
LETTER IEICE Electronics Express, Vol.10, No.16, 1–6

Loop acceleration by cluster-
based CGRA

Li Zhoua), Hengzhu Liu, and Jianfeng Zhang
Computer School, National University of Defense Technology, Changsha, China

a) zhouli06@nudt.edu.cn

Abstract: This paper presents a cluster-based coarse grained re-
configurable array (CGRA) architecture and a corresponding modulo
scheduling method for the inner-most loop. The reconfigurable clusters
in this CGRA are composed of generic processing elements (PE) and
shared PEs. The local connectivity of a cluster is utilized in the pro-
posed mapping heuristic. Routing in the PE array is avoided because
data transmission is within a cluster or between adjacent clusters in the
heuristic. Experiment shows that the architecture and method outper-
form other modulo scheduling algorithms on CGRA. Better execution
delay and resource utilization ratio can be achieved at 9.8%.
Keywords: CGRA, modulo scheduling, cluster-based
Classification: Integrated circuits

References

[1] B. Mei, S. Vernalde, D. Verkest, H. D. Man and R. Lauwereins: Proc.
13th Field Programmable Logic and Application (2003) 61.

[2] G. Lee, K. Choi and N. D. Dutt: IEEE Trans. Computer-Aided Design
Integr. Circuits Syst. 30 [5] (2011) 637.

[3] Y. Kim, M. Kiemb, C. Park, J. Jung and K. Choi: Proc. 2005 Design,
Automation and Test in Europe Conference and Exposition (2005) 12.

[4] T. Oh, B. Egger, H. Park and S. Mahlke: Proc. ACM SIGPLAN/SIGBED
2009 Conference on Languages, Compilers, and Tools for Embedded Sys-
tems (2009) 21.

[5] L. Chen and T. Mitra: Proc. International Conference on Field-
Programmable Technology 2012 (2012) 285.

[6] B. G. Phillip and S. S. Muchnick: Proc. 1986 ACM SIGPLAN Symposium
on Compiler Construction (1986) 11.

1 Introduction

Coarse grained reconfigurable array (CGRA) architecture has gained atten-
tion since its emergence. CGRA is composed of reconfigurable processing
elements (PE) connected in 2D network similar to ADRES [1]. Figure 1(a)
shows a no-clustered typical CGRA. Each PE owns a register file and a con-
text register. PE function units (FU) can be ALU, memory access (LD/ST),
multiplier (MUL), or a combination. Data is delivered hop-by-hop with pre-
defined path. CGRA achieves a software-like flexibility while offering parallel

c© IEICE 2013
DOI: 10.1587/elex.10.20130506
Received July 01, 2013
Accepted July 17, 2013
Publicized July 25, 2013
Copyedited August 25, 2013

1

IEICE Electronics Express, Vol.10, No.16, 1–6

execution capability in different levels. Modulo scheduling is a frequently
used technique for implementing loop level parallelism. Unlike in very long
instruction word processor, modulo scheduling is more difficult in CGRA be-
cause the data should be transferred from the producer PE to the consumer
PE. Both scheduling and routing are NP-complete [2]. Thus, several heuris-
tic methods for the mapping problem are studied to exploit the potential
capability of CGRA.

A cluster-based CGRA architecture is proposed in this paper. Simple
PEs in a reconfigurable cluster shares complex PE, which reduces hardware
overhead and improves efficiency. This approach is also convenient for deliv-
ering data within the cluster through shared register file. Modulo scheduling
utilizes this feature by allowing each cluster execute its own iteration. It
avoids routing and lowers the complexity of loop mapping. Experiments
on real-life applications indicate that the cluster-based CGRA and method
employed in this paper outperforms other modulo scheduling algorithms on
CGRA architecture.

2 Cluster-based CGRA architecture

Figure 1 (b) shows the cluster-based CGRA which is constructed by a number
of reconfigurable clusters. A cluster is composed of four generic PEs (GPE)
and a shared PE (SPE). Each cluster is connected to its neighboring clusters
in eight dimensions. GPE implements ordinary arithmetic and logic opera-
tions. The source operands of GPE are obtained from SPE or other clusters
selected by two multiplexors. The operations performed on ALU cost a single
cycle, with a data path width of 16 bits. The width of inter-cluster connection
is doubled to 32 bits to provide more transmission bandwidth. The interior
of the GPE has no registers and the connection network between GPE is
removed, since data are stored and exchanged in the register file of SPE.

Unlike the GPE, complex and area consuming units such as MUL are
implemented in SPE. These units are fully pipelined to facilitate operation
execution on each cycle. LD/ST unit is placed in SPE to access external
RAM. This distributed memory structure makes CGRA scalable. The func-
tion units in SPE and the fours GPEs share a 64×16 registered file. Write-
enable signals for registers are generated by the write control unit according
to the destination operands indicated in the config word. The configuration
register loads the config word from the context cache at each cycle, which
defines the behavior of the entire reconfigurable cluster.

Two benefits can be obtained by the cluster-based architecture. First,
the splitting of ordinary PE and area-critic or delay-critic PE will improve
efficiency both in performance and area without much degradation for some
applications. Researches have already unveiled the advantages of resource
sharing [3]. Second, by partitioning processor resources into several groups
or clusters, the PEs in a cluster can be laid out in close proximity, which will
reduce data transmission delays. This local connectivity will increase the PE
utilization ratio and ease the mapping algorithm if used properly.

c© IEICE 2013
DOI: 10.1587/elex.10.20130506
Received July 01, 2013
Accepted July 17, 2013
Publicized July 25, 2013
Copyedited August 25, 2013

2

IEICE Electronics Express, Vol.10, No.16, 1–6

Fig. 1. (a) no-clustered CGRA architecture; (b) cluster-
based CGRA architecture

3 Modulo scheduling on cluster-based CGRA

Modulo scheduling identifies an initial interval (II) to launch the iteration
repeatedly after the II cycles. The loop kernel is represented by a data flow
graph (DFG), and the target CGRA can be modeled by a 2D graph. II is
initially set to the minimal II (MII) value between the resource-minimal II
(resMII) and the recurrence-minimal II (recMII). Modulo scheduler maps
all operations in the DFG to a 3D space, which is an II duplication of the
CGRA 2D graph. Failure of the scheduler increases II and arranges another
schedule until a feasible solution is achieved. Computation and route resource
constraints influence the minimization of II, especially the route resource con-
straints [4]. Figure 2 (a) provides a simple loop kernel. Figure 2 (b) illustrates
its modulo scheduling on a no-clustered CGRA. The recMII = resMII = 2.
However, mapping the kernel into MII = 2 is impossible because of the lim-
itation of routing resource. Four route node were added. Thus, II1 = 3.
The loop body runs it times and the latency of the executing iteration is K1.
Total execution time is represented by the following equation:

T1 = II1 × (it − 1) + K1 (1)

Let α denote the PE utilization ratio of mapping the kernel into II1

cycles (route node excluded); α = # of operations
of PEs×II1

. α usually ranges from 0.5
to 0.6 [5].

The routing for inner dependencies of the loop body in the cluster-based

c© IEICE 2013
DOI: 10.1587/elex.10.20130506
Received July 01, 2013
Accepted July 17, 2013
Publicized July 25, 2013
Copyedited August 25, 2013

3

IEICE Electronics Express, Vol.10, No.16, 1–6

CGRA can be trimmed if each cluster is allowed to execute a single itera-
tion. Besides, the loop body can be unrolled until distance of all loop-carried
dependency becomes 1. Then, the data only need to be transferred within
clusters or between adjacent clusters. Another advantage is the reduced com-
munication between clusters. Source code analysis suggests that the number
of loop-carried dependency is lesser than that of inner dependency. Thus, the
pressure on inter-connection becomes acceptable. Figure 2 (c) demonstrates
this method on cluster-based CGRA. Four PEs are divided into two clusters.
The loop kernel is successfully mapped in II2 = 2 without additional route
node. The nth and the n + 1th iteration, as well as the nth and the n + 2th
iteration, can be executed in parallel.

Fig. 2. (a) loop kernel; (b) modulo scheduling on
no-clustered CGRA; (c) modulo scheduling on
cluster-based CGRA

The total execution time can by calculated by the following equation if
M reconfigurable clusters are present and the loop body can be scheduled in
K2 cycles on one cluster:

T2 = K2 × � it

M
� + II2 × (it mod M) (2)

Let β denote the PE utilization ratio of one cluster, β= # of operations
of PEs in a cluster×K2

.
CGRA is composed of M clusters, αII1M = βK2. Then,

T2 =
α

β
II1M × � it

M
� + II2 × (it mod M) (3)

where β easily achieves more than 0.67 (concluded from experiments) because
no route node is added. A comparison between Eq. (1) and Eq. (3) indicates
the high probability of obtaining T2 < T1 because it is often in hundreds
magnitude, whereas M typically ranges from 4 to 16.

The steps of modulo scheduling scheme on the proposed cluster-based
CGRA are described below:

1) Unroll the loop until the distance of all loop-carried dependency be-
comes 1.

c© IEICE 2013
DOI: 10.1587/elex.10.20130506
Received July 01, 2013
Accepted July 17, 2013
Publicized July 25, 2013
Copyedited August 25, 2013

4

IEICE Electronics Express, Vol.10, No.16, 1–6

2) Extend the kernel L times to obtain a new DFG. The potential paral-
lelism among nth, n + Mth, n + 2Mth,...N + (L − 1)Mth iterations can be
explored by this extension. L in the proposed CGRA is set to the maximum
parallelism level of 5.

3) The operations in the recurrence cycle are grouped into a super node.
Let II = recMII to perform list scheduling. CGRA contains pipelined
function units. Thus, the latency weighted depth is used to define the priority
of nodes [6].

4) Check whether the scheduled DFG can start with II. If not, II =
II + 1, and another list scheduling is set until II becomes feasible.

Operations in the recurrence cycle should be executed in successive cycles
when scheduling a super node. II = recMII if the super nodes can be
scheduled this way; otherwise, II may be more than recMII because of the
increased latency in recurrence cycles. Thus, the validation of II should be
checked every time a solution is achieved. When scheduling the extended
DFG, the consumer of loop-carried dependency in the L + 1th extension
should be executed M × II cycles later than the its producer in the Lth
extension. Therefore, a new scheduling is required in step 4 once II changed.

4 Experiments

4.1 Experimental setup
A CGRA with four clusters is adopted in the experiments. This method is
described it in Verilog HDL and synthesized by Synopsys design compiler
using Chartered 90 nm CMOS standard cell technology. The total area of
the array (without SRAM) is 1.82 mm2. Maximal frequency is 667 MHz. A
conventional no-clustered architecture is used, as shown in Figure 1 (a). This
architecture has 4×5 PEs (4×4 ALU PEs and 1 column of four MUL+LD/ST
PEs).

Three actual applications from telecommunication, multimedia, and secu-
rity domain were selected, namely, WCDMA channel decoder, H.264 decoder,
and AES cryptography. A number of loop kernels are extracted for accel-
eration. Two other modulo scheduling algorithms are also chosen for com-
parison, namely, the recurrence cycle aware edge centric modulo scheduling
(RAMS) algorithm [4] and the graph minor (GM) approach [5]. GM performs
better than the simulated annealing method used in ADRES [1].

4.2 Results
Table I shows the execution time (measured in CGRA cycles) and the PE uti-
lization ratio (route node excluded) of the three algorithms on no-clustered
and cluster-based CGRA. GM and RAMS degrade when mapping appli-
cations onto cluster-based CGRA. This mechanism can be attributed to
the competition for inter-cluster connection. The communication between
clusters will bottleneck if the limited network resource is not considered. Lo-
cal connectivity is utilized by confining each iteration into a single cluster,
whereas the contention on communication resources between clusters is allevi-

c© IEICE 2013
DOI: 10.1587/elex.10.20130506
Received July 01, 2013
Accepted July 17, 2013
Publicized July 25, 2013
Copyedited August 25, 2013

5

IEICE Electronics Express, Vol.10, No.16, 1–6

Table I. Comparison on scheduling results

no-clustered CGRA cluster-based CGRA

Applications
number
of loops

RAMS GM RAMS GM Proposed

T1 α T1 α T1 α T1 α T2 β

WCDMA
channel
decoder

24 10505 0.53 8963 0.62 10541 0.53 9152 0.61 8033 0.69

H.264
decoder

61 46379 0.52 40537 0.60 47289 0.51 39965 0.60 36204 0.67

AES
cryptography

8 9278 0.55 7998 0.64 9624 0.53 8016 0.64 7291 0.70

Total compilation
time (sec)

809 837 806 845 782

ated. Therefore, 23.6% and 9.8% cycle count is saved compared with the two
other algorithms if cluster-based mapping heuristic is applied on the cluster-
based CGRA. The complication time of the three algorithms is in the same
magnitude. Although we may unroll and extend the loop body more times,
the proposed algorithm is still faster because of the routing time saved. This
algorithm achieves 68.6% resource utilization on average, whereas RAMS is
52.8% and GM is 61.9%.

5 Conclusion

This paper presents a cluster-based CGRA architecture and a heuristic to
map loop kernels. Simple PEs and shared complex PE construct a reconfig-
urable cluster, and several connected clusters are included in the CGRA. A
special modulo scheduling on the cluster-based CGRA is conducted by con-
fining each iteration into a single cluster. The advantages of cluster-based
CGRA are fully utilized which facilitate faster loop acceleration on this pro-
posed CGRA by using the cluster-based mapping algorithm. The experi-
ments show that CGRA and the method employed in this paper achieve less
execution delay and better resource utilization ratio within less compilation
time.

c© IEICE 2013
DOI: 10.1587/elex.10.20130506
Received July 01, 2013
Accepted July 17, 2013
Publicized July 25, 2013
Copyedited August 25, 2013

6

