
LETTER IEICE Electronics Express, Vol.10, No.14, 1–6

Node pre-fetching
architecture for real-time ray
tracing

Jeong-soo Park1), Woo-chan Park2), Jae-Ho Nah1),
and Tack-don Han1a)

1 Department of Computer Science, Yonsei University,

137 Shinchon-dong, Seodaemoon-gu, Seoul, South Korea
2 Department of Computer Engineering, Sejong University,

98 Gunja-dong, Gwangjin-gu, Seoul, South Korea

a) hantack@msl.yonsei.ac.kr

Abstract: The traversal process in accelerated ray tracing algo-
rithms requires many memory transactions of an acceleration structure.
We present a pre-fetching system to pre-load potential node data into
a cache. Experimental results show that the proposed scheme increases
the performance of a cache system by reducing the cache miss rate.
Keywords: ray tracing, computer graphics, acceleration structure,
cache memory
Classification: Electron devices, circuits, and systems

References

[1] I. Wald, S. Boulos and P. Shirley: ACM TOG 26 (2007) 6.
[2] D. R. Horn, J. Sugerman, M. Houston and P. Hanrahan: Symp. I3D (2007)

167.
[3] J. Nah, J. Park, C. Park, J. Kim, Y. Jung, W. Park and T. Han: ACM

TOG 30 (2011) 160.
[4] J. Bigler, A. Stephens and S. G. Parker: IEEE/EG Symp. IRT (2006) 187.
[5] J. Tse and A. J. Smith: IEEE Trans. Comput. 47 (1998) 509.
[6] H. Igehy, M. Eldridge and K. Proudfoot: ACM SIGGRAPH/EG HWWS

(1998) 133.
[7] I. Wald and P. Slusallek: ACM SIGGRAPH/EG HWWS (2001) 21.
[8] W. Park, K. Lee, I. Kim, T. Han and S. Yang: IEEE Trans. Comput. 52

(2003) 1505.

1 Introduction

Ray tracing algorithms simulate the traversal of a ray through a three-
dimensional scene, so that images can be synthesized with realistic global
illumination effects such as shadows, reflection, and refraction. However, ray
tracing algorithms consumes an enormous amount of computation and band-
width when searching for the closest visible primitive and its hit point from
a particular view point.

c© IEICE 2013
DOI: 10.1587/elex.10.20130468
Received June 17, 2013
Accepted June 28, 2013
Publicized July 09, 2013
Copyedited July 25, 2013

1



IEICE Electronics Express, Vol.10, No.14, 1–6

Previous researches have attempted to accelerate ray tracing algorithms
by scene data pre-processing. Since it is expensive and wasteful to search
for visible primitives by testing all of the primitives in a scene, hierarchical
structures are used to prune unnecessary intersection tests. Though using
an acceleration structure could reduce the burden of intersection testing,
it still entails an enormous amount of randomized memory access to the
acceleration structure itself. To remedy this problem, many researchers have
leveraged parallel architectures and cache memory systems in SIMD-equipped
CPUs [1], GPUs [2], and custom designed accelerators [3].

In this paper, we present a hardware based node pre-fetching technique for
hierarchical acceleration structure to improve memory performance of hard-
ware ray tracing accelerator. Since the traversal of a hierarchical structure
involves storing some nodes in a stack to process them later, our proposed
scheme generates additional requests to the cache for the nodes in the stack
prior to use them. We simulated our scheme in the Manta ray tracer [4] and
the DineroIV cache simulator. The result showed up to 19% improvement in
cache performance without significant bandwidth overhead.

2 Background

In the last decades, many forms of acceleration structures have been pro-
posed. Among them, kd-trees because of their good traversal performance [2]
and bounding volume hierarchies (BVHs) because of their faster structure up-
date [1] are primarily used. Since a kd-tree subdivides the scene spatially,
its node traversing sequence is ordered front-to-back. Thus, whenever the in-
tersected primitive is found, the kd-tree traversal process can be terminated
even if the stack is not empty. In contrast, a BVH is an object subdivision
tree. Due to overlapped nodes in the BVH, the BVH traversal process should
be continued until the stack is empty to obtain the closest hit point.

The pre-fetching technique was originally developed for instruction cache
architecture, allowing CPUs to retrieve instructions ahead of executions [5].
In the CPU design, the instructions are read-only and control flow, except
branching, is quite predictable, that makes the pre-fetching technique very
effective. In the field of computer graphics, pre-fetching is used in texture
mapping to hide memory latency [6]. In this pre-fetch architecture, texels
are immediately requested after a fragment is generated from the rasteriza-
tion stage, before the texture mapping stage. Because the texture data is
read-only and has high temporal locality, the texture pre-fetching technique
effectively reduces the latency of texture accesses. There also exist prior
research that utilizes pre-fetching instructions of commodity CPU for opti-
mizing software ray tracer [7]. They pre-loads the scene data to hide network
communication latency for distributed cluster rendering. As in their work, in
order to use pre-fetching effectively, algorithms must be simple enough such
that it can easily be predicted which data will be needed in the near future.
They only addressed the expected potential of pre-fetching the scene data to
be used in future frame without detailed explanation.

c© IEICE 2013
DOI: 10.1587/elex.10.20130468
Received June 17, 2013
Accepted June 28, 2013
Publicized July 09, 2013
Copyedited July 25, 2013

2



IEICE Electronics Express, Vol.10, No.14, 1–6

The proposed scheme predicts and pre-fetches the data to be used during
single ray processing, while the method proposed by Wald et al. [7] pre-
fetches the scene data for next frame. These make the proposed scheme
more effective for real-time ray tracing architecture. Even though software
ray tracer can take advantage of pre-fetching during single ray traversal, the
pre-fetching thread could disrupt the execution of main rendering thread
due to enormous thread switching. Because the independent hardware pre-
fetching unit does not degrade the execution of main rendering process, the
proposed scheme is much more suitable for ray tracing accelerator hardware.

3 Node pre-fetching architecture

Figure 1 illustrates an example of our proposed architecture. The traversal
unit searches subsets of primitives in leaf nodes to check for intersections
by searching the acceleration structure. The intersection test unit actually
checks every primitive in the leaf node for its intersection by the ray. Since
both units request data in external memory (Ext. Mem.), cache memories
can be used to exploit the locality of the data. The proposed scheme adds a
pre-fetching unit between an intersection unit and a traversal unit. The pre-
fetching unit generates memory requests for the node data in the node stack.
To achieve this, the stack requires an additional top pointer (pre-fetching
pointer) to pass the next address on to the pre-fetching unit.

The proposed scheme works as follows: When the traversal unit inserts a
node into the stack, it assigns the same position to the pre-fetching pointer
with the conventional stack top pointer. After a ray meets a leaf node, the
intersection test unit activates the pre-fetching unit while checking the inter-
section between the ray and the primitives in the leaf node. The pre-fetching
unit pops the node address from the node stack using the pointer. Subse-
quently, the popped node address is sent to the node cache if the traversal
unit does not execute any memory operations. The proposed scheme contin-
ues to demand the node addresses in the stack until every addresses in the

Fig. 1. Proposed node pre-fetching scheme.

c© IEICE 2013
DOI: 10.1587/elex.10.20130468
Received June 17, 2013
Accepted June 28, 2013
Publicized July 09, 2013
Copyedited July 25, 2013

3



IEICE Electronics Express, Vol.10, No.14, 1–6

Fig. 2. Images from Test Scenes: Bunny (upper left),
Conference (upper right), Sibenik (lower left), and
Sponza (lower right).

stack is requested or the intersection test is ended. By doing so, the node
data is loaded in the cache before we restart the traversal from the current
node in the stack.

If the tracing of a ray finishes with a non-empty stack, the pre-fetched
data in the stack can be useless and it could cause unnecessary bandwidth
consumption. However, this bandwidth overhead is negligible. In the case of
BVHs, tracing a radiance ray cannot be finished until the stack is empty. In
the case of kd-trees, the number of used stack entries is usually not larger
than three [2] because only intersected nodes are pushed to the stack. As the
number of pre-fetched data in the stack is usually three or less, and it is not
very burdensome.

4 Experimental results

To evaluate our proposed scheme, we performed the cache simulation with
the DineroIV cache simulator over four well-known benchmarks (Figure 2):
Bunny, Conference, Sibenik, and Sponza. The node memory request data
were traced out using the Manta interactive ray tracer [4]. We shot a pri-
mary ray and a shadow ray per pixel. We performed cache simulation with
8 KB and 16 KB cache sizes with one-way (direct-mappped) and two-way set
associativity configurations. The used block size used was 32 bytes. Table I
shows the experimental results of the cache simulation and the ratios of the
results with and without the pre-fetching scheme.

In addition to cache simulation, we also derived average traversal cycle
per ray concept from performance measurement for traditional rasterization

c© IEICE 2013
DOI: 10.1587/elex.10.20130468
Received June 17, 2013
Accepted June 28, 2013
Publicized July 09, 2013
Copyedited July 25, 2013

4



IEICE Electronics Express, Vol.10, No.14, 1–6

Table I. Cache simulation results of the proposed scheme.
A denotes results without the pre-fetching and B
denotes results with the pre-fetching scheme. As-
soc. stands for associativity.

S
ce

n
e

Cache
size

Miss
rate(%) B/A

Band-
width(KB) B/A

ACPR

(Ratio(%))

(assoc.) A B (%) A B (%)

KD-tree

B
un

ny

8 K(1) 7.1 5.9 83.0 411 396 96.4 126.6/107.9(85)
8 K(2) 3.6 2.9 80.7 208 196 93.9 72.0/61.0(85)

16 K(1) 4.6 3.8 82.5 264 253 95.8 87.6/75.1(86)
16 K(2) 2.3 1.9 80.3 135 126 93.2 51.7/45.4(88)

C
on

fe
re

nc
e 8 K(1) 14.3 12.2 84.9 2,526 2,535 100.3 239.0/206.2(86)

8 K(2) 8.7 7.3 84.4 1,527 1,524 99.8 151.6/129.7(86)
16 K(1) 9.7 8.2 84.8 1,703 1,708 100.3 167.2/143.8(86)
16 K(2) 6.1 5.1 84.5 1,070 1,069 100.0 111.0/95.4(86)

Si
be

ni
k 8 K(1) 12.8 11.6 91.2 3,473 3,478 100.1 215.6/196.9(91)

8 K(2) 5.5 5.0 90.9 1,496 1,494 99.9 101.6/93.8(92)
16 K(1) 7.2 6.6 91.3 1,958 1,961 100.1 128.2/118.8(93)
16 K(2) 2.9 2.6 91.0 789 788 100.0 61.0/56.4(92)

Sp
on

za

8 K(1) 12.6 11.1 87.6 1,917 1,919 100.1 212.5/189.1(89)
8 K(2) 7.5 6.5 87.4 1,133 1,131 99.8 132.9/117.2(88)

16 K(1) 7.4 6.5 87.6 1,126 1,127 100.0 131.3/117.2(89)
16 K(2) 4.8 4.2 87.5 731 731 100.0 90.7/81.3(90)

BVH

B
un

ny

8 K(1) 12.0 10.5 87.4 4,902 4,916 100.3 347.8/307.7(88)
8 K(2) 5.8 5.0 86.8 2,341 2,333 99.7 182.0/160.6(88)

16 K(1) 5.7 4.9 87.1 2,305 2,306 100.0 179.4/158.0(88)
16 K(2) 1.5 1.3 87.2 608 606 99.7 67.1/61.7(92)

C
on

fe
re

nc
e 8 K(1) 37.5 32.4 86.5 31,349 31,560 100.7 1029.4/893.0(87)

8 K(2) 25.6 21.9 85.8 21,386 21,360 99.9 711.3/612.4(86)
16 K(1) 17.6 15.3 86.6 14,748 14,863 100.8 497.4/436.0(88)
16 K(2) 12.4 10.7 85.9 10,406 10,401 100.0 358.4/313.0 (87)

Si
be

ni
k 8 K(1) 29.8 27.9 93.6 31,599 31,622 100.1 823.5/772.8(94)
8 K(2) 20.8 19.4 93.5 22,041 22,036 100.0 583.0/545.6(94)

16 K(1) 14.5 13.6 93.5 15,401 15,405 100.0 414.6/390.5(94)
16 K(2) 7.7 7.2 93.5 8,192 8,191 100.0 232.8/219.5(94)

Sp
on

za

8 K(1) 26.5 24.3 91.7 15,717 15,751 100.2 735.3/676.5(92)
8 K(2) 21.9 20.1 91.4 13,028 13,026 100.0 612.4/564.3(92)

16 K(1) 13.1 12.0 91.5 7,752 7,761 100.1 377.2/347.8(92)
16 K(2) 6.5 5.9 91.4 3,851 3,850 100.0 200.7/184.7(92)

c© IEICE 2013
DOI: 10.1587/elex.10.20130468
Received June 17, 2013
Accepted June 28, 2013
Publicized July 09, 2013
Copyedited July 25, 2013

5



IEICE Electronics Express, Vol.10, No.14, 1–6

hardware [8]. It can be calculated from the equation

ACPRTRV = Navg ∗ ((1 − Rmiss) ∗ Lhit + Rmiss ∗ Lmiss) (1)

where Navg, Lhit, Rmiss and Lmiss denote average number of node traversal
per ray, hit ratio, hit latency, miss ratio and miss penalty respectively. In
our experiments, we assign 1 for Lhit and 100 for Lmiss.

Simulation results show that our pre-fetching scheme is useful for both
kd-trees and BVHs. The pre-fetching scheme reduces cache miss rates of kd-
tree traversal and BVH traversal by 8.7–19.3% and 6.4–14.2%, respectively
so that the average cycles for a ray traversal is also reduced. The results
also show that our scheme is more suitable for set-associative caches rather
than direct-mapped caches. This is because higher associativity reduces the
chance that the pre-fetched node data will be evicted. In terms of the memory
bandwidth required, the results with and without the pre-fetching scheme
are very similar. On average, our proposed scheme decreases the required
memory bandwidth for kd-tree traversal by 1.2% and increases that for the
BVH traversal by 0.1%. As predicted in the previous section, the memory
traffic overhead of the proposed scheme is very low.

ACPR is also decreased by 6–16%, which is actually tens of cycles per
ray. This is quite promising for entire ray tracing performance because ten
or hundred millions of cycles can be reduced while shooting millions of rays
to render a frame. In contrast kd-tree, traversal of BVH structure can not
early-terminated, so that ACPR value of BVH traversal is more than that of
kd-tree.

5 Conclusion

In this paper, we proposed a simple and effective pre-fetching scheme that
loads node address in the node stack into cache blocks prior to traversing the
node. The experimental results show that the proposed pre-fetching scheme
is effective for both kd-tree and BVH structures. The pre-fetching scheme
decreases the cache miss rates by 6.4–19.3% and the average traversal cycles
per ray by 6–16%, while the bandwidth overhead is negligible.

In future studies, we intend to exploit more accurate prediction rules be-
fore pre-fetching by considering additional information such as node level.
We also would like to extend our scheme to BVH and other types of acceler-
ation structures. Furthermore, as software render tries to leverage pre-fetch
instruction of commodity CPU by pre-loading data as much as possible, we
will extend the hardware pre-fetching unit to other types of data such as
primitive list or textures.

c© IEICE 2013
DOI: 10.1587/elex.10.20130468
Received June 17, 2013
Accepted June 28, 2013
Publicized July 09, 2013
Copyedited July 25, 2013

6


