iso-
tope ratios of macroalgae. We addressed this issue with
a pair of complementary laboratory-based experiments
that explored variability in carbon and nitrogen iso-
tope ratios, respectively. Our experiments were partly
motivated by an assessment of nutrient enrichment
from a coastal sewage discharge (described by Dudley
2007) in which the isotopic signatures exhibited by the
common macroalga Ulva pertusa Kjellman were corre-
lated with light availability (i.e. along a depth gradient)
independently of a correlation with nitrogen concen-
tration (Dudley 2007). In contrast, other studies from
New Zealand have shown that tissue δ15N in Ulva spp.
at non-polluted open coastal sites has a limited range
(6.7 to 8.8‰; Rogers 1999, 2003, Barr 2007) that is sea-
sonally stable (Barr 2007), despite seasonal environ-
mental change (including change in light). In the cur-
rent study, we first examined how δ13C values of U.
pertusa tissue are affected by conditions of nitrogen
availability and light during growth. In our second

experiment, we examined the effect of nitrogen source
(either nitrate or ammonium) and light conditions on
U. pertusa δ15N values.

MATERIALS AND METHODS

General conditions. Large (200 to 300 mm in length)
specimens of Ulva pertusa were collected from inter-
tidal sandflats at Otumoetai in Tauranga Harbour,
northeastern New Zealand (37° 39.68’ S, 176° 08.46’ E).
After transportation to the Leigh Marine Laboratory
(36° 16’ S, 174° 48’ E), U. pertusa specimens were accli-
mated in a partially-shaded outdoor holding tank with
a constant flow of coarse-filtered (200 µm) coastal
seawater. For the following 2 experiments, conducted
over 2 consecutive summers in January 2005 and Jan-
uary 2006, we maintained individual U. pertusa thalli
(around 3 g each) in a set of up to 16 individual outdoor
seaweed growing chambers. Each growing chamber
had a seawater volume of 4.5 l and was supplied with a
constant 1.2 l min–1 flow of seawater via a tipper
bucket to create turbulent conditions as described by
Barr et al. (2008). Factorial experimental treatments
(randomly assigned to the growing chambers) con-
sisted of either ambient natural light or shaded natural
light, and (except for natural seawater treatments)
nitrogen supplied as either ammonium or nitrate.
Shading was achieved with 3 layers of 50% neutral
density screen to attenuate ambient natural light by
81%. The amount of light reaching the surface of the
thalli was measured as photosynthetically active radia-
tion (PAR) using a biospherical scalar irradiance probe
(model QSL 2100). For nitrogen addition treatments,
either ammonium chloride or sodium nitrate was sup-
plied from individual concentrated stock solutions at a
constant rate to each growing chamber via a multi-
channel peristaltic pump. The nitrogen stock supply
rate was calculated to give a final constant concentra-
tion of 10 µM in seawater, as described by Barr et al.
(2008). To ensure that no secondary phosphorus limita-
tion occurred when nitrogen was added, phosphate
was also supplied (as potassium dihydrogen phos-
phate) to give seawater N:P of 10:1 (note that macro-
algal growth becomes phosphorus limited with N:P
values above 30: 1; Atkinson & Smith 1983). For the ‘no
nutrient addition’ treatment, deionised water only was
added at the same rate as nutrient stocks were added
to nitrogen-addition treatments.

Growth rates for individual Ulva pertusa specimens
were estimated by collecting each individual thallus
from its growing chamber (at either 2 or 4 d intervals
throughout the experiments), removing the excess sur-
face water using a salad spinner and then recording its
fresh weight. For each experiment, initial weight of
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individual thalli was around 3 g. After weighing indi-
vidual thalli, surplus tissue was trimmed to give a
return weight to the growing chamber of around 3 g.
Algal growth rates were estimated using an exponen-
tial growth equation as follows:

Wt = W0 × eµt (1)

where Wt is the weight of algae at time t, W0 is the ini-
tial weight and μ is the specific growth rate (d–1).

Expt 1: Effects of nutrient enrichment and light
regime on δδ13C signatures. In a factorial experiment,
we evaluated the effect of light availability (ambient
natural light versus shaded natural light) and 10 µM
ammonium addition (relative to available nitrogen in
low nutrient natural seawater) on tissue N content and
tissue δ13C signatures in Ulva pertusa. After acclima-
tion under 50% ambient light for a period of 14 d, U.
pertusa specimens were maintained under experimen-
tal conditions for a further 14 d using 3 individual repli-
cate thalli for each of the 4 treatments. For the duration
of this experiment, from 11 to 25 January 2005 (mean
± SE) daily solar radiation and PAR were 27.5 ± 1.2 MJ
m–2 and 1671.4 ± 64.9 µE m–2 d–1, respectively. Seawa-
ter temperature was 18.7 ± 0.3°C, seawater dissolved
inorganic nitrogen (DIN) concentration was 1.8 ±
0.1 µM (comprised of ammonium 0.7 ± 0.1 µM, nitrate
1.0 ± 0.1 µM and nitrite 0.1 ± 0.01 µM), and seawater
phosphate concentration was 0.3 ± 0.4 µM.

Expt 2: Effects of nitrogen source and light regime
on δδ15N signatures. In a second factorial experiment,
the effect of light availability (ambient natural light ver-
sus shaded natural light) and nitrogen source (ammo-
nium versus nitrate) on tissue N content and δ15N signa-
tures in Ulva pertusa tissue was evaluated. However,
unlike the first experiment, the seawater that was used
to supply experimental treatments was first stripped of
ambient nitrogen with an algal nutrient scrubber. This
was done to eliminate, or at least reduce, any effect of
ambient (natural) nitrogen on U. pertusa tissue δ15N
signatures. Nitrogen stripping was accomplished by
running coarse-filtered seawater through a longitudi-
nal race (9 m long by 200 mm wide and 100 mm deep)
containing U. pertusa thalli placed throughout its
length (note that this U. pertusa functioned purely as a
means of removing nitrogen from seawater and should
not be confused with the experimental U. pertusa).
Effectiveness of nitrogen removal was confirmed by
measuring nutrient concentrations throughout experi-
mental runs. Artificial nitrogen (ammonium chloride or
sodium nitrate) of known δ15N signatures (–5.50‰
and 3.95‰, respectively) was then added back to the
treatment seawater as described above.

Eight acclimated Ulva pertusa specimens weighing
approximately 3 g were maintained under the same
ambient (unshaded) light conditions in individual

growing chambers for a preincubation period of 20 d.
During this time, they were supplied with artificial
nitrogen of known δ15N signatures, prior to initiating
the experiment. However, 4 specimens were supplied
with 10 µM ammonium and 4 were supplied with
10 µM nitrate. At 2 d intervals during the first 14 d of
this period, Ulva pertusa specimens were trimmed
back to 3 g and returned to their respective chambers.
The amount trimmed was approximately equivalent to
half (3 g) of the total tissue present after each 2 d
growth period, and over the 20 d preincubation phase,
we estimated a cumulative tissue turnover of >95% for
each specimen. For the duration of the preincubation
phase, from 10 to 29 January 2006, average daily solar
radiation and PAR were 20.9 ± 2.0 MJ m–2, and 1245 ±
116 µE m–2 d–1, respectively. Average seawater tem-
perature over this period was 19.7 ± 0.1°C.

At the start of the manipulative part of the experiment,
the 8 individual Ulva pertusa specimens (4 supplied with
ammonium and 4 supplied with nitrate) were each
halved and trimmed to give 2 thallus sections of ap-
proximately 3 g each (note that thalli were not trimmed
during the final 6 d to allow sufficient tissue for this).
These pairs were then randomly allocated to either
shaded or unshaded treatments, although the same
nitrogen addition regimes (ammonium or nitrate) were
maintained. There were 4 replicate thalli for each treat-
ment (in a total of 16 separate growth chambers). At the
end of this experiment, we quantified tissue N content
and δ15N ratios for experimental U. pertusa, using the
methods described below. Growth rates of U. pertusa
thalli during the experimental phase were also estimated
as described above. For the duration of this experiment,
from 30 January to 14 February 2006, average daily so-
lar radiation and PAR were 21.4 ± 1.4 MJ m–2 and 1277
± 81 µE m–2 d–1, respectively. Average seawater temp-
erature over this period was 20.6 ± 0.1°C. Ambient sea-
water ammonium and nitrate concentrations in natural
(‘unstripped’) seawater averaged over the duration of the
experiment were 0.5 ± 0.1 µM and 0.7 ± 0.1 µM, respec-
tively. However, after seawater passed through the
scrubber, average ammonium and nitrate concentrations
were 0.3 ± 0.1 µM and 0.2 ± 0.1 µM, respectively.

Tissue nitrogen and stable isotope signatures. Sam-
ples of Ulva pertusa from each experimental replicate
were stored frozen at –20°C, subsequently defrosted,
cleaned of any epiphytes and epifauna, dried at 70°C
in a drying oven and ground to a fine powder. All iso-
tope samples were analysed using a Europa Geo 20/20
isotope ratio mass-spectrometer interfaced to an
ANCA-SL elemental analyser. Duplicate samples of
1.8 mg of powder were loaded into tin capsules for
analysis of organic carbon and nitrogen content and
carbon and nitrogen isotopic composition. The stan-
dard analytical error between duplicate analyses was
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lower than ±0.3‰ for δ15N  and ±0.1‰ for δ13C. Rela-
tive isotopic concentrations are reported as δ15N values
relative to an air standard, where:

(2)

All δ13C values were normalised to PeeDee Belemnite
using Europa flour, International Atomic Energy
Agency (IAEA) Beet sugar and Australian National
University (ANU) sucrose, where:

(3)

Statistical analysis. We used 2-way analysis of vari-
ance (ANOVA) to test for differences in tissue-δ15N,
δ13C and nitrogen content resulting from experimental
manipulations of nutrients and/or light. To test the
effect of treatments on growth rates in Ulva pertusa
thalli, we used 2-way ANOVA of mean growth rates of
each specimen (i.e. averaged over the duration of the
experiment). Tukey’s post hoc tests were used for pair-
wise comparisons. Data were tested and conformed to
assumptions of normality and homogeneity of vari-
ance. All values are given as mean ± SE.

RESULTS

Expt 1: Effects of nutrient enrichment and light
regime on δδ13C signatures, tissue N and growth

Ulva pertusa tissue introduced to growth chambers on
Day 0 of the experiment had tissue δ13C signatures of
–15.3 ± 0.4‰, and tissue-N of 1.1 ± 0.1%. Final tissue
δ13C signatures in Ulva were influenced by the com-
bined effects of light and nutrient addition (interaction
term: F1, 8 = 319, p < 0.001) (Fig. 1A). Due to this inter-
action, there was no significant main effect of light treat-
ment on δ13C signatures (F1, 8 = 0.44, p = 0.53), although
specimens supplemented with ammonium had higher
δ13C signatures overall relative to those grown in ambi-
ent seawater (F1, 8 = 1108, p < 0.001) (Fig. 1A). Final tissue
N content of  U. pertusa was elevated for specimens
supplemented with ammonium (F1, 8 = 481, p < 0.001)
and shaded (F1, 8 = 38.4, p < 0.001), and 2-way ANOVA
suggested no interaction between nutrient supplements
and light availability (F1, 8 = 0.34, p = 0.57) (Fig. 1B).

In terms of growth, Ulva pertusa supplemented with
ammonium grew faster than unsupplemented U. pertusa
(F1, 8 = 52.3, p < 0.001) (Fig. 1C). Shading resulted in sig-
nificantly lower growth (F1, 8 = 31.4, p < 0.001) (Fig. 1C),
and a significant interaction term (F1, 8 = 18.2, p = 0.003)
indicates that the magnitude of growth effects attribut-
able to nutrient enrichment was much greater in full sun
relative to shaded treatments (Fig. 1C).

Expt 2: Effects of nitrogen source and light regime
on δδ15N signatures, tissue-N and growth

Ulva pertusa tissue introduced to growth chambers
on Day 0 of the experiment (i.e. at the start of the prein-
cubation phase) had tissue δ15N of 7.8 ± 0.1‰, and tis-
sue N of 0.9 ± 0.1%. At the start of the manipulative
experiment, U. pertusa tissue had acclimatised to arti-
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(A) final tissue δ13C ratio, (B) tissue N content and (C) growth
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cate tissue δ13C and tissue N at the beginning of the experi-
ment. Error bars show SE (n = 3). Bars labelled with the same
lower case letter do not differ significantly (p > 0.05) accord-
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ficial (ammonium chloride or sodium nitrate) δ15N sig-
natures (–5.50 and 3.95‰, respectively). At this point,
the nitrate-supplied U. pertusa had tissue δ15N of 3.2 ±
0.1‰ and tissue-N of 2.7 ± 0.1%. Ammonium-supplied
U. pertusa had tissue δ15N of –6.3 ± 0.9‰ and tissue N
of 3.0 ± 0.3% (Fig. 2A,B). During the experiment, frac-
tionation of nitrogen isotopes during assimilation into
U. pertusa tissue was influenced by the combined ef-
fects of light regime and nutrient form (interaction

term: F1,12 = 46.6, p < 0.001) (Fig. 2A). Fractionation dif-
fered between ambient natural light and shaded light
treatments (F1,12 = 117, p < 0.001), and there was no
main effect of ammonium versus nitrate (F1,12 = 2.23,
p = 0.16), although the significant interaction term
(above) indicates that the effect of light is different for
ammonium and nitrate treatments. The effect of light
reduction on fractionation was greater for ammonium-
supplied thalli than for nitrate-supplied thalli (Fig. 2A).
Final tissue N content did not vary among U. pertusa
treatments that were supplied with ammonium versus
nitrate (F1,12 = 0.03, p = 0.86) (Fig. 2B). Tissue N content
was greater in U. pertusa grown under shaded con-
ditions relative to natural ambient light (F1,12 = 180,
p < 0.001), and there was no significant interaction
between light and nutrient treatments (F1,12 = 0.37,
p = 0.56).

Similarly to the growth rates seen in Expt 1, Ulva
pertusa that was grown under natural ambient light
grew faster than that grown in shaded conditions
(F1,12 = 99.3, p < 0.001; interaction term: F1,12 = 0.02,
p = 0.89) (Fig. 2C). However, there was no difference in
growth rate between nitrate- and ammonium-supplied
U. pertusa (F1,12 = 0.13, p = 0.73) (Fig. 2C). Finally, it
was also noted that the highest growth rates in U. per-
tusa were recorded in Expt 1 (compared to in Expt 2),
and these may have been attributable to higher aver-
age levels of light measured in the first experiment
(1671.4 µE m–2 d–1) compared to those seen in the sec-
ond experiment (1245 µE m–2 d–1).

DISCUSSION

Stable isotope ratios of nitrogen, carbon and several
other elements are now routinely used as tracers of
nutrient sources and pathways, and to infer trophic
relationships in marine ecosystems. Despite the clear
utility and growing application of this approach, there
is a paucity of information on the mechanisms (physio-
logical and/or environmental) that affect the incorpo-
ration of these signals (particularly δ15N ratios) into
macroalgae (however, see Cohen & Fong 2005, Cor-
nelisen et al. 2007). This information is essential for
workers who aim to implement field studies and infer
patterns of nutrient transfer in coastal marine systems
from stable isotope ratios; such studies typically rely
upon predictable transfer of both δ15N and δ13C ratios.

Effects of nutrient enrichment and light regime on
δδ13C signatures

For δ13C ratios, our experiments show that signatures
depend upon light availability, and that these effects
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are further mediated by the concentration of nitrogen
available for uptake. We document a significant range
of variation (11.6‰) in δ13C values from algae grown
for 14 d in controlled conditions. This variation is at-
tributable to an addition of inorganic nitrogen (and
phosphate) and an interaction with light levels. We
note that this range of variation in δ13C values mea-
sured across specimens of Ulva pertusa spans much of
the natural range of δ13C values published for a num-
ber of different species of macroalgae (Raven et al.
2002). In other words, environmental variation (in this
case due to experimentally induced light and nutrient
regimes that were selected based on natural variation
that we observed in field settings; Dudley 2007) was
sufficient to make U. pertusa ‘look’ like any number of
different primary producers. Understanding how the
isotope signatures of primary producers vary across
environmental gradients is therefore likely to be im-
portant to some applications of stable isotopes, e.g.
those that use carbon isotope ratios to infer food
sources of marine consumers (Dunton & Schell 1987,
Dunton et al. 1989, Deegan & Garritt 1997, Wing et al.
2008). The effect of light availability on δ13C values is
likely to be due in part to the amounts of HCO3

– and
CO2 (aq) used to meet the carbon demands of photosyn-
thesis. Fractionation in the equilibrium reaction be-
tween HCO3

– and CO2 in seawater results in δ13C val-
ues of CO2 (aq) being approximately 10‰ lower than
HCO3

– (Zhang et al. 1995). The tissues of those species
of algae that are able to utilise HCO3

– tend to become
enriched in 13C under high light conditions as more en-
ergy is available for the active uptake of HCO3

–

(Kubler & Raven 1995, Cornelisen et al. 2007). Under
conditions of high light and nutrient availability, in-
creasing photosynthetic demand may also reduce ef-
flux of 13C-enriched inorganic carbon from cells, fur-
ther increasing the δ13C values of algal tissue (Sharkey
& Berry 1986, Laws et al. 1997). When U. pertusa were
supplied with sufficient N and P for growth, the differ-
ences in δ13C values between light and shade treat-
ments (3.5‰) were similar to the results of in situ work
by Cornelisen et al. (2007), who showed an increase of
about 3.7‰ in U. pertusa δ13C values in a New Zealand
fjord as irradiance increased from 200 to 2000 µE m–2

d–1. In low nutrient treatments in our study, however,
higher irradiance resulted in lower tissue-δ13C. This ef-
fect has previously been shown in N-limited micro-
algae (Riebesell et al. 2000). The low N:P ratio of ambi-
ent seawater during these experiments (~7.5:1)
suggests that the algae that were not supplemented
with nutrients were N limited rather than P limited
(Atkinson & Smith 1983), and this is consistent with the
commonly held theory that macroalgae in temperate
regions are predominantly limited by the availability of
N (Hanisak 1983, Smith 1984). N limitation is likely to

result in reduced protein synthesis, potentially reduc-
ing the generation of transport proteins for HCO3

– up-
take, and therefore increasing the proportion of carbon
that is taken up as (isotopically lighter) CO2 (aq). Fur-
thermore, N limitation may also reduce the ability of
cells to harvest light (Riebesell et al. 2000), reducing
photosynthetic demand for carbon, and resulting in
lower tissue δ13C values.

Effects of nitrogen source and light regime on δδ15N
signatures, tissue-N and growth

Our results indicate that light dependence of 14N/15N
fractionation for Ulva pertusa may be considerably less
than has frequently been demonstrated for microalgae
(Wada & Hattori 1978, Needoba & Harrison 2004, Nee-
doba et al. 2004). Incorporation of δ15N ratios within
microalgae from aquatic environments is known to
vary, sometimes substantially, both among and within
species (e.g. 1 to 20‰ in Thalassiosira pseudonana;
Waser et al. 1998a,b), and as functions of temperature,
light and nutrient availability and source (Wada & Hat-
tori 1978, Waser et al. 1998a,b, 1999, Needoba et al.
2003, Needoba & Harrison 2004). Consequently,
observed microalgal δ15N values are not necessarily a
simple reflection of δ15N values found in a particular
nitrogen source.

In Expt 2, there was no difference in mean growth
rates between Ulva pertusa supplied with nitrate or
ammonium, within light treatments (Fig. 2C), suggest-
ing that there was no long-term cost of utilisation of ni-
trate, over ammonium, as a sole source of nitrogen.
However, despite there being no difference in growth
of U. pertusa between the 2 nitrogen sources, fraction-
ation of nitrogen sourced from nitrate was lower than
fractionation of N sourced from ammonium. Nitrate-
treated U. pertusa took up 15N in close to the same pro-
portion in ‘shaded’ and ‘ambient light’ treatments de-
spite an 81% difference in light levels sustained over
14 d. The comparatively low fractionation of nitrate-
supplied algae in both shaded and full-light treatments
may indicate that the mechanism of fractionation dur-
ing growth on nitrate that has been suggested for
phytoplankton (Needoba et al. 2004) is less applicable
to macroalgae, or at least to U. pertusa. Notably, the
mechanism suggested by Needoba et al. (2004) relies
on the efflux of 15N-enriched internal pools of unre-
duced nitrate back into the external medium. The ca-
pacity of U. pertusa to store nitrate in unreduced form
(Naldi & Wheeler 1999) may result in low efflux of ni-
trate from U. pertusa tissue even when nitrogen is sup-
plied in excess to growth requirements (likely the case
for shaded nitrate treatments in our study). Because
fractionation is likely to occur as a result of chemical
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processes involved in nitrogen assimilation prior to
protein synthesis (Needoba et al. 2004), it is also proba-
ble that at least some of the fractionation occurring
during growth of U. pertusa on ammonium in low light
conditions is the result of isotope effects during diffu-
sion across the plasma membrane. This fractionation
does not appear to be as great in the active transport of
nitrate across the plasma membrane and its reduction
to ammonium under the same environmental condi-
tions. Fractionation during light-saturated growth in U.
pertusa supplied with ammonium was positive, indi-
cating that there was a either a discrimination against
14N at uptake or that there was a loss of 14N subsequent
to uptake. The former situation seems very unlikely,
since it is generally accepted that discrimination dur-
ing biological or physical uptake processes occurs
against the heavier 15N isotope (Bedard-Haughn et al.
2003). It is possible that in ammonium-supplied U. per-
tusa, the effect of light saturation may have resulted in
small changes in cellular pH and therefore the relative
proportion of NH3 and NH4

+. In theory, in light-satu-
rated U. pertusa a slight increase in pH could have led
to efflux of NH3, which in turn would favour the reten-
tion of 15N resulting in the fractionation observed in
this treatment. This positive discrimination for 15N dur-
ing assimilation of ammonium has previously been
documented in studies conducted on microalgae
(Wada & Hattori 1978, Waser et al. 1998b) and supports
evidence for short-term trends in positive discrimina-
tion for 15N in U. (previously Enteromorpha) intesti-
nalis (Cohen & Fong 2005). Only net fractionation was
measured in this study, and thus no measures of up-
take and efflux are available. Further work is required
to elucidate the relative contribution of physiological
processes to the observed patterns of fractionation for
nitrate and ammonium in this study.

Our results enabled us to attribute variability in
14N/15N fractionation to the form of inorganic nitrogen
(either ammonium or nitrate), light availability and the
interaction between these 2 environmental variables.
We suggest that the fractionation responses we ob-
served in Ulva pertusa in Expt 2 may also be towards
the extremes of the natural range (because in a given
treatment we used only one N source). In situ studies in
natural waters spanning summer and winter (and
hence differences in available light) have shown little
or no seasonal variation in U. pertusa δ15N values
(Cornelisen et al. 2007, Barr 2007). Similarly, in situ
work by Cornelisen et al. (2007) suggests δ15N differ-
ences on the order of 1‰ in U. pertusa growing over a
PAR gradient spanning 200 to 2000 µE m–2 d–1 where
both nitrate and ammonium were almost certainly
available for uptake. This range of light levels was
greater than the difference between our light and
shaded treatments, which gave average values (for

both experiments) of 266 µE m–2 d–1 or 1398 µE m–2 d–1,
respectively (note that these light levels resulted in
either light-limited or light-saturated growth). Frac-
tionation differences in contrasting light conditions in
situ shown by Cornelisen et al. (2007) and Barr (2007)
were closer to the range that we saw in U. pertusa sup-
plied with nitrate (0.8‰) than with ammonium (3.7‰),
and this may reflect the relative dominance of nitrate
in coastal seawater. Ammonium concentrations in
natural seawater typically comprise ~20% of DIN, and
nitrate comprises ~75% (Sharp 1983). Notably, DIN
concentrations in the open coastal sites of Barr (2007)
were lower than the 10 µM used in this study, and pre-
vious research on higher plants, microalgae and bacte-
ria has shown that fractionation increases with N avail-
ability (Wada & Hattori 1978, Hoch et al. 1992, McKee
et al. 2002). It is possible that under conditions where
N availability is low, fractionation may be low and less
prone to change across light gradients. Further long-
term studies using gradients of DIN concentrations are
required to assess the effect of DIN availability on δ15N
values in macroalgae.

The use of a flow-through seawater system in our
study facilitated the healthy growth of Ulva pertusa
over several weeks and allowed constant addition of
nitrogen at ecologically relevant concentrations. This
method does carry the assumption that any natural
seawater nitrogen that was not removed by the algal
scrubber had a negligible influence on δ15N of U. per-
tusa tissue. However, the algal nutrient scrubber
removed most (60%) of the nitrogen present in seawa-
ter (which at Leigh Marine Laboratory typically has a
low DIN concentration around 1 to 2 µM over the sum-
mer). As a corollary, the remaining (unstripped) inor-
ganic nitrogen concentrations were on the order of 0.3
µM and 0.2 µM for ammonium and nitrate, respec-
tively. Therefore, the subsequent addition of 10 µM
nitrogen meant that approximately 95% of nitrogen
available to Ulva was from the synthetic source. Using
a simple 2-end mixing calculation (e.g. Spies et al.
1989), the concentrations of natural seawater mea-
sured (assuming a δ15N value for seawater DIN of 6 to
8‰; Miyaki & Wada 1967, Wada et al. 1975, Sigman et
al. 1997, 2000) could generate differences in δ15N val-
ues of up to 0.24‰ between light and shade ammo-
nium treatments and 0.11‰ for nitrate treatments.

SUMMARY

Our experiments demonstrate systematic variation in
δ15N and δ13C signatures arising from interactions
between light intensity and inorganic nitrogen source.
We conclude that while δ13C in Ulva pertusa may vary
substantially depending on nutrient status and light
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availability, δ15N in U. pertusa more closely reflects the
nitrogen source pool in seawater. We suggest that the
comparatively small range of δ15N values expressed in
Ulva supplied with nitrate (0.8‰), despite contrasting
light levels, indicates that δ15N in U. pertusa might
represent a good proxy for δ15N of DIN in nitrate-
dominated coastal seawater.
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