
Journal of Computer Science 2 (7): 565-571, 2006 
ISSN 1549-3636 
© 2006 Science Publications 

Corresponding Author : Aruna Tiwari, Computer Engineering Department,Shri G. S. Institute of Technology and 
Science (SGSITS), 23, Park Road, Indore 452003 (M.P.) INDIA565 

 
Design of Output Codes for Fast Covering Learning using Basic Decomposition Techniques 

 
Aruna Tiwari1 and  Narendra S. Chaudhari2, 

1Faculty of Computer Engineering Department, Shri G. S. Institute of Technology & Science (SGSITS),  
23, Park Road, Indore 452003 (M.P.) INDIA 

2 Faculty of School of Computer Engineering(SCE), Nanyang Technological University(NTU), 
50,Nanyang Avenue, Nanyang Technological University(NTU), Singapore 639798 SINGAPORE 

 
Abstract: We propose the design of output codes for solving the classification problem in Fast 
Covering Learning Algorithm (FCLA).  For a complex multi-class problem normally the classifiers are 
constructed by combining the outputs of  several binary ones.  In this paper, we use the basic methods 
of decomposition; one per class (OPC) and Error Correcting Output Code (ECOC) with FCLA, binary 
to binary mapping algorithm as a base binary learner.  The methods have been tested on Fisher’s well-
known Iris data set and experimental results show that the classification ability is improved by using 
ECOC method.  
 
Key words: Binary neural network , One per class, Error correcting output code. 
 

 
INTRODUCTION 

 
 In the last two decades, binary neural networks 
(BNNs) have attracted attention of many researchers 
and now there have been many established approaches 
for the construction of BNNs.  They include Boolean 
Like Training Algorithm (BLTA)[3], Improved Expand 
and Truncated Learning (IETL)[8].  In these methods, 
predefined output codes are used for the representation 
of multiple classes.  Using predefined output codes 
makes the problem independent of  the specific 
application and class of hypotheses used to construct 
binary classifiers[9].  Experimental work has shown that 
output coding  can greatly improve various performance 
parameters like generalization, prediction accuracy[1] 
etc.  Several output coding methods have been 
suggested and tested so far, such as comparing each 
class against the rest (One Per Class: OPC), comparing 
all pairs of classes (Pair Wise Coupling: PWC), random 
codes, exhaustive codes, Error Correcting Output 
Codes, Margin Classfiers[1,5,6,7]. 
 In this paper, we extend Fast Covering Learning 
Algorithm (FCLA)[2] for multi-class problem (i.e., K-
classes, where K>2).  Further, this paper addresses the 
design of output codes for a binary to binary mapping 
learning.  In our work, we use two output coding 
schemes One-Per-Class (OPC) and Error Correcting 
Output Code (ECOC).  Output Coding of multi-class 
problems is composed of two stages.  In the training 
stage , we need to construct hidden layer by  
independent K binary classifiers where K is the number 
of classes to be learned.  The output layer is then 
constructed by training of number of neurons as per the 

coding scheme used.  In the second stage, the 
classification part, the applied sample is predicted by 
combining various binary classifiers. OPC separates one 
class from all other classes  and   ECOC consists of 
several dichotomizers with class redundancy to get 
robustness in case some dichotomizers fail[5,6,7].  ECOC 
approach improves the generalization performance[1,5,7].  
These coding schemes are used for output coding for 
the training phase of the neural network.  In the 
reconstruction stage, when new samples come, some 
similarity measure is required to find out the class to 
which it belongs, if the generated string is in binary 
form, the hamming distance criteria is being used for 
deciding the class to which new sample belongs[5,7]. 
 In case of OPC, for the training of output layer, a 
class is separated from the rest of the classes.  
Therefore, at the output layer, a single neuron per 
dichotomizer is taken to collect the outputs from the 
hidden layer neurons of their respective class.  The 
weights and thresholds in the output layer are set to one 
for each of the dichotomizer/neuron. 

In ECOC[1], each class is assigned a unique binary 
string.  We refer to these strings as codewords.  Then 
we train K classifiers at the hidden layer and l number 
of output neurons at the output layer (where l is the 
length of the codeword).  The predicted class is one 
whose codeword is closest to the output generated.  The 
similarity measure is the Hamming distance ; (i.e., the 
number of bits different from the codeword bits). 
 We show that the use of ECOC method for FCLA 
improves the generalization capabilities over the OPC.  
This comparison has been tested by experimenting on 
Iris data set.  Also, utilizing binary to binary mapping 



J. Computer Sci., 2 (7): 565-571, 2005 

 566 

algorithm, convergence problem has been resolved as 
compared to backpropagation algorithm.  Thus training 
time has been reduced.  The use of integer weights and 
thresholds reduces prediction time also, as computations 
have been reduced.  
 In section 2 we discuss the basic concepts for 
extending the FCLA framework.  In section 3 and 4, we 
present the formulae used under training and training 
algorithm of FCLA.  In section 5, the extension of the 
FCLA framework is presented.  Section 6 gives one 
illustrative example and in section 7 performance 
comparison is given, In section 8 we give concluding 
remarks. 
 
 

BASIC CONCEPTS 
 
Let s={x1,x2,….,xm} are the training examples.  The 
proposed learning algorithm learns the classification 
function f(x) that takes these training examples and 
classifies it into one of k-classes: f(x) ∈ {c1, c2,….ck}.  
To learn this classification function, the algorithm 
analyzes a set of training examples {(x1,f(x1)), (x2,f(x2)), 
… , (xm,f(xm))}.  Each training example is a pair 
consisting of a description of an object xi and its correct 
classification, f(xi). 
 
 The FCLA algorithm is designed for solving any 
binary (2-class) classification problems in three layer 
network structure  as shown in fig 1. 
 

 
Fig. 1 : FCLA Three layer network structure 

 
  For each of the k classes, FCLA[2] algorithm can be 
applied separately for the training of hidden layer.  Thus 
for each of the k-classes the FCLA algorithm can be 
applied in parallel in order to find out the hidden layer 
neurons with respect to each and every class.  For 
combining the outputs of the hidden layer neurons, 
FCLA approach can be extended for the training of 
output layer by using either of the two coding schemes: 
OPC or ECOC and three layered network structure is 
formed as depicted in the figure 2. 
 

 
Fig. 2 : FCLA Three layer network structure used for 

multi-class problem 
 

 For deciding the output codes for each of the class, let 
s1,s2,…sk be k distinct binary strings of length L.  The 
length of the string will depend on the type of 
decomposition method used: OPC or ECOC.  We call 
each string Si the codeword for class ci.  Now define L 
hypotheses i.e.  f1,f2,…,fl. 
 
 For OPC, f1,f2,…,fk hypotheses are learned, one 
function fi is defined for each class, such that fi(x)=1 if 
f(x)=ci and zero otherwise.  During learning, a set of 
hypotheses , {f1,f2,…,fk} is learned.  To classify a new 
example, x′, we compute the value of fi(x′) for each i.  
The predicted value of f(x′) is the class ci for which 
fi(x′) is generating 1. 
 
 For ECOC, L hypotheses f1,f2,…,fl for a class ci if  
i=1, then fi=1 for all i=1 to L otherwise there are 
alternating runs of 2k-i zeroes and 2k-i ones. 
 
 During learning, the hidden layer neurons are trained 
using two class learning algorithm to learn each of gj 
function of x1,x2,….,xm examples.  The output layer 
neurons are trained depending on the coding scheme 
used for the classification OPC or ECOC, presented in 
the next section.  The output layer have L hypotheses 
{f1,f2,…,fl}. 
 To classify a new example, x′, we apply each of the 
learned function gj to compute binary string s′=<f( '

1x ), 
f( '

2x ), … , f( '
mx )> .  Then we determine which 

codeword si is nearest to this s′ .  The predicted value of 
f(x′) is the class ci corresponding to the nearest 
codeword (having minimum Hamming distance) si. 

 
 



J. Computer Sci., 2 (7): 565-571, 2005 

 567 

FORMULAE USED: FAST COVERING 
LEARNING ALGORITHM  

 
While constructing the BNN, suppose that {x1, 
x2,…,xv} are v (true) vertices included in one 
hypersphere.  The centre is defined as follows[2]: 

     �
=

=
v

k

k
i

i v
x

c
1

           (1) 

 three radii are defined as follows: 

   ( )
2

1
1

2
1 max�

==
−=

n

i
i

k
i

v

k
cxr     (2) 

      12
1

2
2 += rr            (3) 

     12
2

2
3 += rr            (4)  

formulae for weights and threshold value of a neuron: 
 

     vxw
v

k

k
ij −= �

=1

2         (5) 

      �
==

=
n

i

k
ii

v

k
xwt

1
11 min         (6)                       

       vtt −= 12             (7) 

     vtt 213 −=            (8) 

 
 
TRAINING FOR THE CONSTRUCTION OF  
NETWORK 
 
 For our extension, there are two broad steps involved 
in the construction of network: 
 
A. Training  of hidden layer: The training of hidden 
layer is done  in parallel for each of k classes using 
FCLA[2] as follows: 
  
 Algorithm 1 
 
1. For a given class Ck, take set of true vertices 

(x1,x2…xm), each vertex is   n-bit long represented as 
j

ix , where 1 ≤ j ≤ n. 

2.   For each of the input data- 
For i=1 to m do 
Begin 
         if (i=1) then 
              -add a new neuron with respect to this input 

(xi) therefore evaluate following parameters- 
            -Center C ( using equation (1)) 
         -Radius r1, r2 ,r3 (using equations (2), (3), (4)) 
     -Weights (w1 , w2 ,… wn)   represented as weight 

vector W (using equations (5)) 
-Thresholds(t1,t2,t3) (using equations(6), (7), (8)) 

else 
begin  

                -check this input data(xi) with respect to the 
existing neurons  

                -for each of the pth neuron do the following 
checks 

 
<Cond1> if(Wxi >= t1) then  

                 -this input is already covered by the pth 

neuron so simply exit & take next 
input(match region) 

 
<Cond2> if(t2 <= Wxi <=t1) 

                -input data is within the claim region 
                  -update the parameters of pth neuron by using 

the formulae in section 3 
                    -center C, radius, weights, threshold 
               -exit & take next input 
 

<Cond3> if(t3 > Wxi) 
 -if this condition is true for all the neurons 
then a new neuron is being added. 
 -Evaluating all the parameters center, 
radius, weight & thresholds in section 3 

 
<Cond4> if(t3<=Wxi < t2) 

-the vertex is within the boundary region 
of the neuron, so we first 
-examine whether other available neurons 
can claim it? 
-if it can not be included in any other 
available neuron, we “put aside” for 
reconsideration after other vertices are 
processed. 
-inclusion of other vertices to existing 
neurons results in the expansion of  
“match” & “claim” regions of the neurons; 
other vertices “putaside” may be claimed.  
<Cond1> & <Cond2> is being retested. 

       End else 
End for 1 
3. Modification process: Apply all vertices belonging to 

other classes (say, false vertices) to the hidden layer 
neurons trained for a class.  If the output is zero then 
omit it.  If output is one then we will represent the 
wrongly represented vertices by additional hidden 
neurons by applying step 2. 

4. Repeat steps 2 and 3 for each of the class. 
5. Stop. 
 
 
 
B. Training the output layer 
 
According to FCLA[2], at the output layer a single 
neuron is needed to collect the outputs of all the hidden 
neurons with respect to a two class problem as depicted 



J. Computer Sci., 2 (7): 565-571, 2005 

 568 

in fig.1. Let o
jw  represents the weights from jth hidden 

neuron to the oth output neuron. The total number of 
neurons for a given class are ‘nc’, out of which q 
represents the number of hidden neurons learned true 
vertices with generalization and the remaining 
(q+1,…nc) are the neurons which learned the false 
vertices. The weights and threshold of the output 
neurons are assigned as follows: 
 

  o
jw  ={ qj

ncqj

if

ifq

,...,1

,...,1

1
=

+=−        

 
and threshold of the neuron can be assigned as 
      to = 1          (9) 
 
 

EXTENSION OF  FCLA FRAMEWORK 
 
We now use coding schemes for extending the FCLA 
framework for solving classification problems figure 3.  
We use two coding schemes for the construction of 
output layer : (1) OPC scheme, (2) ECOC scheme. The 
number of neurons required at the output layer depends 
on the coding scheme used.   
 

 
 
 
 
 
A. Construction of hidden layer 
             
For a given K-Class problem {G1,G2,……….Gk}, for 
each & every class, we separately apply FCL[2] 
Algorithm 1.  Thus hidden neurons are evaluated for 
each of the classes.  After this, for collecting the outputs 
of the hidden neurons, we propose the approach in the 
next section. 
  
B. Training Of Output Layer  
 
The outputs generated by the hidden layer are combined 
at the  output layer.  The number of Output neurons are 
decided on the basis of the coding scheme used OPC or 
ECOC. As stated earlier, in OPC , the number of 

neurons are equal to the number of classes i.e. K.  In 
ECOC, the number of neurons are 2k-1-1. Thresholds of 
the output neurons are set to 1 in both the schemes.  
Further weight setting is done as follows: 
 
1. OPC: Weight values for the ith class from jth neuron 
of hidden layer to the qth neuron of output layer is 
decided as follows: 
 1=

jqiw   if   i=q; 

          0=              otherwise 
2. ECOC: Weight setting is done using following 
algorithm: 
 
Algorithm 2 
 
1. For each of the ith class 
2. For each of the jth hidden layer neuron with respect to 
this class 
3. Make the following assignment :   

current_op_neuron=1 
4. For each of the qth output layer neuron 
5. For the current_op_neuron to the 

(current_op_neuron+2k-i-1) 
Assign weight value: 0=

jqiw  

6. For subsequent output neuron to the 
(current_op_neuron+2k-i-1) 
Assign weight value: 1=

jqiw  

7. Repeat the steps 5 to 6 for each of the output neuron. 
8. Repeat the steps 3 to 7 for each of the hidden neuron. 
9. Repeat the steps 2 to 8 for each of the class. 
 
 

ILLUSTRATIVE EXAMPLE 
 
We illustrate the proposed approach with an example 
mentioned below: 
Approximation of the following regions mentioned  as 
A, B, C, D, E in the figure can be done by 6*6 grid. 
Table 1 gives the approximation of these regions 
through 6-bit binary values. 

 

Fig. 4: Approximation of regions 
   
  
 

Fig. 3: Partial network showing the use of 
coding schemes for training the output layer 



J. Computer Sci., 2 (7): 565-571, 2005 

 569 

Table 1:Data sets  with respect to the approximated regions. 
 
 
 
 
 
 
 
 
 
 
 

 
Applying Algorithm 1 of section 2, the results of the construction of hidden layer is as follows: 
 
Table 2 : Hidden layer solution

 
Output layer weights for two methods: 
 
Table 3 : Ouput layer weights  and thresholds using  OPC (One Per Class). 
Hidden layer Neuron/output layer neurons  f1 f2 f3 f4 f5 Thresholds Regions/ 

classes 
1 
2 

1 
1 

0 
0 

0 
0 

0 
0 

0 
0 

1 
1 
 

 
A 

1 
2 
3 

0 
0 
0 

1 
1 
1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 
 

 
B 

1 
2 

0 
0 

0 
0 

1 
1 
 

0 
0 

0 
0 

1 
1 

 
C 
 

1 0 0 0 1 0 1 D 
1 0 0 0 0 1 1 E 

 

Intput datas Region/Classes 
{000100, 000101, 001101, 000011, 001100, 
010101} 

A 

{100101, 101101, 101100, 011101, 100100, 
101011} 

B 

{100000,101000, 101001, 011000, 100001, 
101010} 

C 

{000000, 001000, 000001, 000010, 001001, 
010000} 

D 

{010010, 010011, 011010, 011011} E 

Inputs Neuro
ns 

W1 W2 W3 W4 W5 W6 t1 t2 t3 Region/ 
classes 

{000100, 
000101,001101,000011, 
001100, 010101} 
 

1 
2 

-5 
-1 

-3 
-1 

-1 
-1 

5 
-1 

-5 
1 

1 
1 

3 
2 

-2 
1 

-7 
0 

 
A 

{100101,101101, 
101100,011101, 100100, 
101011} 

1 
2 
3 

4 
-1 
1 

-4 
1 
-1 

0 
1 
1 

4 
1 
-1 

-4 
-1 
1 

0 
1 
1 

8 
4 
4 

4 
3 
3 

0 
2 
2 
 

 
B 

{100000,101000, 
101001,011000, 100001, 
101010} 

1 
2 

5 
-1 

-5 
1 

1 
1 

-5 
-1 

-3 
-1 

-1 
-1 

3 
2 
 

-2 
1 

-7 
0 

 
C 

{000000,001000, 
000001,000010, 001001, 
010000} 

 
1 

 
-6 

 
-4 

 
-2 

 
-6 

 
-4 

 
-2 

 
-4 

 
-10 

 
-16 
 

 
D 

{010010,010011,011010,01101
1} 

1 
 

-4 4 0 -4 4 0 8  4 0 E 



J. Computer Sci., 2 (7): 565-571, 2005 

 570 

Table 4: output layer weights using  ECOC (Error Correcting Output Code). 

Hidden layer 
Neuron/output 
layer neuron  

 
f1 

 
f2 

 
f3 

 
f4 

 
f5 

 
f6 

 
f7 

 
f8 

 
f9 

 
f10 

 
f11 

 
f12 

 
f13 

 
f14 

 
f15 

regions
OR 
classes 

1 
2 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 
 

 
A 

1 
2 
3 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 
 

 
B 

1 
2 

0 
0 

0 
0 

0 
0 
 

0 
0 

1 
1 

1 
1 

1 
1 

1 
1 

0 
0 

0 
0 

0 
0 

0 
0 

1 
1 

1 
1 

1 
1 

C 

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 D 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 E 
 
Next, tables 3 and 4 are depicted through the figures.  
As discussed in section 2, figure 2, three layered 
network structure is formed : input layer, hidden layer 
and output layer.  Input layer doesn’t contain any 
processing element, these are just nodes for providing 
inputs to the hidden layer.  Hidden and output layers 
contains the neurons.  With respect to table 3, network 
structure formed is depicted in figure 4.  Network 
structure for Table 4 is shown in figure 5. 
 
 

 
Fig. 4: Example Solution using OPC scheme 

 
We make use of the Fisher’s Iris data set for comparing 
the performance of the coding schemes used OPC and 
ECOC for the designing of classifiers in FCLA.  
Fisher’s Iris Data Set contains 150 patterns for 
representing three classes[10].  There are 50 patterns of 
each class.  There are four properties on the basis of 
combination of these properties, the classification have 
been done.  For applying the inputs to the network the 
each of the four properties of the original pattern have 
been represented by 7-bit binary equivalent.  Thus the 

 
Fig. 5: Example Solution using ECOC scheme 

 
 

PERFORMANCE COMPARISION 
 

input contains total of 28-bits. Hidden layer neurons 
have been found out by using FCLA approach.  Total of 
32 neurons are required in the  hidden layer.  For 
Setosa : 17 neurons are needed. For Versicolor:  9 
neurons and for Virginica: 6 neurons are needed. The 
number of output neurons are 3 for both the coding 
schemes used OPC or ECOC.  The weights and 
thresholds of the output layer neurons are given in the 
tables 5 and 6 as follows : 
 
Table 5 : Output layer neurons when using OPC scheme 

Classes/neurons f1 f2 f3 Threshold 
(1) Setosa 1 0 0 1 
(2)Versicolor 0 1 0 1 
(3) Virginica 0 0 1 1 

 



J. Computer Sci., 2 (7): 565-571, 2005 

 571 

Table 6 : Output layer neurons when using ECOC 
scheme 

Classes/neurons f1 f2 f3 Threshold 
(1) Setosa 1 1 1 1 
(2) Versicolor 0 0 1 1 
(3) Virginica 0 1 0 1 

 
 For testing over these pattern, we split each of the 50 
patterns for each of the class 40/10 (train/test) data.  
Testing results show that ECOC performs better in 
terms of classification accuracy.  For Setosa and 
Versicolor , ECOC is gives 100% accuracy(i.e. 
classifying all the 10 samples properly).  For Virginica, 
80% accuracy is achieved with ECOC.  Using OPC 
with the same case, results are not satisfactory. 

 
CONCLUSION 

 
 In this paper, we extend FCLA[2] method for multi-
class problems by designing classifiers using coding 
schemes. The hidden layer trained is in modular form.  
Thus modules in the hidden layer corresponding to each 
class can be trained independently[4] in parallel, thus 
reduces training time. For output layer training, the 
paper has examined the use of Error correcting coding 
and One Per Class coding scheme for binary to binary 
mapping learning algorithm.  The performance of the 
method has been compared on the Fisher’s well-known 
Iris dataset.  The results shows that ECOC gives more 
classification accuracy as compared to OPC. 

 
 

REFERENCES 
 
1. Thomas G. Dietterich, Ghulum. Bakiri,1995. 

Solving Multiclass Learning Problems via Error-
Correcting Output Codes : Journal of Artificial 
Intelligence Research, Vol. 2 : 263-286. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Di Wang and Narendra S. Chaudhari, 2004. An 
Approach for Construction of Boolean Neural 
Networks Based on Geometrical Expansion : 
Neurocomputing,  vol. 57, pp :455-461. 

3.  Donald L. Gray and Anthony N. Michel, 1992.  A 
training algorithm for binary feedforward neural  
networks. IEEE Trans : Neural Networks, Vol. 3, 
No. 2, IEEE, USA, pp :176-194. 

4. Rangachari Anand, Kishan Mehrotra, Chilukuri K. 
Mohan and Sanjay Ranka, 1995. Efficient 
Classification of multiclass problem using Modular 
Neural Network : IEEE transactions on Neural 
Networks, vol.6, pp : 117-124. 

5. Francesco Masulli., Giorgio Valentini, 2000. 
Comparing Decomposition Methods for 
Classification : Proc. Of International Conference 
on Knowledge-based Intelligent Engineering 
Systems & Allied Technologies, Vol. 2 : 788-791. 

6. Erin L. Allwein, Robert E. Schapire, Yoram Singer, 
2000. Reducing Multiclass to Binary: A Unifying 
Approach for Margin Classifiers : Proc. Of 
International Conference on Machine Learning , pp : 9-16. 

7. Francesco Masulli, Giorgio Valentini, 2000. 
Effectiveness of error-correcting output codes in 
multiclass learning problems : In Proc. Of MCS 
(2000), First International Workshop on Multiple 
Classifier Systems, Cagliari, Italy. 

8.  Atsushi Yamamoto, Toshimichi Saito, 1997. An 
improved Expand-and-Truncate Learning : Proc. 
Of IEEE International    Conference on Neural 
Networks (ICNN), Vol. 2,  pp : 1111-1116. 

9. Koby Crammer, Yoram Singer, 2000. On the 
learnability and design of output codes for 
multiclass problems :In proceedings of Thirteenth 
Annual Conference on Computational Learning 
Theory, pp : 35-46. 

10. Kishan Mehrotra, Chilukuri K. Mohan and Sanjay 
Ranka, 1997. Elements of Artificial  Neural 
Networks : Cambridge,   MA:MIT Press. 

 
 
 
 


