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ABSTRACT: Theronts from 2 different strains of Ichthyophthirius multifiliis (AR1 and ARS5) were
exposed to copper sulfate (CuSO,) in waters of different total alkalinities and observed for 4 h to
determine relative toxicity and kinetics of parasite mortality. Consistent with the known solubility
properties of the metal, Cu was significantly more toxic to cells maintained under low (48 mg 1"!) com-
pared with high (243 mg I"!) total alkalinity conditions. This was reflected in both the median lethal
concentration (LCsy) values and rates of mortality for both parasite strains; strain differences were
also observed. The AR1 strain was significantly more resistant to copper toxicity than the AR5 strain
in both high and low alkalinity waters. In general, these strain differences were more evident under
conditions of low stress (i.e. low CuSO, concentration and high alkalinity), and suggest that genetic
factors are overridden under high stress conditions. The present study establishes a role for alkalin-
ity in the effectiveness of CuSO, treatment of ichthyophthiriasis and reveals differences in the sus-
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ceptibility of parasite populations that are clearly important for control programs.
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INTRODUCTION

The protozoan parasite Ichthyophthirius multifiliis
has significant impact on commercial aquaculture
worldwide (Matthews 2005). The life cycle of I. multi-
filiis is well documented. Free-swimming infective
theronts invade the skin and gill epithelia and rapidly
transform into trophonts that feed on host tissue. Over
the course of several days, trophonts grow and become
visible to the naked eye as white spots. Mature
trophonts then leave the host, attach to a solid surface
and secrete a gelatinous capsule in which they encyst.
Encysted tomonts finally divide to form 100 to 1000
infective theronts to complete the life cycle (Beckert &
Allison 1964, Nigrelli et al. 1976, Schaperclaus 1991,
Lom & Dykova 1992). Killing the infective theront or
the detached trophont with various anti-protozoal
drugs can stop the reproductive cycle and prevent
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spread of the disease to other fish (Tucker & Robinson
1990, Schéaperclaus 1991).

Copper sulfate (CuSO,) is used extensively in aqua-
culture as a U.S. Environmental Protection Agency-
approved algicide. It is also used as a therapeutant for
protozoan parasites including Ichthyophthirius multi-
filiis in commercial and recreational fish ponds.
Although CuSOQy is not approved by the U.S. Food &
Drug Administration (FDA) for use on food fish, regu-
latory action by the FDA awaits ongoing research.

The toxicity (or efficacy as a control measure) of
CuSO, to an organism is strongly influenced by water
chemistry and is diminished as the total alkalinity and
total hardness of waters increase. The form of copper
most toxic to fish, and presumably also to algae and
protozoans, is thought to be Cu** (Straus & Tucker
1993). At low alkalinities, copper remains in solution
for long periods and forms relatively insoluble com-
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pounds at high alkalinities (Chakoumakos et al. 1979,
Laurén & McDonald 1986). To account for this reduced
toxicity or efficacy, the current practice for therapeutic
use of CuSO, in culture ponds is to increase applica-
tion rates in direct proportion to the total alkalinity of
the water (MacMillan 1985, Tucker & Robinson 1990).

It has become clear over the past decade that natural
isolates of Ichthyophthirius multifiliis can be distin-
guished based on a number of criteria, most notably,
the expression of surface immobilization antigens or
i-antigens (Clark & Forney 2003). These antigens vary
among natural isolates, and either monoclonal anti-
bodies or reference polyclonal antisera that bind
specific i-antigens can be used to define serotypes in
simple immobilization assays (Dickerson et al. 1993,
Swennes et al. 2006). Previous work has shown that
serotype D strains are the most common in nature and
express an abundant 55 kDa i-antigen on their surface
(Wang et al. 2002). At least 5 additional serotypes of
I. multifiliis have been identified based on antibody-
specific immobilization (Wang et al. 2002, Swennes et
al. 2007, Xu et al. 2006), including serotype F, for
which reference antisera have been produced (T.G.C.
& D.L.S. unpubl. data); the single representative of this
serotype (isolate AR1) was obtained from an outbreak
in central Arkansas in 2005. A report by Swennes et al.
(2007) has suggested that different strains of I. multifil-
iis vary with respect to virulence, and it would be rea-
sonable to assume they differ in other phenotypic char-
acter traits as well.

Previous research has investigated the effectiveness
of CuSO, in controlling Ichthyophthirius mulltifiliis in
several species of fish (Ling et al. 1993, Straus 1993,
Schlenk et al. 1998, Tieman & Goodwin 2001, Goodwin
& Straus 2006, Straus 2008, Rowland et al. 2009). The
objective of the present study was to evaluate the
acute toxicity of CuSO, to free-swimming theronts of
I. multifiliis in waters having different total alkalinities
with the same total hardness. The present study shows
that alkalinity had a clear effect on copper toxicity
while different parasite strains were differentially sen-
sitive to copper treatment.

MATERIALS AND METHODS

Parasite culture. The 2 isolates of Ichthyophthirius
multifiliis, AR1 and AR5, were maintained in separate
aquaria by serial infection of fingerling channel catfish
Ictalurus punctatus (75 to 100 g). The AR1 isolate came
from infected sunshine bass (¢ Morone chrysops x d
M. saxatilis) and was defined as serotype F using refer-
ence antibodies against existing strains. The ARS iso-
late belongs to the previously identified serotype D
(Dickerson et al. 1993) and was isolated from infected

channel catfish from central Arkansas. AR1 and AR5
isolates were maintained as laboratory cultures for 14
and 7 mo, respectively, at the time experiments were
carried out. Fish were held at 25°C in static 38 1 aquaria
filled with 30 1 of well water (alkalinity = 212 mg 17!,
hardness = 103 mg I, pH = 8.7); aquaria were fitted
with outside biological filters containing pea gravel.

Preparation of theronts. Fish with mature trophonts
were pithed and placed in a beaker containing clean
well water. Trophonts were allowed to dislodge from
the fish (3 to 4 h) and the fish were removed. Trophonts
were allowed to adhere to the beaker for 1 h and were
gently rinsed to remove organic matter. Approximately
half of the trophonts were rinsed into a beaker with a
gentle stream of 48 mg 1"! alkalinity water until the
beaker was filled to 100 ml. The remaining trophonts
were likewise rinsed with a gentle stream of 243 mg 1™
alkalinity water into a beaker until the beaker was
filled to 100 ml. Trophonts were then incubated at
room temperature for 18 h (+ 1 h) to allow for mitotic
division. After incubation, theront development was
similar for both isolates. Previous observations in our
labs have shown that immature trophonts are spherical
and require more time to mature to the typical oblong
shape; after the 18 h incubations, the majority of
theronts from a single tomont are typically 3 h old.
Theront concentrations were estimated by pipetting
5 pl droplets of the theront suspension onto a glass
slide and counting the organisms at 40x magnification;
the mean count in 10 droplets was extrapolated to
determine the final concentrations in a suspension
(Schlenk et al. 1998).

Serotype determination. Immobilization assays
were carried out to determine the respective i-antigen
serotypes of the AR1 and ARS isolates (Dickerson et al.
1993). AR5 was identified as serotype D using mono-
clonal antibody G3-61 (Lin et al. 1996). AR1 was not
immobilized by any of the currently available mono-
clonal antibodies (MAbs) or reference antisera and
was deemed to be a new variant, which we designated
as serotype F. Reference antisera were therefore pre-
pared against the AR1 strain in channel catfish using
clonally derived parasites. Fish (1 kg channel catfish)
were injected intraperitoneally with 15000 live
theronts on 3 separate occasions at 21 d intervals.
Sera from 3 individual fish were pooled and heat-
inactivated at 56°C for 30 min prior to storage at —-80°C.
The pooled antiserum was found to immobilize AR1
theronts to dilutions as high as 1:1280 and was specific
for the AR1 strain. For immobilization assays, antisera
against serotype F, or MAb G3-61 (specific for serotype
D), were serially diluted in microtiter plates containing
50 % phosphate-buffered saline in carbon-filtered tap
water; 500 theronts were added to each well, and their
motility was microscopically observed after 30 to
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60 min under low magnification. Cultures were consid-
ered to be composed of only 1 serotype if all theronts
were completely immobilized by specific antibodies.

Test waters. Total alkalinity and total hardness (as
CaCOs3) were measured by titration method (APHA et
al. 2005). pH was measured with a Thermo Orion
Model 720A bench top meter (Thermo Electron).
Dechlorinated tap water (48 mg 1! alkalinity, pH 7.1)
was adjusted with sodium bicarbonate to increase
alkalinity 5-fold (243 mg 1! alkalinity, pH 8.1). Hard-
ness was 24 mg 1! in both waters.

Toxicity assays. In vitro bioassays were conducted
on theronts of each strain following the method of
Straus & Griffin (2001). Approximately 200 theronts
were placed in each well of a 96-well microtiter plate
(Falcon 3912, non-tissue culture treated, Becton Dick-
inson Labware) and exposed at 25°C to nominal con-
centrations of copper (as CuSOy; 0.025, 0.05, 0.075,
0.10, and 0.125 mg 1I"!). All treatments were conducted
in triplicate (N = 3) and unexposed controls were
included with each replicate. The CuSO,4-5H,0 (25.4 %
Cu) used in this experiment was purchased from
Sigma Chemical. Acute toxicity was determined by
microscopic examination of each well at 15, 30, 45, 60,
120, 180, and 240 min after treatment. Mortality of the
ciliates was defined as the lack of movement.

Statistical analyses. Nominal copper concentrations
and percent theront mortality were used to calculate
the median lethal concentration (LCj;y) values for each
replicate using the PROBIT procedure of the SAS Sys-
tem for Windows (version 9.1.3, SAS Institute). Subse-
quently, differences in LCs, values among treatments
were analyzed using PROC MIXED to conduct a facto-
rial mixed model analysis of variance in which strain,
alkalinity, and time were defined as the fixed effects,
and replication within strain x alkalinity was defined
as the random effect with compound symmetric vari-
ance—covariance structure. When significant differ-
ences were found, least-squares means were sepa-
rated by the least significant difference. Associated
95 % CI were calculated to assess the biological impor-
tance of differences. Kaplan-Meier curves were gener-
ated to illustrate the mortality of the parasites during
the bioassay. Using GraphPad Prism version 5.01 for
Windows (GraphPad Software), survival analysis using
a log-rank test was conducted to examine the survival
differences among the curves. All treatment effects
were considered significant at the p < 0.05 level.

RESULTS AND DISCUSSION

Isolates were maintained in culture water under dif-
ferent alkalinity, hardness, and pH levels than in the
toxicity assays. Both strains were exposed to the same
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Fig. 1. Ichthyophthirius multifiliis. Percent mortality of strain
(a) AR1 and (b) AR5 theronts exposed to copper in vitro (N =
3; N = 2 for AR1 in 0.025 mg I"! Cu) in dechlorinated tap
water with 48 mg 1! alkalinity. Cu concentrations were:
(@) 0.025, (0) 0.05, (A) 0.075, (A) 0.10, and (m) 0.125 mg !

changes in water chemistries and this was not consid-
ered to have an impact on toxicity results. The tro-
phonts were allowed to encyst, develop tomites, and
release theronts in their respective test waters.
Kaplan-Meier survival curves were generated for 2
different isolates of Ichthyophthirius multifiliis in
response to increasing copper concentrations in waters
of low and high alkalinity from the raw data in Figs. 1
& 2. Irrespective of strain, copper toxicity was more
acute in low alkalinity water. This is illustrated in
Fig. 3a, which plots the survival curves for the AR1 iso-
late at 0.075 mg I"! Cu in both waters. Under these con-
ditions, the time required to kill 95% of parasites was
~4 times faster in water with 48 rather than 243 mg 1™
alkalinity (45 min vs. 180 min, respectively). These
data are consistent with solubility properties of copper
and the current understanding of CuSO, toxicity in
other aquatic organisms such as fish. Teleosts are more
sensitive to CuSO, in low alkalinity and/or hardness
waters (Chakoumakos et al. 1979, Laurén & McDonald
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Fig. 2. Ichthyophthirius multifiliis. Percent mortality of strain

(a) AR1 and (b) AR5 theronts exposed to copper in vitro (N =

3) in dechlorinated tap water with 243 mg 1! alkalinity.

Cu concentrations were: (@) 0.025, (O) 0.05, (A) 0.075,
(A) 0.10, and (m) 0.125 mg 1"

1986, Straus & Tucker 1993), with toxicity being due
primarily to osmoregulatory dysfunction (Hargreaves
& Tomasso 2004). This may be the case for I. multifiliis
as well, although the precise mechanism of heavy
metal action in protozoa remains to be determined.
Significant differences were seen between AR1 and
ARS strains in waters of both alkalinities when Kaplan-
Meier survival curves for the 2 strains of Ichthyophthir-
ius multifiliis were compared. In the 48 mg 1! alkalin-
ity water, significant differences were observed at
concentrations of 0.075, 0.10, and 0.125 mg I Cu
(Figs. 1a,b). In the higher alkalinity water (243 mg 1°}),
significant differences in Kaplan-Meier survival curves
were found at all copper concentrations (Figs. 2a,b).
Differences in copper sensitivities between strains are
illustrated in Fig. 3b, which shows the survival curves
of AR1 and ARS5 strains at 0.075 mg 1! Cu in 243 mg 1"}
alkalinity water. Half of the AR5 strain population was
dead after 60 min, while the entire population was
unresponsive after 120 min. By contrast, most of the

AR1 population was alive at 120 min, and by the end of
the bioassay, 5 % still exhibited movement at this cop-
per concentration.

When measured in terms of LCsq values (Table 1),
significant differences between the 2 strains were evi-
dent at the 15 and 30 min time points in water of 48 mg
I"! alkalinity. Differences were not significant at the
45 min time point and beyond, and data were not suf-
ficient to calculate a valid LCs, value for the ARS strain
at 240 min. Failure to obtain statistically significant dif-
ferences at later time points (or a valid LCs, for the
240 min time point with AR5) was due to the high cop-
per toxicity in low alkalinity water. Table 2 shows the
LCs, values for both strains in 243 mg I"! alkalinity
water. In this case, statistically significant differences
between AR1 and AR5 strains were evident at later
time points (45, 60, 120, and 180 min), but valid LCjs,
values could not be obtained at the earlier time points
due to the absence of a strong effect at 15 and 30 min.
The LC;, values and statistical analyses provided in
Tables 1 & 2 suggest that under high physiological
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Fig. 3. Ichthyophthirius multifiliis. Kaplan-Meier survival
curves. (a) AR1 strain at 0.075 mg I"! Cu in (solid line) 48 mg
"' and (dashed line) 243 mg 1! alkalinity waters. Survival was
significantly lower at 48 mg 1! alkalinity. (b) AR1 (dashed
line) and AR5 (solid line) strains at 0.075 mg I"! Cu in 243 mg
I"! alkalinity waters. Survival of the AR1 strain was
significantly greater. Dotted lines: 95 % CI
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Table 1. Ichthyophthirius multifiliis. Median lethal concentration (LCsg) values (mg 1I"! Cu) and 95 % CI of copper to AR1 and AR5
strains in 48 mg 1! alkalinity dechlorinated tap water over 4 h. nd: Not determined (Cu concentrations were not appropriate to
calculate LCs, values). *: Significant difference (SAS MIXED procedure)

Time (min) ARI1 strain LCsq value (95 % CI) ARS strain LCsq value (95 % CI) Difference (95 % CI) P

15 0.095 (0.092, 0.099) 0.082 (0.078, 0.085) -0.014 (-0.019, -0.009) <0.0001*
30 0.074 (0.071, 0.078) 0.055 (0.051, 0.059) —-0.019 (-0.024, -0.014) <0.0001*
45 0.057 (0.053, 0.061) 0.051 (0.047, 0.054) —-0.006 (-0.012, -0.001) 0.0159
60 0.047 (0.043, 0.050) 0.049 (0.046, 0.053) 0.003 (-0.003, 0.008) 0.3137
120 0.039 (0.035, 0.042) 0.041 (0.037, 0.044) 0.002 (-0.003, 0.007) 0.4535
180 0.027 (0.023, 0.031) 0.030 (0.026, 0.034) 0.003 (-0.003, 0.009) 0.2998
240 0.026 (0.022, 0.031) nd nd nd

Table 2. Ichthyophthirius multifiliis. Median lethal concentration (LCsq) values (mg 1! Cu) and 95 % CI of copper to AR1 and AR5
strains in 243 mg 1! alkalinity dechlorinated tap water over 4 h. nd: Not determined (Cu concentrations were not appropriate to
calculate LCs, values). *: Significant difference (SAS MIXED procedure)

Time (min) AR1 strain LCs value (95 % CI) ARS strain LCs value (95 % CI) Difference (95 % CI) P
15 nd nd nd nd
30 nd nd nd nd
45 0.124 (0.121, 0.128) 0.096 (0.092, 0.100) —-0.028 (-0.033, -0.023) <0.0001*
60 0.096 (0.092, 0.100) 0.077 (0.074, 0.081) -0.019 (-0.024, -0.014) <0.0001*
120 0.060 (0.057, 0.064) 0.031 (0.027, 0.034) —0.030 (-0.035, —0.025) <0.0001*
180 0.056 (0.053, 0.060) 0.025 (0.021, 0.029) —-0.031 (-0.036, —0.026) <0.0001*
240 0.046 (0.043, 0.050) nd nd nd

stress situations (low alkalinity/high toxicity) genetic
factors are over-ridden, while under low physiological
stress, strain differences become evident.

Total hardness is caused by a variety of dissolved
polyvalent metallic ions, predominantly calcium and
magnesium cations, although other cations (e.g. bar-
ium, iron, manganese, strontium, zinc) may also con-
tribute (WHO 2003). Calcium and magnesium are the
most common sources of water hardness reported in
aquaculture conditions (Boyd & Tucker 1998). Calcium
carbonate (CaCOj;) hardness is a general term that
indicates the total quantity of divalent salts present
and does not specifically identify whether calcium,
magnesium, and/or some other divalent salt is causing
water hardness (Wurts & Durborow 1992). Prevailing
situations in areas where calcium or magnesium
(approximately 27 and 7 mg 1!, respectively, in the
present study) are not the dominant divalent cations
can have different results than found in the present
study.

Environmental pH and total alkalinity are major
modulators of copper toxicity because they affect the
total concentration and speciation of dissolved copper
in solution (Boyd 1990). As pH increases over the range
of 7 to 9, total dissolved copper and cupric ion concen-
trations decrease. As total alkalinity increases, a larger
proportion of the total copper in solution is present as
various carbonate complexes. In fish, hardness (specif-

ically, calcium hardness) affects the toxicity of copper
by modulating the fish's biological response to the
metal; calcium ions may compete with cupric ions for
cation binding or adsorption sites at the gill surface,
resulting in decreased copper uptake by fish (Cusi-
mano et al. 1986). A similar mechanism is suggested in
the present study; however, other cations responsible
for hardness may modulate copper toxicity more than
calcium in different regions throughout the world.

The present study represents the first report demon-
strating differences in sensitivity to CuSO, between
isolates of Ichthyophthirius multifiliis and comple-
ments a recent report by Swennes et al. (2006) that
describes virulence differences between I multifiliis
serotypes. The differences in copper toxicity described
here may explain anecdotal reports concerning the
effectiveness of CuSO, treatments in various localities
and has obvious practical importance. While it is
doubtful that copper sensitivity, virulence, and i-anti-
gen serotype are phenotypically linked, such differ-
ences reflect the genetic potential of ciliate popula-
tions and warrant further study to develop effective
treatment and/or vaccination regimes that are benefi-
cial to the aquaculture industry as a whole.
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