
IEICE Electronics Express, Vol.6, No.24, 1737–1744

Crinkle: A heuristic mapping
algorithm for network on
chip

Samira Saeidi1a), Ahmad Khademzadeh2b), and Fatemeh Vardi1c)
1 CE Department, Islamic Azad University, Science & Research Branch, Tehran,

Iran
2 Iran Telecom Research Center, Tehran, Iran

a) samirasa25@gmail.com

b) zadeh@itrc.ac.ir

c) f.vardi.a@gmail.com

Abstract: In this paper, a heuristic mapping algorithm which maps
tasks, using priority lists and the crinkle moving pattern is proposed.
To evaluate this algorithm, a set of real (i.e. Video Object Plan De-
coder) and random applications have been used and the results have
been compared. By reducing the number of hops between IP cores, the
energy consumption and the completion time of the application (time
which all tasks in the task graph execute wholly) have been optimized.
Compared to other mapping algorithms, the algorithm execution time
(due to its low complexity) is considerably lower.
Keywords: network on chip, task graph, mapping algorithm, energy
consumption, communication cost
Classification: Integrated circuits

References

[1] U. Y. Ogras and J. Hu, “Key Research Problems in NoC Design: A Holis-
tic Perspective,” in Proc. CODES+ISSS’05, New Jersey, USA, pp. 69–74,
19–21, Sept. 2005.

[2] J. Hu and R. Marculescu, “Energy-Aware Mapping for Tile-based NoC
Architectures Under Performance Constraints,” in Proc. ASP-DAC’03,
pp. 233–239, Jan. 2003.

[3] S. Saeidi, A. Khademzadeh, and A. Mehran, “SMAP: An Intelligent Map-
ping Tool for Network on Chip,” ISSCS 2007, PID360581, Iasi, Romania,
July 2007.

[4] T. Lei and S. Kumar, “A Two-step Genetic Algorithm for Mapping Task
Graphs to Network on Chip Architecture,” in Proc. DSD’03, pp. 180–187,
Sept. 2003.

[5] D. Shin and J. Kim, “Power Aware Communication Optimization for Net-
work on Chips with Voltage Scalable Links,” in Proc. CODES + ISSS’04,
pp. 170–175, 8–10, Sept. 2004.

[6] A. Mehran, S. Saeidi, A. Khademzadeh, and K. Badie, “Spiral: Spiral:
A Heuristic Mapping Algorithm for Network on Chip,” IEICE Electron.
Express, vol. 4, no. 15, pp. 478-484, 2007.

[7] S. Murali and G. Demicheli, “Bandwidth-constrained mapping of cores
onto NOC architectures,” DATE, pp. 896–901, 2004.

c© IEICE 2009
DOI: 10.1587/elex.6.1737
Received October 28, 2009
Accepted November 17, 2009
Published December 25, 2009

1737



IEICE Electronics Express, Vol.6, No.24, 1737–1744

[8] T. Shen, C. H. Chao, Y. K. Lien, and A. Y. Wu, “A New Binomial Map-
ping and Optimization Algorithm for Reduced-Complexity Mesh-Based
On-Chip Network,” Proc. First Int. Symp. Networks-on-Chip (NOCS’07),
June 2007.

1 Introduction

Developments in CMOS technology have lead to integration of IP cores which
are connected together in a single chip. The significant issue, in designing
such chips, is how to put these IP cores together. Many challenges in this
field led to the appearance of a paradigm called Network on Chip (NoC).
There are several platforms with different network topologies for NoC, but
the most simple and feasible example could be the 2-D mesh [2].

Communication infrastructure, communication pattern and application
mapping are three important topics for NoC design optimization [1]. This
paper has focused on application mapping and presented a heuristic algorithm
which places IPs with a high connection degree close the center of the mesh
whilst placing IPs with high communication data size adjacent to each other.
The efficiency of the algorithm is directly related to these double objectives.

2 Related work

The mapping problem for tile-based architecture was addressed in [1]. In [2],
a heuristic energy aware mapping and scheduling approach which tends to
run much faster than the Genetic algorithm (GA) was addressed. Authors
in [4, 5] proposed a two-step and three-step GA for mapping the application
onto a mesh. In [7] NMAP, a fast heuristic algorithm under bandwidth
constraints was presented. Authors in [8] presented an efficient binomial IP
mapping algorithm, namely BMAP. The Spiral algorithm presented in [6]
uses a task priority list for task graphs and a platform priority list in the
spiral fashion.

3 Problem formulation

Application mapping determines how the application is mapped onto the
NoC architecture. Basically, an Application Characterization Graph (also
known as task graph (TG)) and an Architecture Characterization Graph can
be formulated as follows:

Definition 1: An Application Characterization Graph=G (V, E) is a
weighted directed graph, where each vertex vi represents one selected IP
and each directed arc ei,j characterizes the communication from vi to vj [2].
Each ei,j has the b(ei,j) property that represents the communication data
size. This weight of each arc corresponds to the number of bits transmitted
between tasks. This type of TG has also been addressed in [2, 4, 5] and [6].

Definition 2: An Architecture Characterization Graph=G′(T, L) is a di-
rected graph, where each vertex ti represents a tile in the architecture, and

c© IEICE 2009
DOI: 10.1587/elex.6.1737
Received October 28, 2009
Accepted November 17, 2009
Published December 25, 2009

1738



IEICE Electronics Express, Vol.6, No.24, 1737–1744

each directed arc li,j represents the physical link from ti to tj. Each li,j has the
Eti,tj

bit property which represents the average energy consumption for sending
one bit of data from ti to tj. A model for the energy consumption has been
proposed in [1] and formulated by Eq. (1), where ELbit is the bit energy
consumed on the links between nodes, ESbit is the bit energy consumed on
the switches between the nodes, and nhops is the number of routers the bit
traverses from the source to the destination tile.

E
ti,tj
bit = nhops × ESbit + (nhops − 1) × ELbit (1)

In Eq. (1) all communication links have the same characteristic but in
this study each link and switch can have differentESbit, ELbit. Based on these
assumptions, the energy consumption is given by this expression:

E
ti,tj
bit =

nhops∑

k=1

ESbitk +
nhops−1∑

k=1

ELbitk (2)

Hence, the total energy consumption of transferring data is:

E
ti,tj
total = Datasizeti,tj × E

ti,tj
bit (3)

4 Crinkle mapping algorithm

This algorithm is based on the Priority Lists approach. The algorithm basis is
to produce up to three Task Priority Lists (TPL) named respectively TPL1,
TPL2 and RTPL, and one Platform Priority List (PPL) by following a crinkle
motion pattern as shown in Fig. 1 (d). It starts from the corner of the 2-D
mesh platform and ends on another corner in a zigzag manner. Fig. 2 (a)
shows the general block diagram of this algorithm as a flowchart.

The TPL1 can have some or even all tasks of the TG whilst the TPL2
consists of some tasks of the TG that are not in the TPL1 and finally, the
Remaining Task Priority List (RTPL) includes the tasks which are neither
in the TPL1 nor in the TPL2.

At first, the algorithm determines the task which has the highest connec-
tion degree in the TG as the First Priority (FP). Assuming that vi is the FP,
then the communication data size between vi and its neighbors is examined
until a neighbor of vi with the highest communication data size is discovered
as the next priority namely vj by Eq. (4). If several neighbors have the same
maximum communication data size with vi, the neighbor with the highest
sum of its communication data size is chosen.

This process continues to check the neighbors of all tasks in the TG based
on Eq. (4). In this process, if the algorithm reaches a task which has no
neighbor with a high communication data size, the algorithm will be ended
and the TPL1 is created.

NextPriority(vi) = vj ∀vj ∈ V with Max(b(ei,j)) (4)

For some TGs, the aforementioned algorithm cannot examine all tasks in
one step. When this happens, a second list, the TPL2, is built by applying

c© IEICE 2009
DOI: 10.1587/elex.6.1737
Received October 28, 2009
Accepted November 17, 2009
Published December 25, 2009

1739



IEICE Electronics Express, Vol.6, No.24, 1737–1744

the same algorithm for remaining tasks starting from the same FP which has
been used for building the TPL1.

If all the TG’s tasks are in TPL1 and TPL2, the algorithm will be finished,
otherwise the algorithm will create another list, namely the RTPL which first
examines the neighboring tasks with the FP which are not in the TPL1 and
the TPL2 based on the highest communication data size and then examines
the remaining tasks.

If all the TG’s tasks are in the TPL1, the algorithm then reverses the
TPL1 and the reversed TPL1 will be mapped onto the platform based on
the crinkle pattern. The goal of reversing TPL1 is to put the FP close to
the center in order to attain one of the heuristic’s objectives. Otherwise the
algorithm generates TPL2. After that, if all the TG’s tasks are in the reversed
TPL1 and TPL2, the algorithm merges the reversed TPL1 and TPL2. This
merged list will be mapped onto the platform then based on the crinkle
pattern. Otherwise, the algorithm generates the RTPL which the algorithm
should determine its position.

There are three basic positions for the RTPL. The location of the RTPL
can be at the start of the reversed TPL1, at the end of the TPL2 or even
in the middle of them. Choosing the RTPL placement has a considerable
impact on minimizing the Communication Cost (CommCost) after mapping.

Fig. 1 (a) shows this approach in the VOPD application clearly. The blue
and pink path show TPL1 and TPL2 respectively, the RTPL has one element
namely v16.

Fig. 1 (b, c, d) show positions of the RTPL in the VOPD application.
In this case, the RTPL has just one element but in other TGs, it can have
more than one. In any case, the placement policy is the same. After the
RTPL placement, the CommCost of all the different mapping which have
been obtained by the Crinkle mapping algorithm are calculated based on
Eq. (5) [7, 8]. The best choice is the mapping with the lowest CommCost.
In this case, the algorithm selects Fig. 1 (c) for the VOPD mapping.

CommCost=
∑

∀ ei,j

b(ei,j)×dist(map(vi), map(vj))|∀ei,j ∈E,∃b(ei,j) �= 0 (5)

c© IEICE 2009
DOI: 10.1587/elex.6.1737
Received October 28, 2009
Accepted November 17, 2009
Published December 25, 2009

1740



IEICE Electronics Express, Vol.6, No.24, 1737–1744

Fig. 1. (a) Special path in VOPD, (b,c,d) Three kinds of
RTPL placement

Where dist (a, b) is the minimum number of hops between nodes a and
b.

More details are presented as pseudo code in Fig. 2 (b).

5 Experimental results

In this work we applied the X-Y routing algorithm and the list scheduling
algorithm [2] to evaluate the performance of the Crinkle mapping algorithm.

A tool called SMAP for simulation has been used which measures the
energy consumption, application completion time, and algorithm execution
time [3]. It is also capable of creating random TGs onto the mesh platform
with different sizes. To evaluate the efficiency of the proposed algorithm,
its results have been compared with the GA, Random and Spiral mapping
algorithms [3, 6] with the same routing and scheduling characteristics.

In this part instead of real applications, five random synthetic applications
have been created for each mesh platform with the size of 3×3 to 6×6.

The results in Fig. 3 (a) and Fig. 3 (b) show that respectively the Crinkle
mapping algorithm has less energy consumption and less completion timec© IEICE 2009

DOI: 10.1587/elex.6.1737
Received October 28, 2009
Accepted November 17, 2009
Published December 25, 2009

1741



IEICE Electronics Express, Vol.6, No.24, 1737–1744

Fig. 2. (a) Algorithm flowchart, (b) Pseudo code of Crin-
kle mapping algorithm.

compared to the GA, Spiral and Random algorithms.
Fig. 3 (c) shows that when the mesh size increases, the Crinkle algorithm

execution time does not increase rapidly, so this algorithm is more appropri-
ate for the large mesh size and dynamic mapping.

To evaluate the potential of applying the Crinkle mapping algorithm, it is
compared with the NMAP [7], which has the lowest hop count among other
mapping algorithms such as the PMAP, GMAP and PBB [8], with the same
bandwidth constraints. Fig. 3 (d) shows that the Crinkle algorithm has less
CommCost than the NMAP.

By reducing the hop count between related tasks the Crinkle algorithm
can decrease the CommCost and improve performance parameters such as

c© IEICE 2009
DOI: 10.1587/elex.6.1737
Received October 28, 2009
Accepted November 17, 2009
Published December 25, 2009

1742



IEICE Electronics Express, Vol.6, No.24, 1737–1744

Fig. 3. (a) Percentage of reduction for the energy con-
sumption of the Crinkle, (b) Percentage of reduc-
tion for the completion time of the Crinkle, (c)
Comparison of execution times of the algorithms
and (d) Reduction of communication cost.

the energy consumption and the completion time. Also, compared to the
spiral algorithm, this algorithm gives more priority to communication data
size rather than connection degree and this is another reason for the better
performance of this algorithm.

6 Conclusion and future work

In this paper, a rule-based algorithm for the 2-D mesh called Crinkle was

c© IEICE 2009
DOI: 10.1587/elex.6.1737
Received October 28, 2009
Accepted November 17, 2009
Published December 25, 2009

1743



IEICE Electronics Express, Vol.6, No.24, 1737–1744

proposed. In the Crinkle algorithm, several performance metrics such as
the energy consumption, execution time and completion time have been op-
timized. The Crinkle algorithm has been compared to different mapping
algorithms such as the Genetic, Random and Spiral. Simulation results show
that by reducing the hop count between related tasks on the platform, the
energy consumption, completion time and CommCost decreases and conse-
quently the algorithm is more efficient than the other mentioned algorithms.
Also the Crinkle algorithm has less CommCost than the NMAP.

The idea of implementing the Crinkle on other NoC architectures, and
using different routing algorithms (not only x-y) are interesting subjects for
the future work. Also, a low execution time means this algorithm can be
used for dynamic mapping.

c© IEICE 2009
DOI: 10.1587/elex.6.1737
Received October 28, 2009
Accepted November 17, 2009
Published December 25, 2009

1744


