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TUMOR IMMUNOLOGY IN HEAD AND NECK CANCERS
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Abstract

Cancer immunotherapy is one of the new prospective treat-

ments for head and neck squamous cell carcinoma (HNSCC).

This strategy can effectively induce anti-tumor effects. How-

ever, despite surveillance by the host immune system, tumor

cells can develop and acquire malignant phenotypes, for

example, invasion into stromal tissue, and metastasis to

lymph nodes and distant organs. Tumors with oncogenic

mutations and cellular heterogeneity actively suppress the

host immune system with assistance from the tumor micro-

environment, including regulatory T cells, myeloid-derived

suppressor cells, and type II macrophages, leading to im-

munoediting and immunosuppression of the anti-tumor

response in vivo. Accumulating evidence, obtained through

the use of advanced immunological technology, has eluci-

dated the interaction between tumor cells and the host

immune system. Greater understanding of this interaction

has given rise to new therapeutic interventions, including

cancer immunotherapy. In this review, we compile recent

findings from experimental and clinical studies of cancer

immunotherapy and discuss whether cancer immunotherapy

has been determined to be beneficial in HNSCC patients.

Cancer immunotherapy, such as cancer vaccine, dendritic cell

immunotherapy, and blockade of immune checkpoints, also

plays a crucial role in treatments that have contributed to

improving overall survival in HNSCC patients. Moreover,

due to the direct improvement of tumor- or tumor micro-

environment�mediated immunosuppression in HNSCC, can-

cer immunotherapy in combination with targeted therapy

appears to be an effective and efficient therapeutic strategy.

Keywords: immunosurveillance; immunosuppression; tumor

microenvironment; cancer vaccine; dendritic cell; immune checkpoints;

chimeric antigen receptor therapy; targeted therapy

In Context

The advanced genetic and immunological technologies have

provided fresh insights into molecular mechanisms of tumor

progression in head and neck squamous cell carcinoma

(HNSCC). Sufficient effector T cell activation induces

effective antitumor immune response in cancer patients.

However, recent researches have shown that immune check-

points and tumor microenvironment in which regulatory T

cell and myeloid-derived suppressor cells exist repress

antitumor immune response. The knowledge of cancer

biology and immunology helps to develop a therapeutic

theory that cancer immunotherapy induces an antitumor

immune response by modulating the host immune system. In

addition, identification of these immunosuppressive func-

tions has promoted the development of the next generation

of cancer immunotherapy. In this review, we summarized

data from experimental models and clinical trials associated

with cancer immunotherapy in several types of cancer. These

data indicated that cancer immunotherapy is capable of

enhancing the anti-tumor immune response in patient.

Moreover, we also discussed and explored the possibility of

innovative cancer immunotherapy in HNSCC. This ther-

apeutic approach may help us to improve survival rate in

patients with HNSCC.

*Correspondence to: Keisuke Masuyama, Department of Otolaryngology, Head and Neck Surgery, Interdisciplinary Graduate

School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-city, 409-3898 Yamanashi, Japan,

Email: mkeisuke@yamanashi.ac.jp

H
ead and neck squamous cell carcinoma (HNSCC)

is the sixth most common cancer in the world.

Standard treatments for HNSCC, such as sur-

gery, chemotherapy, and radiotherapy, have exhibited a

high degree of therapeutic effectiveness and safety (1, 2).

However, HNSCC is often diagnosed at an advanced
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stage with a poor prognosis. Therefore, breakthrough ther-

apeutic interventions are urgently needed.

Taking advantage of identifying immunogenic tumor

antigens (TAs) and TA-specific cytotoxic T lymphocytes

(CTL) in cancer patients, a number of researchers and cli-

nicians have recently focused on translational and clinical

researches of cancer immunotherapy. Novel findings from

these researches have elucidated a complex link between

tumor cells and the host immune system at the molecular

and cellular levels (3). Immunotherapeutic interventions,

such as cancer vaccines, dendritic cell (DC) therapy,

immune checkpoint blockade with monoclonal antibodies

(mAbs), adoptive T-cell therapy, and chimeric antigen

receptor (CAR) therapy, are currently being utilized in

treating several types of cancers. In particular, cancer

vaccines have contributed to the improvement of clinical

benefits (4). However, advanced tumors and the tumor

microenvironment induce immunosuppression in vivo and

attenuate the anti-tumor effects of cancer immunotherapy

(5�7). Thus, cancer immunotherapy and therapeutic

targets associated with eliciting immunosuppression in

vivo may be valuable for the treatment of HNSCC patients.

Here, we summarize several lines of translational

evidences regarding cancer immunotherapy and describe

its beneficial impacts on prognosis in HNSCC patients.

Cancer immunosurveillance
Cancer is caused by multi-stage accumulation of genetic

instability and epigenetic alterations, often leading to loss

of normal cellular regulatory systems and acquisition of

malignant phenotypes (8). Recent studies using advanced

genetic technology have revealed a number of tumor-

specific products encoded by mutated or oncogenic genes

(9). Tumor-specific products, such as cancer�testis anti-

gens (CTAs), differentiation antigens, mutated proteins,

overexpressed antigens, oncofetal antigens, and viral

proteins, are collectively referred to as TAs. TAs can be

further classified as tumor-associated antigens (TAAs) and

tumor-specific antigens (TSAs): TAAs are expressed on

both normal and tumor cells, whereas TSAs are expressed

only in tumor cells. The first human TSAwas discovered in

1991 (10). TAs were discovered in several types of cancer,

including HNSCC, and play an important role in direct or

indirect regulation of tumor development, invasion, and

metastasis (11).

According to the theory of cancer immunosurveillance,

tumor cells with oncogenic mutations are actively elimi-

nated by TA-dependent and -independent host immune

responses (Fig. 1), thereby inhibiting tumor development

and progression (12�14). Elimination process includes

innate and adaptive immune responses to tumor cells

(13). Innate immune cells, such as natural killer (NK),

NKT, gdT cells, are initially activated by inflammatory

cytokines (e.g., TNF-a, IL-1, IL-10) that are released by

the tumor cells, macrophages, and stromal cells (13). These

component cells are recruited into tumor tissue to exert

cytotoxic effects against cancer cells via the perforin�
granzyme B system or apoptosis involving Fas/FasL or

TRAIL/death receptor (DR)-4 or DR-5 (13, 15). This

process is a TA-independent anti-tumor immune response.

Under attack by innate immune cells, many TAs are

released from dying tumor cells and captured by antigen

presenting cells (APCs) such as macrophages and DCs

(16, 17). After processing TAs, APCs load TA-derived

peptides on major histocompatibility complex (MHC)

class I or MHC class II; the loaded MHCs then prime

and activate effector T cells (i.e., CTLs or helper T cells)

in lymph nodes (18, 19). Moreover, APCs express B7

(CD80/CD86) co-stimulatory molecules to modulate the

activity of CD4� and CD8� T cells (20). These molecules

bind to CD28 that produces co-stimulatory signal, or to

Fig. 1. Schematic illustration of immune surveillance. Acquisition of genetic instability and epigenetic alterations to drive oncogenic

signals promotes tumor growth. However, anti-tumor effects induced by TAA-dependent and TAA-independent immune responses

eliminate tumor cells.
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CTLA4 that produces co-inhibitory signal. Thus, role of

B7 co-stimulatory molecules is context dependent (20).

Activated T cells actively circulate in the blood and traffic

to tumor sites. Especially, CTLs recognize cancer cells

with targeted TA through interactions between T-cell

receptor (TCR) and MHC class I, and then eliminate the

targeted cells by triggering anti-tumor effects. Thus, the

TA-dependent anti-tumor immune response causes re-

lease of additional TAs. These sequential processes are

regarded as the cancer immunity cycle (3). Moreover,

information about TAs is simultaneously memorized by

adaptive B or T cell immunity (3, 21).

Immunosuppression
Regardless of whether it engages cancer immunosurveil-

lance in a patient, a tumor matures and expands to

deeper stromal tissues and distant organs. The process by

which the tumor evades immune surveillance is known as

immunoescape. This immune resistance is caused by

attenuation of tumor immunogenicity, downregulation

of human leukocyte antigen (HLA) class I on tumor cells,

and secretion of inhibitory cytokines that repress the host

immune system (13).

First, tumor immunogenicity depends on various

phenotypic and functional cell populations within the

same tumor. In particular, tumor immunogenicity is

definitively affected by antigenicity and immunomodula-

tory factors derived from host immune-component cells

or tumor cells. CTLs can recognize and eliminate tumor

cells with strong immunogenic TA (18). However, tumor

cells that have lost immunogenic TAs are less sensitive to

immune attack by CTLs. In addition, HLA class I on

tumor cells is down-regulated in order to allow the tumor

to escape from immunosurveillance (22, 23). Thus, tumor

cells can acquire immune resistance in spite of immune

surveillance.

Next, tumor cells that have accumulated driver muta-

tions, which are characterized by constitutive activation of

mitogen-activating protein kinase (MAPK), signal trans-

ducer and activator of transcription 3 (STAT3), and the

b-catenin/Wnt-signaling pathway, promote secretion of

immunosuppressive cytokines such as transforming

growth factor b (TGF-b), vascular endothelial growth

factor (VEGF), IL-6, and IL-10. Immunosuppressive

cytokines directly repress NK cells and CTLs (24). Recent

work has revealed that HNSCC also exhibits heterogeneity

and immunosuppressive functions that allow it to evade

the anti-tumor immune response (25, 26). In addition,

mutated tumor cells in HNSCC express immunosuppres-

sive molecules such as programmed death-ligand 1 (PD-

L1), indoleaminepyrrole-2,3-dioxygenase (IDO), and

tryptophan-2,3-dioxygenase (TDO) to repress both the

innate and adaptive immune systems (27�29). Immuno-

suppressive cytokines secreted from tumor cells also

attract cellular components associated with immune

suppression: regulatory T cell (Treg), myeloid-derived

suppressor cells (MDSCs), regulatory DCs, and type II

macrophages (M2s) (30�33).

Tregs play important roles in immunosuppression

in vivo. In several types of cancer, including HNSCC, Tregs

have been demonstrated to promote immunoescape by

tumor cells from the innate and adaptive immune re-

sponses by producing immunosuppressive cytokines such

as TGF-b, IL10, and IL-35 (34, 35). In addition, Tregs

further inhibit differentiation and priming functions

of DCs, leading to downregulation of anti-tumor T cell

response. Taken together, these data indicate that Tregs are

pivotal immune suppressors in HNSCC (36).

The roles of MDSCs are characterized by a high

arginase activity (which inhibits the T-cell response),

production of immunosuppressive cytokines (TGF-b,

IL-10), induction of CD4�CD25�FOXP3� Tregs, and

upregulation of nitrogen oxide (NO) and reactive oxygen

species (ROS) (37�44). In HNSCC patients, there are

several populations of MDSCs (45�48). Among them,

CD14�HLA-DR� MDSCs infiltrates head and neck

tumor tissue and down-regulates T-cell proliferation and

interferon-gamma [(IFN)-g] secretion (48). Moreover,

some immunomodulatory factors (i.e., CD86 and PD-

L1) are highly expressed in CD14�HLA-DR� MDSCs

relative to CD14�HLA-DR� MDSCs in HNSCC (48).

Similar to Tregs, MDSCs also have the important ability to

suppress both the innate and adaptive immune systems in

HNSCC.

M2s are an immunosuppressive population character-

ized by expression of CD68 and CD163 (49). M2s that

infiltrate tumors, so-called tumor-associated macrophages

(TAMs), secrete high levels of immunosuppressive cyto-

kines (49). Recent work has shown that TAMs contribute

to tumor invasion and poor prognosis (50). In addition,

regulatory DCs are found in certain tumors (33). These

DCs induce immunosuppression via some mechanisms:

defective antigen presentation, secretion of immunosup-

pressive enzymes (IDO and L-arginase) and cytokines

(IL-10 and TGF-b), negative co-stimulation via CD86-

PD-L1, and induction of Tregs (33).

Taken together, these observations indicate that the

immunosuppressive mechanism is very complex, and im-

munosuppression in HNSCC patients should be improved

to enhance anti-tumor effect by cancer immunotherapy.

Roles of tumor microenvironment
The tumor microenvironment, which consists of several

types of cellular and stromal components, is functionally

interposed between tumor cells and the host immune

system. In the tumor microenvironment, tumor cells

primarily act to promote the formulation of vasculature

via cellular signaling pathways (24). In HNSCC, angio-

genesis and lymphangiogenesis are essential for supplying

oxygen and nutrients into the tumor tissue, resulting in
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growth in tumor volume. Several factors, including VEGF,

platelet-derived growth factor (PDGF), and matrix me-

talloproteinase (MMPs), regulate both angiogenesis and

lymphangiogenesis. Furthermore, the tumor microenvir-

onment directly or indirectly suppresses the anti-tumor

T-cell response through the immunosuppressive functions

of tumor cells, stromal cells, and immune component cells

derived from myeloid and lymphoid tissues (31) (Fig. 2).

First, tumor cells effectively inhibit the crucial functions

of DCs, which are regarded as key components in the

initiation of the TA-specific T-cell response (51, 52).

CD47, a transmembrane protein expressed on epithelial

tumors, is a negative regulator of DCs. This molecule

binds to signal regulatory protein (SIRP)-a on DCs and

directly represses DC phagocytosis, maturation, and

production of INF-g (53, 54). Moreover, IL-6 in tumor

tissue, which is an inflammatory cytokine, can prevent DC

maturation and priming of tumor-specific T cell via

STAT3 signaling (55). Tumor cells further produce thymic

stromal lymphopoietin (TSLP) to increase the expression of

OX40 on DCs (56, 57). TSLP-mediated OX40 upregulation

generates Th2 cells, which inhibit tumor cell apoptosis and

promote tumor progression (57).

Several chemokines recruit immune suppressors such

as Tregs, MDSCs, and M2s into the tumor microenvir-

onment. These immunosuppressive cells also produce

additional immunosuppressive cytokines to attract other

immune-component cells: regulatory DCs, type II NKT

cells, and suppressive gdT cells via STAT3 (24).

Recent reports have shown that cancer-associated

fibroblasts (CAFs) are important non-immunocompetent

cells in the tumor microenvironment. CAFs produce not

only extracellular matrix (ECM) and growth factors that

facilitate tumor development and initiation of invasion,

but also immune suppression in vivo (58, 59). CAFs

expressed fibroblast activation protein-a (FAP-a), which

down-regulates the T-cell response via CXCL12, the

ligand of CXCR4 (60). Taken together, these observations

indicate that the anti-tumor response induced by TA-

specific CD8� T cells is suppressed by negative immuno-

logical regulation of the tumor microenvironment.

Immunomodulation by conventional cytotoxic
therapy
Both conventional chemotherapy and radiotherapy di-

rectly kill tumor cells by interfering with DNA synthesis

and replication. It has been reported that these thera-

peutic modalities also eliminate subsets of immune cells

and strongly inhibit anti-tumor immune response in vivo

(61). However, these conventional therapies are identified

Fig. 2. The tumor microenvironment plays a suppressive role in the anti-tumor immune response. Regulatory T (Treg) cells, myeloid-

derived suppressor cells (MDSCs), regulatory dendritic cells (DCs), and type II macrophages are categorized as immunosuppressive cell

types in the tumor microenvironment. Moreover, via immune checkpoints, tumor and stromal cells exert potent immunosuppressive

effects against the anti-tumor immune response.
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as immunomodulators and can activate anti-tumor im-

mune responses (62).

Cisplatin (CDDP), which is one of the cytotoxic drug

most commonly used to treat HNSCC and causes cross-

linking of DNA followed by inhibiting mitosis, especially

has important anti-tumor immunomodulatory effects.

These effects are induced by four distinguishing mechan-

isms, for example, upregulation of MHC class I, recruit-

ment and proliferation of effector Tcells and macrophages,

enhancement of lytic activity in cytotoxic effector cells, and

downregulation of MDSCs and Tregs (63). 5-FU is a

thymidylate synthase inhibitor to decrease the biosynthesis

of pyrimidine nucleotides. It has been reported that 5-FU

increases IFN-g production by tumor specific-CD8� T

cells infiltrating tumor tissue (64). Intriguingly, neoadju-

vant chemotherapy with CDDP and 5-FU increases the

intra-tumoral trafficking of CD4� and CD8� T cells in

both mouse models and patients with esophageal squa-

mous cell carcinoma (65, 66). Paclitaxel is categorized as

the taxane family and induces disruption of microtubule

function. Paclitaxel up-regulate mannose-6-phosphate

receptors on the surface of tumor cell and render them

permeable to granzyme B. Moreover, these drug can

induce the activation of DCs, NK cells, and tumor specific

CTL via producing IL-12 and TNF-a, resulting in

enhancement of anti-tumor immune response (67).

Similar to chemotherapy, radiotherapy has been used

for HNSCC treatment. Recently, radiotherapy induces

anti-tumor immune responses to inhibit tumor growth and

to eliminate tumor cells. Radiotherapy increases type I

IFNs that up-regulate the level of CXCR3 chemokine

within the tumor. Moreover, type I IFNs directly enhance

activation of CD8� T cell, results in induction of anti-

tumor immune response (68). In contrast, chemora-

diotherapy decreases the frequency of circulating CD4�

T cells but increases that of CD4�CD39� Treg in HNSCC

patients (69). These data indicate that CRT-induced

suppressive Treg may inhibit anti-tumor immune respon-

ses and promote recurrence in HNSCC. Taken together,

strong foundation is needed to establish the best way to

combine conventional therapy and immunotherapy.

Cancer vaccine
Cancer vaccines have the ability to exert anti-tumor

effects, mediated by TA-specific CTLs, in cancer patients;

this approach is considered to represent an attractive

treatment for several types of cancers (4). To define the

efficacy and safety of cancer vaccines, several clinical trials

have been performed over the last decade; these studies

have demonstrated both clinical efficacy and benefits for

cancer patients (70�73). Although sipuleucel-T was ini-

tially approved as the immunotherapy for metastatic

hormone-refractory prostate cancer patients in 2010

(70), little evidence exists that demonstrates the clinical

benefits of cancer vaccine therapy in HNSCC.

TA-derived peptides are generally synthesized to bind

onto MHC. After TA-specific CD8� T cells are elicited by

HLA-restricted peptide vaccine, these cells can recognize

peptide-MHC class I complex on tumor cells and kill them

(71). Identification of highly immunogenic TAs and

induction of TA-specific CTLs in cancer patients are

important for achieving definite therapeutic effects. In

particular, TAs (e.g., MAGE-A3, and MAGE-C1/CT7)

that have not only high immunogenicity but also function

to promote the survival of tumor cell, should be used

preferentially for cancer vaccine therapy in the clinic (4, 74).

Moreover, because multi-antigen vaccines can overcome

tumor heterogeneity, vaccines based on multiple TAs are

more effective at inducing CTL responses in several types

of cancers than vaccines based on single TAs (75, 76).

Thus, immunotherapy with cancer vaccines based on

multiple peptides represents an efficient therapeutic inter-

vention that will lead to anti-tumor effects.

A phase II trial of multiple peptide-based vaccine

therapy for advanced HNSCC targeted three TAs: lym-

phocyte antigen 6 complex locus K (LY6K), CDCA1, and

insulin-like growth factor II mRNA-binding protein 3

(IMP3). The vaccine improved overall survival in HLA-

A*24: 02 (�) patients to a greater extent than in HLA-

A*24: 02 (�) patients (77).

Some studies have demonstrated that stimulation of

MHC class II�mediated CD4� T-cell responses helps to

develop and maintain the anti-tumor effects of antigen-

specific CD8� T cells in mice (78, 79). In cancer patients,

immunotherapy with Trojan peptide-based vaccine in-

duces not only MHC class I-restricted T-cell responses but

also MHC class II-restricted T-cell responses (80). This

vaccine is characterized by a large peptide composed of

four components: MHC class I and II epitopes, HIV-1-

TAT, and furin-sensitive linkers. HIV-1-TAT delivers this

long peptide into APC and forms targeted peptide-MHC

complexes. Melanoma antigen 3 (MAGE-A3) and human

papilloma virus (HPV)-16 Trojan peptide�based vaccines

were first evaluated in a phase I clinical trial of HNSCC

patients (80). However, despite vaccine-induced T cell

responses to the HLA-II epitope in a limited number of

patients with advanced HNSCC, no Trojan-specific IgG

was detected. Thus, further studies will be needed to

consider cancer vaccine as a standard therapy in HNSCC.

DC therapy
DCs play important roles in the initiation of TA-specific T

cell responses in tumors. DCs are derived from bone

marrow and reside in all tissues (81). Immature DCs

capture exogenous TAs and migrate toward lymph nodes.

Captured TAs are processed into peptides and are

generally loaded onto MHC class II. DCs have the unique

ability to present captured exogenous TAs on MHC class

I molecules, a phenomenon known as cross-presentation.

Due to cross-presentation of DCs, both naı̈ve CD4� and
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CD8� T cells are simultaneously activated and differen-

tiated into TA-specific effector T cells by mature DCs in

lymph nodes (82). Moreover, DCs have co-stimulatory

molecules, such as CD40, CD80, and CD86. These fac-

tors contribute to activation of DCs and enhancement of

TAs-specific T-cell responses. DC infiltration into tumor

tissue is highly and significantly correlated with prolonga-

tion of survival time and repression of metastasis in

patients with HNSCC (83). Therefore, DCs play impor-

tant roles in eliciting tumor-specific CD4� and CD8� T

cell-mediated antitumor immune responses, and could be

applied to cancer immunotherapy for several types of

cancer, including HNSCC.

Several therapeutic approaches using DCs have been

developed and established as safe interventions (84, 85).

For example, cancer vaccines using cytokine-driven DCs

generated ex vivo have been used in cancer patients. DCs

are generated ex vivo by culturing monocytes with cytokine

combination such as IL-4 and granulocyte macrophage

colony stimulating factor (GM-CSF), and these cells are

then cultured with TSA-derived peptide for presentation

on MHC class I and II. After maturation of DCs ex vivo,

intra-, peri-tumoral, or intra-vascular administration is

performed to induce cytotoxic effector and helper T cells.

In HNSCC, Ferris and co-workers have demonstrated that

DC-based wild-type p53 peptide vaccines effectively elicit

anti-tumor immune responses and suppress tumor growth

(86, 87).

Although DC-based vaccines can theoretically induce

anti-tumor immune responses by effector T cells in

patients with HNSCC, and they have been identified as

potentially safe immunotherapeutic intervention, it re-

mains unclear whether cancer vaccines are effective and

contribute to sufficient clinical benefits, such as improve-

ment of overall survival and prevention of tumor relapse

or metastasis.

Immune checkpoint blockade
The anti-tumor T-cell response is influenced by a balance

between co-stimulatory and inhibitory signals; certain

aspects of immune-inhibitory pathways are also called

immune checkpoints (88, 89). Immune checkpoints med-

iate not only immune tolerance in normal tissue, but also

immunosuppression in tumor tissue. Basic immunological

studies have shown that some receptors and ligands

related to immune checkpoints are expressed in inflam-

matory environments in vivo (89, 90). In several types of

cancer, immunosuppression is mainly elicited by cytotoxic

T-lymphocyte-associated antigen-4 (CTLA-4) and pro-

grammed death-1 (PD-1). Both receptors are expressed on

the surface of T cells (91, 92).

CTLA-4, which is expressed on the surface of Tcells and

has an extracellular domain similar to that of CD28 that

activates T cell and promotes proliferation, combines with

the CD80 (B7.1) and CD86 (B7.2) ligands and attenuates

immune responses by transmitting an inhibitory signal to

T cell (93, 94). Moreover, the CD8� effector T-cell acti-

vation by CD28 signaling leads to upregulation of CTLA4

expression. Thus, CTLA4 is recognized as a nega-

tive-feedback regulator in the process of T-cell activation

(95). Furthermore, CTLA4 inhibits CD4� helper T cell�
dependent immune responses (96�98). Therefore, CTLA4

seems to be a key factor in escape from the anti-tumor

T-cell response.

PD-1, a receptor of the CD28 family, interacts with PD-

L1 and PD-L2 ligands (99, 100). PD-1 is highly expressed

in activated T cells, NK cells, and APCs, and plays an

important role in suppression of T-cell activation induced

by recognition of TAAs loaded on MHC class I (101). This

suppressive function of PD-1 is associated with T-cell

exhaustion in inflammatory environments and the tumor

microenvironment, where T cells are continuously exposed

to multiple types of antigens (93). Thus, the expression of

PD-1 is considered as an exhaustion marker of T cells.

However, PD-1 expression on T cell is brought to broad

attention as a clinical biomarker in HNSCC. Recently,

Badoual et al. have reported that presence of tumor-

infiltrating PD-1� T cells in HPV-associated HNSCC has

positive correlation with a favorable clinical outcome

(102).

PD-L1 and PD-L2 are members of the B7 family, and

are broadly expressed in several types of cell including T

and B cells, NK cells, and tumor cells after exposure to

IFN-g (103). Notably, expression of PD-L1 has been

observed in various types of human cancer (91), including

HNSCC (25).

It has been suggested that the blockades of immune

checkpoints using anti-CTLA4 and anti-PD1 mAbs exert

anti-tumor effect and significant clinical benefits in several

types of cancers (89, 93). In the context of HNSCC

treatment, several studies have reported safety data for

these monoclonal antibodies. However, it remains to be

seen whether anti-CTLA4 and anti-PD-1 mAbs have

clinical benefits such as improvement in overall survival

and progression-free survival. A phase III trial is currently

underway in patients with recurrent and metastatic head

and neck cancer to investigate the clinical benefits of

nivolumab as monotherapy (25). In addition to PD-1

inhibitor, two clinical trials of CTLA-4 inhibitor are also

ongoing in HNSCC patients. Recent reports have shown

that PD-1 inhibitor is clearly superior to the CTLA-4

inhibitor for treating advanced melanoma (104). This

conclusion might be applied to treatment of HNSCC as

well.

CAR therapy
In order to overcome the lower affinity of T cells for

TAAs and to induce a stronger antitumor T-cell effect,

immunotherapy can be performed with a CAR (105,

106). A CAR is composed of three parts: a single chain
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hypervariable fragment (scFv), a hinge region, and CD3z.

scFv, in which the variable light (VL) and variable heavy

(VH) chains of TAA-specific antibodies are arranged in

tandem, has a higher affinity for TAA than the classical

TCR. This fragment is linked to the CD3z chain, which

is the intracellular T-cell signaling domain of classi-

cal TCR. This fusion complex is the so-called ‘first-

generation CAR’. In subsequently developed constructs,

co-stimulatory molecules such as CD28, CD137, CD134,

4-1BB, and OX40 are linked between scFv and the CD3z
chain for the purpose of up-regulating intracellular

signaling and activating T cells. Second- or third-genera-

tion CARs are characterized by the inclusion of CD28

alone or CD28 plus 4-1BB, respectively (107).

In CAR therapy, the CAR is overexpressed in T cells

derived from a patient using a retroviral or lentiviral

vector. The CAR-modified T cells recognize a specific

TAA in the cancer patient, leading to activation of the

T-cell response and induction of anti-tumor effects (95).

Several reports have shown that CD19 and GD2 antigen�
targeted CAR therapies are clinically effective against

leukemia and neuroblastoma, respectively (108�110).

In HNSCC, CAR therapy targeting latent membrane

protein (LMP)1-HELA/CAR (111) or chondroitin sul-

fate proteoglycan-4 (CSPG-4) (112) could induce anti-

tumor effect in vitro and in vivo. Thus, CAR therapy might

be one of the new prospective treatment modality in

HNSCC.

Combination of cancer immunotherapy and
targeted therapy
Several clinical trials are currently underway for cancer

immunotherapy against HNSCC (Table 1). However, in

well-established tumors with multiple genetic and epige-

netic mutations, a potent immune-suppressive network is

often formed by immune checkpoints and suppressive

regulation by Tregs, MDSCs, and M2s, leading to repres-

sion of anti-tumor immunity by activated T cells. These

problems must be solved in order to establish effective

treatments for cancer.

Among the breakthrough therapies against tumors,

there are several types of targeted therapies. Targeted

therapy, which depends on our knowledge of tumor

biology, inhibits tumor progression (including prolifera-

tion and metastasis) by targeting specific oncoproteins or

signal transduction pathways (113). Many targeted agents

are approved and are under investigation for HNSCC

treatment, including epidermal growth factor receptor

(EGFR) monoclonal antibody, EGFR tyrosine kinase

inhibitor, vascular endothelial growth factor receptor

(VEGFR) inhibitors, and phosphatidylinositol 3’ kinase

(PI3K)/AKT/mammalian target of rapamycin (mTOR)

pathway inhibitors (114). These targeted therapies elicit

sufficient anti-tumor effects in HNSCC patients who

have a single genetic mutation or signaling pathway

that contributes to tumor growth and maintenance of

malignant phenotypes (115).

Additionally, a number of analyses have shown that

several oncogenic signaling pathways also affect regula-

tion of the host immune system against tumor cells (1).

Cetuximab, which is a neutralizing antibody against

EGFR, inhibits tumor growth signals and exerts clinical

benefits in HNSCC (116).

Cetuximab significantly up-regulates not only expres-

sions of MHC class II on HNSCC cells followed by

enhancing anti-tumor recognition by the EGFR-reactive

CD4� helper T cells (117) but also producing TGF-b and

PGE2 as immune suppressors from HNSCC cells (118).

Moreover, co-stimulatory molecules (i.e., CD40, CD80/

CD86) on DCs are increased by treatment of cetuximab

(119). DCs that are co-cultured with tumor cells and

cetuximab effectively promote DC priming and induce

tumor-specific T-cell responses in vitro, result in enhanced

anti-tumor immune response (120). Additionally, cetux-

imab facilitates NK cell-mediated antibody-dependent

cellular cytotoxicity (ADCC), macrophage-mediated anti-

body-dependent cellular phagocytosis (ADCP), and com-

plement-dependent cytotoxicity (CDC), which may promote

anti-tumor effect (121).

Furthermore, small-molecule inhibitors targeting VEGFR

signaling decrease the activity of Tregs or MDSCs and

dampen tumor-induced immunosuppression (122, 123).

Bevacizumab and sunitinib are categorized as VEGFR

inhibitors. Bevacizumab has the ability to promote the

Table 1. Recent clinical trials of cancer immunotherapy in head

and neck cancer

Cancer vaccine (including DC vaccine)

� MAGE-A3�HPV16 Trojan cancer vaccine0Phase I

� Multi-peptides (LY6K, CDCA1, IMP3) vaccine0Phase II

� Wild type-p53 peptide vaccine0Phase I

� Epstein-Barr virus�LMP2 peptide vaccine0Phase I

� NY-ESO-1 peptide vaccine0Phase I

� HPV-DNA vaccine0Phase I

CAR therapy and adaptive T-cell therapy

� Targeted LMP1-CAR therapy0Pre-clinical study

� Epstein-Barr virus-specific adaptive T cell therapy0Pilot

study

� Targeted CSPG-4-CAR therapy0Pre-clinical study

The blockade of immune checkpoints

� Anti PD-1 antibody (Nivolumab)0Phase III

� Anti CTLA-4 antibody (ipilimumab)0Phase I

DC, dendritic cell; MAGE-A3, melanoma associated antigen 3;

LY6K, lymphocyte antigen 6 complex locus K; IMP3, insulin-
like growth factor II mRNA-binding protein 3; LMP2, latent

membrane protein 2; CSPG-4, chondroitin sulfate proteoglycan-4;

HPV, human papilloma virus; CAR, chimeric antigen receptor;

PD-1, programmed cell death-1.
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maturation of DCs and block the expansion of MDSCs

(124). Sunitinib acts as a multi-tyrosine kinase inhibitor

to block VEGFR function, and suppresses the number

and function of Tregs and MDSCs. Moreover, sunitinib

can skew the immune response toward Th1, and it re-

presses secretion of IL-10 and TGF-b to induce Tregs. In

addition, sunitinib enhances production of IFN-g from

tumor-infiltrating T cells (125, 126). Matsushita et al. have

conducted a phase I clinical trial using combination treat-

ments of sunitinib plus autologous tumor lysate�loaded

DC immunotherapy in metastatic renal cell carcinoma

patients (127).

Rapamycin, an inhibitor of mTOR, is an effective

immunosuppressant (128). However, a recent report

demonstrated that rapamycin activates effector and mem-

ory T cells (129). Moreover, administration of rapamycin

after vaccination to stimulate host immune system

suppress the levels of tumor-infiltrating lymphocytes

(TILs)-induced Tregs (130). Taken together, these data

show that targeted therapies help to enhance the

anti-tumor immune response induced by cancer immu-

notherapy (Fig. 3).

Conclusion
In recent years, our understanding of oncogenic mechan-

isms has given rise to new therapeutic modalities. Cancer

immunotherapy is among the novel therapies that can

confer clinical benefits by inducing an anti-tumor T-cell

response. However, the clinical effectiveness of cancer

immunotherapy with targeted therapy has not been fully

studied in treatment of HNSCC. Additionally, little is

known about the safety of cancer immunotherapy. Some

immunotherapies can up-regulate anti-tumor immune

response and at the same time broadly activate the host

immune system. Because of individual immunological

variability, some patients received cancer immunotherapy

might experience mild and localized side effects, and the

others severe and systematic.

Further translational and clinical studies of cancer

immunotherapy in HNSCC will be needed to provide

Fig. 3. Several targeted therapies may have immunomodulatory functions on tumor-mediated immunosuppression. Targeted therapies

enhance effective dendritic cell (DC) maturation and T-cell priming to induce the anti-tumor T-cell response. In addition, targeted

therapy has the possibility to attenuate the immunosuppressive side effects of cancer immunotherapy.
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evidence of effective and harmless treatment. Moreover,

combinatorial therapeutic strategies may offer a number

of strong synergies.
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