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Abstract. In the present study, we examined the effect of basic fibroblast growth factor (bFGF) on 

gonadotropin-dependent estradiol and progesterone production in cultured rat immature and 
FSH-primed granulosa cells. Treatment with bFGF alone did not affect the biosynthesis of estradiol and 

progesterone in immature and FSH-primed granulosa cells. Basic FGF significantly inhibited 
FSH-induced estradiol and progesterone production in both immature and FSH-primed granulosa cells. 
In contrast, bFGF exerted a significant stimulatory effect on LH-induced estradiol and progesterone 

production in FSH-primed granulosa cells. Our finding that bFGF exerts opposite effects on 
gonadotropin-dependent steroidogenesis suggests that bFGF may play important paracrine and/or 
autocrine roles in the process of follicular development, ovulation, and subsequent luteinization. 
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BASIC FIBROBLAST growth factor (bFGF), a 

155-amino acid polypeptide, is a potent mitogen 
for cells of mesodermal and neuroectodermal 

origin [1]. A growing body of evidence has 
suggested a role for bFGF in the regulation of 

ovarian functions. Recently, we have demon-
strated the existence of specific binding sites for 

bFGF on rat granulosa cells [2]. Adashi et al. [3] 
have shown that bFGF decreases FSH-stimulated 

estrogen biosynthesis in rat immature granulosa 
cells. In addition, bFGF is shown to inhibit the 
FSH-induced LH receptor expression [4, 5] and 

inhibin subunits expression in cultured rat granu-
losa cells [6]. Basic FGF therefore appears to 

function as a potent inhibitor of maturation of 
immature granulosa cells in vitro. 

 On the other hand, it has been reported that 
bFGF is capable of increasing granulosa cell 
tissue-type plasminogen activator activity and mes-
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sage levels, inducing oocyte maturation and in-
creasing follicular prostaglandin (PG) E content 

[7]. We have reported that FSH induces functional 
receptors for bFGF in rat granulosa cells [2]. Since 

the corpus luteum angiogenic factor is related to 
bFGF [8], the growth factor is thought to exert 

profound regulatory effects in the process of 
ovulation and luteinization. Although it is possible 

that bFGF may play a regulatory role in the 
luteinized granulosa cell, little is known about the 
interrelationship between the growth factor and 

the steroidogenesis in the luteinized granulosa cell. 
In the present study, we examined the effect of 

bFGF on gonadotropin-dependent estradiol and 

progesterone production in both immature and 
FSH-primed granulosa cells.

          Materials and Methods 

Hormones and reagents

 McCoy's 5a medium (modified; without serum), 

penicillin-streptomycin solution, L-glutamine and
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trypan blue stain (0.4%) were obtained from 
Grand Island Biochemical Co. (Santa Clara, CA, 
USA). Ovine FSH (NIH oFSH-S 17; FSH activity, 
20 x NIH-FSH 51 U/mg, LH activity 0.04 x 
NIH-LH S I U/mg), ovine LH (oLH-26.2.3 U/mg, 
FSH contamination <0.5% by weight) were 
obtained from the National Hormone and Pituit-
ary Distribution Program, NIDDKD, NIH (Balti-
more, MD, USA). Recombinant human bFGF was 

provided by Synergen (Boulder, CO, USA). Dieth-
ylstilbestrol (DES) and androstenedione were 
purchased from Sigma Chemical Co. (St. Louis, 
MO, USA).

Granulosa cell cultures

  Intact immature female Sprague-Dawley rats 

(25 days old) were obtained from Kiwa Laboratory 
Animals Co. (Wakayama, Japan) and injected sc 
DES (1 mg) dissolved in sesame oil daily for 4 days. 
A 14 h light, 10 h dark cycle was maintained with 
the light cycle initiated at 0600 h. The animals 
were sacrificed by cervical dislocation. Granulosa 
cells were obtained from ovaries by needle punc-
tures as previously described [2]. The cells (1 x 105 
viable cells/tube) were cultured in polystyrene 
tubes (Falcon Plastics, Los Angeles, CA, USA) (12 
x 75 mm), containing 0.5 ml McCoy's 5a medium 

(modified; without serum) supplemented with 2 
mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 
streptomycin sulfate, and 10-7 M andro-
stenedione. Cell cultures were performed in a 
humidified 95% air- 5% CO2 incubator at 37°C. In 
some experiments, granulosa cells were cultured 
for 48 h in the presence or absence of oFSH (30 
ng/ml) with or without bFGF. In others, the 

granulosa cells were initially cultured for 2 days in 
the presence of 30 ng/ml oFSH and, after priming, 
the cells were washed twice with medium and 
reincubated in fresh culture medium for addition-
a148 h in the presence or absence of the specified 
experimental agents. At the end of the experi-
ments, media collected were stored frozen at 
-80°C until assayed for estradiol or progesterone 

content by RIA as previously described [9].

Assay o f estradiol and progesterone

 Estradiol concentrations in the cultured media 
were determined with a commercial RIA kit 

(Daiichi Radioisotope Laboratories, Tokyo, Japan)

without extraction by diethyl-ether. The anti-
serum was raised against estradiol- l 7/3-
carboxymethyloxime-bovine serum albumin 

(BSA). This antiserum cross-reacts 0.47% with 
estrone and 0.41 % with estriol but shows no 
cross-reaction with testosterone, androstenedione, 
dehydroepiandrosterone, progesterone, 17a-OH-

progesterone, 17a-OH-pregnenolone, or cortisol. 
  Progesterone concentrations in the cultured 
media were determined with a commercial RIA kit 

(Daiichi Radioisotope Laboratories, Tokyo, Japan) 
without extraction by diethyl-ether. The anti-
serum was raised against progesterone-
hemisuccinate-BSA. This antiserum cross-reacts 
0.24% with 17cr-OH-progesterone, 1.2% with 
deoxycorticosterone, 6.6% with corticosterone, 
and 72.9% with 1hr-OH-progesterone but shows 
no cross-reaction with estradiol, cortisol, testoster-
one, cortisone, pregnenolone, or 11-deoxycortisol. 
The intra-assay and interassay coefficients of 
variation for these assay did not exceed 5.1 % and 
5.6%, respectively.

Data analysis

 All experimental data were presented as the 

mean ± SEM of duplicate measurements of 

triplicate cultures. Statistical analyses were per-

formed by the analysis of variance with a multiple 

range test.

Results

 The addition of FSH (30 ng/ml) to the cells 

resulted in remarkable increase in the production 

of both estradiol (Fig. 1A) and progesterone (Fig. 
1B). Treatment with bFGF (30 ng/ml) by itself did 
not affect the biosynthesis of estradiol or proge-

sterone (Fig. 1). However, concurrent treatment 
with bFGF resulted in dose-dependent inhibition 

of the FSH effect on estradiol production with a 
maximal inhibitory effect of 91 ± 1% (Fig. IA) and 

on progesterone production with a maximal in-
hibitory effect of 41 ± 6% (Fig. 1B). 
 The effect of bFGF on steroidogenesis in FSH-

primed granulosa cells was examined. As ex-
pected, the addition of FSH (100 ng/ml) to the 
FSH-primed cells resulted in a remarkable in-
crease in the production of both estradiol (Fig. 2A) 

and progesterone (Fig. 2B). Treatment with bFGF
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(30 ng/ml) by itself did not affect the biosynthesis 
of estradiol or progesterone in FSH-primed cells 

(Fig, 2). However, concurrent treatment with 
bFGF resulted in dose-dependent inhibition of the 
FSH effect on estradiol production with a maximal 
inhibitory effect of 55 ± 6% (Fig. 2A) and on

progesterone production with a maximal inhibi-
tory effect of 48 ± 5% (Fig. 2B). 
 We also tested the effect of bFGF on LH-
stimulated steroidogenesis in FSH-primed granu-
losa cells. Unlike FSH, concurrent treatment with 
bFGF resulted in dose-dependent stimulation of

Fig. 1. Effect of bFGF on FSH-stimulated estradiol and progesterone production in rat granulosa cells. 
   Granulosa cells (1 x 105 cells/tube) were cultured for 48 h in medium alone [control (C)] or with 

  bFGF (30 ng/ml) or FSH (30 ng/ml) alone or FSH (30 ng/ml) with increasing doses of bFGF (0.1-30 
   ng/ml). At the end of the culture period, medium was collected and the concentrations of (A) 
   estradiol and (B) progesterone were measured by specific RIA. The results represent the mean ± 
   SEM of three separate experiments. *, P<0.01; **, P<0.05 compared with FSH-treated granulosa 
   cells.

Fig . 2. Effect of bFGF on FSH-stimulated estradiol and progesterone production in FSH-primed rat 

    granulosa cells. Granulosa cells (1 x 105 cells/tube) were initially cultured for 2 days in the presence 
    of FSH (30 ng/ml), and after priming, the cells were washed twice with medium and reincubated for 

   an additional 48 h in medium alone [control (C)] or with bFGF (30 ng/ml) or FSH (100 ng/ml) alone 
    or FSH (100 ng/ml) with increasing doses of bFGF (0.1-30 ng/ml). At the end of the culture period , 

    medium was collected and the concentrations of (A) estradiol and (B) progesterone were measured 
    by specific RIA. The results represent the mean ± SEM of three separate experiments. *, P<0.01; **, 

    P<0.05 compared with FSH-treated granulosa cells.
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the LH effect on estradiol production with a 
maximal stimulatory effect of 255 + 7% (Fig. 3A) 

and on progesterone production with a maximal 
stimulatory effect of 110 ± 35% (Fig. 3B).

               Discussion 

  The capacity of a developing follicle to ovulate 

and luteinize is critically dependent upon the 
cytodifferentiation of granulosa cells. Increased 

aromatase activity and progesterone production 
are characteristic markers for highly differenti-
ated granulosa cells. In the present study, we 

demonstrated that bFGF inhibited FSH-induced 
estradiol and progesterone production in both rat 

immature granulosa cells and FSH-primed granu-
losa cells. We also provided the first evidence that 

bFGF enhanced LH-stimulated estradiol and 

progesterone production in rat FSH-primed gra-
nulosa cells. 
  Basic FGF has been previously demonstrated to 

account for most of the angiogenic activity of 
corpus luteum extracts [8]. The presence of bFGF 
was demonstrated in luteal tissues, and bFGF 

immunoreactivity, bioactivity, and mRNA were 
found in bovine granulosa cells [10]. A recent 

study using reverse transcription-polymerase 
chain reaction has identified ovarian bFGF mRNA 
in rat ovaries [11]. In addition, specific binding

sites for bFGF have been demonstrated on cul-
tured rat granulosa cells [2, 12]. 

  It has been reported that treatment of rat 
immature granulosa cells with bFGF inhibits the 

capacity of FSH to stimulate estrogen production 

[3, 13]. Our results on bFGF inhibition of FSH-
stimulated estrogen biosynthesis are comparable 

with reports using primary culture of rat granulo-
sa cells. On the other hand, Baird et al. [13] 

revealed that bFGF showed an apparent biphasic 

progesterone response to FSH in progesterone 
synthesis in rat granulosa cells. bFGF was found to 
inhibit progesterone accumulation by cultured 

bovine granulosa cells [14], but was reportedly 
without effect on progesterone production by 

cultured porcine granulosa cells [15]. In this study, 
bFGF inhibited FSH-stimulated progesterone pro-

duction by both immature and FSH-primed gra-
nulosa cells. Although the reasons underlying the 

above discrepancies remain to be elucidated, bFGF 

preparations of variable quality and differing 
culture conditions might be involved. Our finding 
that recombinant bFGF is able to attenuate FSH-
stimulated steroidogenesis in rat immature and 

FSH-primed granulosa cells, suggests that bFGF 
may play an inhibitory cytodifferentiative role in 

the ontogeny of the granulosa cell. 
 It is well established that FSH can induce the 

appearance of specific, high affinity LH receptors 
in isolated granulosa cells and that LH receptors

Fig. 3. Effect of bFGF on LH-stimulated estradiol and progesterone production in FSH-primed rat 

granulosa cells. FSH-primed granulosa cells (as described in Fig. 2) were cultured for 48 h in medium 
alone [control (C)] or with bFGF (30 ng/ml) or LH (100 ng/ml) alone or LH (100 ng/ml) with 
increasing doses of bFGF (0.1-30 ng/ml). At the end of the culture period, medium was collected and 
the concentrations of (A) estradiol and (B) progesterone were measured by specific RIA. The results 
represent the mean ± SEM of three separate experiments. *, P<0.01; **, P<0.05 compared with 
LH-treated granulosa cells.
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are capable of mediating two important biological 
responses, namely, progesterone and estrogen 

biosynthesis [16]. This direct action of FSH in the 

granulosa cell can explain the increased respon-
siveness of the preovulatory follicle to LH during 
the follicular phase of the reproductive cycle. In 
the present study, bFGF exerted stimulatory 

effects on LH-induced estradiol and progesterone 

production in rat FSH-primed granulosa cells. 
Recently, Tamura et al. [1 7] reported that bFGF 
increased progesterone secretion in cultured rat 

luteal cells, and that the stimulative effect of bFGF 
on progesterone production gradually decreased 
as the corpus luteum aged. 

  Since the effects of FSH and LH are mediated 
through increased protein kinase A activity, it is 

difficult to explain the opposite effects of bFGF on 
FSH- and LH-dependent steroidogenesis in FSH-

primed granulosa cells. LH activates a protein 
kinase C system in luteinized granulosa cells [18, 
19], and ovarian follicles and corpora lutea are 

sites of protein kinase C activity [20]. The activa-
tion of protein kinase C in immature granulosa 

cells is associated with the inhibition of FSH-
stimulated steroidogenesis [21, 22]. Inversely, 

luteinized granulosa cells respond to activation of 

protein kinase C with increases in cAMP produc-
tion and steroid synthesis [23, 24]. Thus granulosa 
cells show development-related responses to 

activation of protein kinase C. On the other hand, 
it was previously shown that treatment with bFGF 

induced a dose-dependent increase in PGE2 and 
PGF2 a production in rat luteinized granulosa cells 

[7, 17]. The observation that PGE2 and PGF2 a can 
mimic the stimulatory effect of LH on steroid 

production by preovulatory follicles [25] may 
therefore indicate an additional mechanism 
through which these factors may increase steroid 

biosynthesis by luteinized granulosa cells. 
  It is uncertain whether the modulation of

gonadotropin-stimulated steroidogenesis in gra-
nulosa cells by bFGF demonstrated in this study 
reflects the in vivo regulation of steroidogenesis. 

Since the peptide encoded by bFGF mRNA does 
not contain a conventional signal sequence [26], it 

is unclear how bFGF is released from the cell. 
There is evidence to suggest that bFGF 

polypeptides are stored in a biologically inert form 
bound to heparan sulfate proteoglycans in the 

extracellular matrix [27, 28]. Because there are no 
reports of bFGF levels in ovarian tissue and 
follicular fluid, it is not clear whether the doses of 

bFGF used in the present study are physiological 
concentrations. Recently, Guthridge et al. [29] 

reported that in situ hybridization signals of bFGF 
mRNA in cyclic rat ovary were higher in the 

granulosa cell layer of larger follicles when com-

pared to smaller follicles during proestrus and 
estrus suggesting that bFGF mRNA levels increase 
throughout follicular development. They also de-
monstrated that in situ labelling of bFGF mRNA in 

the corpus luteum at metestrus was significantly 
higher than the labelling of granulosa cells in 

developing follicles indicating a higher level of 
bFGF mRNA. 

 In conclusion, our finding that bFGF exerts 
opposite effects on gonadotropin-dependent ster-

oidogenesis suggest that bFGF may play important 

paracrine and/or autocrine roles in the process of 
follicular development, ovulation, and subsequent 

luteinization.
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