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INTRODUCTION

Thermal stratification is crucial for physical, chem-
ical, and biological processes in lakes (Brönmark &
Hansson 2005), with deepening of the thermocline
causing shifts in the structure and composition of
aquatic communities (Cantin et al. 2011). Typical
consequences of altered thermocline depth include
changes in internal nutrient loading and phytoplank-
ton abundances (Hambright et al. 1994), which can
influence the whole lake ecosystem. In climate
change scenarios, a change in thermocline depth is

expected in stratified lakes, but its direction remains
unclear (Sommaruga et al. 1999, Cantin et al. 2011).
Deeper thermoclines can form through declines in
dissolved organic carbon (DOC) following increased
temperatures and longer periods of drought and sub-
sequent decrease in surface runoff that reduce the
input of organic matter (Fee et al. 1996, Schindler et
al. 1996). Consequently, deeper thermoclines and
deeper vertical mixing would likely lead to improved
oxygen conditions in the hypolimnion (Scully et al.
2000). There is also a possibility that climate warm-
ing will cause shallowing of the thermocline through
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increased epilimnetic temperatures that would lead
to more stratified lakes with shallower thermoclines
(DeStasio et al. 1996, Straile et al. 2003). The shallow
thermocline location and increased volume of water
below the thermocline can potentially cause a de -
cline in hypolimnetic dissolved oxygen (Blumberg &
Di Toro 1990).

Zooplankton and benthos, such as Cladocera and
Chironomidae, are key components of aquatic eco-
systems (Einarsson & Örnólfsdóttir 2004, Jeppesen et
al. 2011, Raunio et al. 2011). Their intralake distribu-
tion is strongly related to abiotic and biotic factors
that have relationships with thermocline depth (Lei-
bold 1990, Pinel-Alloul 1995). For studies related to
global change biology, fossil assemblages and paleo -
limnological methods provide a unique and invalu-
able source of information through the long-term
perspective of ecosystem dynamics that cannot be
resolved from monitoring data, which usually consist
of only a few years or decades of monitoring (Smol
1991, Smol et al. 2005). In the present study, we
examined fossil remains of Cladocera and Chirono-
midae from a sediment core covering the past ~300 yr
in an alpine lake, the Twenger Almsee, in the
Niedere Tauern Alps, Austria, with the hypothesis
that recent changes in  surface water temperatures
have caused direct and indirect shifts in species com-
position. Our study organisms represent the benthic
and planktonic components of the high alpine
aquatic ecosystem. The Twenger Almsee is consid-
ered to be climatically ultra-sensitive, because its
epilimnetic water temperature during summer is
anomalously high compared to other Niedere Tauern
lakes at the same altitude (Thompson et al. 2005). In
our study, we aimed to answer the question: Does the
warming climate and subsequent warming of epilim-
netic waters cause an increase in warm-adapted spe-
cies, or is it a faunal change related to indirect effects
of a warming water column through a changed ther-
mocline position that may, potentially, cause ambigu-
ous community assemblages?

MATERIALS AND METHODS

Study site

The Twenger Almsee (47° 13’ 13” N, 13°36’ 05” E) is
a pristine lake located in the southern slopes of
the Niedere Tauern Alps, Austria, at an altitude of
2118 m a.s.l. (Fig. 1). The Niedere (Schladminger)
Tauern forms a compact but imposing massif of crys-
talline and limestone bedrock. The small catchment

of the Twenger Almsee is characterized by rocky
cliffs with mica-schists and metamorphic carbonates
and alpine meadows with grasses. The lake is lo -
cated above the active alpine pastures and the cur-
rent treeline, which is formed by Pinus cembra. Sim-
ilar to other lakes in the area (Zick et al. 2007), the
Twenger Almsee is inhabited by Arctic charr Salveli-
nus alpinus. These fish originate from 15th and 16th
century stockings, and since then, no stocking has
taken place (Zick et al. 2007). No aquatic vegetation
is present in the lake. The lake has no inlet, and
water input is mostly due to direct surface runoff,
while the share of groundwater input is relatively
small. A small outlet is located on the western side of
the basin. The surface area of the alkaline (autumnal
epilimnetic pH 8.3) and oligotrophic (autumnal epi -
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Fig. 1. Study site: the Twenger Almsee in the Niedere 
Tauern Alps, Austria
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limnetic total phosphorus 3.4 µg l−1, chlorophyll [chl] a
0.5 µg l−1) lake is 3.11 ha, and maximum depth of the
steadily steepening basin is 33.6 m. The Twenger
Almsee is a stratified lake (Schmidt et al. 2004), with
a deep summer chlorophyll maximum and the
threshold +4°C located at ~18 m (Fig. 2). The depth
of the thermocline is season-specific and was located
at ~10 m in late August 2011 (Fig. 2). The dates of
autumn and spring mixing, together with the dura-
tion of ice cover and mean August water tempera-
tures, are given in Table 1. More details about the
study site can be found in Kamenik et al. (2001) and
Schmidt et al. (2004).

Sediment sampling and analyses

A 22 cm sediment core consisting of homogeneous
gyttja was taken on 14 July 2010 from a location
where the water depth was 18 m with a Kajak gravity
corer. The sampling site was selected to be close to
the present-day deep-water chlorophyll maximum
and the depth at which water temperature reaches
4°C (Fig. 2), because of the environmental sensitivity
of the location (Burnett et al. 2006). The position of
the metalimnetic phytoplankton biomass peak (chl a)
is closely related to the depth of the thermocline
(Burnett et al. 2006). With a deeper thermocline, this
peak can be found deeper in the water column
because its position is largely determined by density
changes in the water column (Cantin et al. 2011). In

the Twenger Almsee, the summer chl a peak is
located between depths of 21 and 23 m, i.e. below the
thermocline (Fig. 2). In part, the depth of the phyto-
plankton peak in alpine lakes is related to their UV
radiation avoidance, but also to the higher nutrient
availability in the hypolimnion (Saros et al. 2005),
which is reflected in the increased specific conduc-
tance towards the deeper areas of the lake (Fig. 2).
The lower limit of the phytoplankton peak is deter-
mined by light penetration. The collected sediment
sequence was subsampled at 1 cm intervals, and the
samples were stored in a cold room at +4°C.

The procedures for the microfossil analyses fol-
lowed the standard protocols described by Brooks et
al. (2007) and Szeroczyńska & Sarmaja-Korjonen
(2007), on which the fossil identifications were also
based. A minimum counting sum that has been found
adequate for statistical community analyses (Heiri &
Lotter 2001, Larocque 2001, Quinlan & Smol 2001a,

Kurek et al. 2010, Nevalainen 2010)
was set at 50 individuals for both chi -
ro nomid and cladoceran samples.
Magnetic susceptibility was meas-
ured using a Bartington Instruments
equipment sensor MS2C. To deter-
mine organic content of the sediment,
loss on ignition (LOI) was assessed
from wet sediment using a sample
size of approximately 10 g. The sam-
ples were dried at 105°C for 12 h and
ignited at 550°C for 2 h (Dean 1974,
Heiri et al. 2001).

Sediment dating

The samples from the sediment
core were analyzed for 210Pb activity
to provide a chronology (Fig. 3). The
analyses were done in the Laboratory
of Quaternary Geochronology, Insti-
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Year     Calendar day of    Calendar day of    Duration of 
             autumn mixing       spring mixing     ice cover (d)

1998               302                          nd                      240
1999                nd                          177                      nd
2009               289                          nd                      250
2010               300                         174                      221
2011                nd                          156                      nd

Table 1. Calendar days of autumn and spring mixing and
duration of ice cover in the Twenger Almsee in the Niedere 

Tauern Alps, Austria. nd: no data

Fig. 2. Profiles of temperature, specific conductance, and chl a in the Twenger 
Almsee measured on 22 August 2011
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tute of Geological Sciences, Polish Academy of Sci-
ences in Warsaw, Poland. 210Pb activity of the sedi-
ments was determined indirectly via alpha-spectro -
metry measuring the 210Po (α = 5.31 MeV, T1/2 =
138 d) activity (Flynn 1968). The 210Po is generated by
the decay of 210Pb, and then 210Bi and is assumed to
be in equilibrium with the parent isotopes. As an
internal yield tracer, the known amount of 208Po was
added to the weighted sample. Po was separated
from the sample using strong hydrochloric and nitric
acid and was de posited on silver disks (Flynn 1968).
Activity of 210Po and 208Po was measured using
an OCTETE PC alpha spectrometer produced by
ORTEC. The constant rate of un supported 210Pb sup-
ply model was used to calculate sediment age
(Apple by 2001). This model as sumes a variable sedi-
mentation rate, sediment compaction and mixing.
Activity of unsupported (allo chthonous) 210Pb was
calculated by subtraction of supported (autogenic)
210Pb activity. Supported 210Pb was determined by
measurements of old sediments, which contain no
allochthonous 210Pb, and assumed constant activity of
autogenic 210Pb along the sediment column. The
age−depth function was calculated using a random-
ization method, and the curve was fitted using the
LOESS procedure (Cleveland & Devlin 1988). The
lower part of the sediment core was ob tained
through extrapolation of the sedimentation rates in
the upper part of the core. Because no plant macro-
fossils were found and there was not enough chiti-
nous material available, we were not able to use
radiocarbon dating to validate the chronology in the

lower part of the core. Furthermore, as the lake is sit-
uated on calcareous bedrock, bulk sediment samples
would be unsuitable and unreliable for radiocarbon
dating at this site. Hence, caution should be taken in
the age interpretations of the lower part of the core.
Due to this uncertainty, in this paper, we discuss the
pre-1850 AD period collectively and avoid any
within-period interpretations.

Data analyses

Detrended correspondence analysis (DCA) was
applied to determine gradient lengths of primary fau-
nal compositional axes to determine whether to use
linear or unimodal methods in further analyses. Con-
sequently, linear methods and principal component
analysis (PCA) were used to detect variability in the
invertebrate assemblages. The DCA and PCAs were
performed on square-rooted relative taxa abun-
dances using downweighting of rare species and run
with the program CANOCO v.4.52 (ter Braak & Šmi-
lauer 2002). The benthic quality ratio (BQI) (Wieder-
holm 1980) was applied to the Chironomidae assem-
blages to describe the ecological quality of the
ben thic environment. The BQI can vary from 0 (no
chiro nomids = permanently anoxic) to 5 (ultraoligo -
trophic and well oxygenated). In addition, we ap -
plied the ratio between the abundance of cladocer-
ans Acroperus harpae (‘good’) and Alona affinis
(‘moderate’) to describe the developments in the lim-
nological status of the lake (Luoto et al. 2012).

The general annual Northern Hemisphere temper-
ature data, reconstructed (tree-ring based) and
instrumentally observed by D’Arrigo et al. (2006),
were applied to describe climate variability during
the time coverage of the sediment core. In addition,
the instrumental data by Auer et al. (2007) were used
for illustrating alpine winter and annual temperature
variability. The temperature data were obtained
through the World Data Center for Paleoclimatology
and NOAA’s National Climatic Data Center, Paleocli-
matology Branch website (www.ncdc.noaa. gov/
paleo/ paleo. html) and through the HISTALP (histori-
cal instrumental climatological surface time series of
the greater Alpine region) website (www. zamg. ac. at/
histalp/). The time resolutions in the temperature
data were adjusted to lower resolution to match the
present chronology. Relationships between different
biological scores (PCA axis 1, BQI, and ratio of
Acroperus harpae to Alona affinis), sediment proper-
ties (magnetic susceptibility and LOI), and Northern
Hemisphere temperatures were examined using
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Fig. 3. Total specific activity of 210Pb in the sediment profile
of the Twenger Almsee and the associated age-depth model
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Pearson correlations (r), and relationships were con-
sidered significant at p ≤ 0.01. A potential error
source is associated with the correlations calculated
between the parameters from the core data and the
temperature data due to the poor chronological con-
trol of the lower part of the core. However, all core
parameters as well as the temperature data showed
constantly low values for the pre-1850 period that
may indicate that the risk of misinterpretation and
erroneous correlation calculations are relatively
minor.

RESULTS

A total of 17 Chironomidae and 5 Cladocera taxa
were identified from the sediment profile of the
Twenger Almsee. For the Cladocera, the minimum
counting sum of 50 individuals was not achieved in
the lowermost sediment samples (21−10 cm) due to
the scarcity of the remains. The most abundant chiro -
nomids were Micropsectra radialis-type (18 occur-
rences; mean abundance 34.7%; maximum abun-
dance 83.6%), Sergentia (21; 26.0%; 60%), and
Procladius (21; 22.4%; 60.8%), whereas the most
abundant cladocerans were Chydorus sphaericus-
type (22; 26.3%; 79.3%), Alona affinis (22; 24.3%;

55.6%), Daphnia pulex-type (21; 24.1%; 62.5%), and
Bosmina longispina (17; 22.6%; 65.4%). Of the chiro -
nomids, Procladius and Sergentia dominated the as -
semblages from the bottom of the core (~1700 AD)
until ~1850, and Zavrelimyia was also common
(Fig. 4). From ~1850 onwards, M. radialis-type domi-
nated, and Paratanytarsus austriacus-type was also
common. Paracladius and Heterotrissocladius mar-
cidus-type increased their abundances during the
most recent decades. Of the cladocerans, D. pulex-
type and A. affinis showed progressively declining
trends in their abundances from ~1700 to the present,
while B. longispina showed an increasing trend
(Fig. 5). Around ~1850, A. harpae appeared in the
sequence and remained common until the present.
C. sphaericus s.l. was common throughout the se -
quence but showed a distinct peak in its abundance
near the top of the core (~2000 AD) when B.
longispina simultaneously declined.

The DCA of chironomid assemblages showed gra-
dient lengths of 2.196 and 1.587 SD for axis 1 and 2,
respectively, and the DCA of cladoceran assem-
blages showed gradient lengths of 1.571 and 0.702
SD, indicating that linear methods, such as PCA,
were most appropriate for further analyses. PCA
axis 1 scores for both chironomids and cladocerans
showed a succession from low values in the early part
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Fig. 4. Chironomidae assemblages in the sediment profile of the Twenger Almsee



Aquat Biol 18: 47–58, 201352

Fig. 5. Cladocera assemblages in the sediment profile of the Twenger Almsee

Fig. 6. Principal component analysis (PCA) axis 1 scores for Chironomidae and Cladocera, benthic quality index (BQI), ratio
between Acroperus harpae and Alona affinis, magnetic susceptibility, and organic content (LOI: loss on ignition) of the sedi-
ment in the Twenger Almsee compared with instrumental alpine winter and annual temperatures (Auer et al. 2007) and 

reconstructed/instrumentally observed Northern Hemisphere annual temperatures (D’Arrigo et al. 2006)
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of sediment core towards high values in the recent
samples (Fig. 6). The BQI was ~3 between ~1700 and
~1850 AD and then increased to ~4 until the present,
when it reached its highest values (Fig. 6). A similar
trend was observed in the ratio of Acroperus harpae
to Alona affinis ratio. No clear trends were observed
in the LOI values, but magnetic susceptibility
showed an increase from ~1850 onwards (Fig. 6). All
biological scores correlated strongly (r = 0.70 to 0.93)
and significantly (p ≤ 0.01) with the reconstructed
Northern Hemisphere temperatures (Table 2). Mag-
netic susceptibility showed moderate correlation
with all parameters, except with cladoceran PCA axis
1, whereas the organic content of the sediment failed
to have any significant correlation in the record.

DISCUSSION

The early part of the sediment core from the
Twenger Almsee, prior to ~1850, was characterized
by a chironomid community composed of Procladius,
Sergentia, and Zavrelimyia (Fig. 4). Procladius and
Sergentia are known to tolerate low oxygen concen-
trations and even anoxia (Quinlan & Smol 2001b,
Heiri & Lotter 2003, Luoto & Nevalainen 2011). Ser-
gentia possesses hemoglobin, which enables it to tol-
erate oxygen depletion (Walker 1991), while larvae
of Procladius, and also Zavrelimyia, are free-living
predators (Brooks et al. 2007) that can temporarily
migrate away from the low-oxygen/anoxic areas, if
necessary. The extent of oxygen depletion depends
on several factors, probably the most important being
thermocline depth and ice-cover duration (Blumberg
& Di Toro 1990). Therefore, it is likely that during this
time interval, the thermocline was located in rela-
tively shallow water in the lake and that the sampling
point at a depth of 18 m was located below the mix-
ing depth in the hypolimnion. At the same time,
before ~1850, the cladoceran community was domi-

nated by Daphnia pulex-type and Alona affinis (Fig.
5). D. pulex-type is a planktonic taxon, which can tol-
erate anoxia through its vertical migration (Weider
1984, Nesbitt et al. 1996, Dodson et al. 1997),
whereas A. affinis can occur in the shallow and deep
habitats of lakes (Nevalainen 2011, 2012). It must be
noted, however, that the representativeness of the
Cladocera communities in our records may be ham-
pered by the fact that less than 50 individuals were
encountered from the samples between 21 and 10 cm
(pre-1850). The 210Pb chronology estimates that the
sediments below 9 cm sediment depth, in which the
remains were scarce, were accumulated before
~1850, coinciding with the Little Ice Age (LIA) (D’Ar-
rigo et al. 2006; Fig. 6). Therefore, the extremely
harsh climate conditions most likely reduced zoo-
plankton success, resulting in low frequency of the
remains in this sediment section (cf. Manca & Comoli
1995). Nevertheless, in lakes with low species rich-
ness, such as the Twenger Almsee, even a very low
counting sum is likely to be adequate for describing
the general Cladocera community composition
(Nevalainen 2010).

During the LIA, European summer and winter tem-
peratures were strongly decreased (Bradley & Jones
1993, Jones & Briffa 2001, Luoto et al. 2009), and this
cold period is also evident from the European alpine
paleorecords (Larocque-Tobler et al. 2012, Trachsel
et al. 2012). Cool summers were likely reflected in
epilimnetic water temperatures and stratification
patterns during the ice-free season causing shallow-
ing of the depth of the thermocline, and the long
ice-covered period probably prevented winter-time
hypolimnetic oxygenation of the Twenger Almsee.
Consequently, it is possible that internal loading
from the release of nutrients from the anoxic sedi-
ments (Auer et al. 1993, Sondergaard et al. 2001) dur-
ing the LIA caused nutrient enrichment and oxygen
depletion in the hypolimnion. This interpretation is
in agreement with the preference of the dominating
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                                                       Chironomidae    Cladocera      BQI    A. harpae:  Reconstructed      Magnetic     Organic 
                                                              DCA1               DCA1                      A. affinis      temperature     susceptibility   content

Chironomidae PCA1                              1**                                                                                                                               
Cladocera PCA1                                0.86**               1**                                                                                                      
BQI                                                      0.99**          0.86**         1**                                                                                   
Acroperus harpae : Alona affinis     0.73**          0.83**    0.73**      1**                                                                   
Reconstructed temperature              0.77**          0.73**    0.74**  0.72**              1**                                           
Magnetic susceptibility                       0.47*                0.41         0.43*    0.52*             0.54*                  1**                 
Organic content                                     0.11                  0.00            0.11         0.24                 0.11                  0.24             1**

Table 2. Pearson correlation matrix. Correlations are significant at *p ≤ 0.05, **p ≤ 0.01. PCA1: principal component analysis 
axis 1, BQI: benthic quality index, DCA1: detrended correspondence analysis axis 1
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chironomids Procladius and Sergentia for low- oxygen
and high-nutrient lakes (Luoto 2011).

From ~1850 onwards, the ultraoligotrophic and
oxy philous Micropsectra radialis-type (Brooks et al.
2007, Luoto 2011) began to dominate following the
rapid decline in the abundance of Procladius, Sergen-
tia, and Zavrelimyia (Fig. 4). In addition, Para tany -
tarsus austriacus-type, which is also an oligotrophic
taxon (Brooks et al. 2007) and is a typical inhabitant
of the Niedere Tauern lakes (Luoto 2012, Luoto &
Nevalainen 2012, Nevalainen & Luoto 2012), ap-
peared in the sequence. With the cladocerans, the
community change around 1850 was more subtle
(Fig. 5). However, clear shifts occurred in the commu-
nity (Fig. 6) as Daphnia pulex-type and Alona affinis
decreased with the simultaneous increase in Bosmina
longispina. In addition, oligotrophic Acro perus har -
pae (Bos & Cumming 2003) appeared in the se -
quence. A. harpae is usually characterized as a
phyto philous species (Fryer 1968, Whiteside et al.
1978), and in the Italian and Swiss alpine lakes, A.
harpae has been observed to be strongly associated
with potassium (Nevalainen et al. 2011), which is re-
lated to aquatic vegetation (Nicholls et al. 1996).
However, as aquatic vegetation was not observed in
our study lake, it cannot be the environmental factor
driving the increase in A. harpae. Nevertheless, these
faunal changes, reflected as increases in BQI and in
the ratio of A. harpae to A. affinis (Fig. 6), indicate in-
creased concentrations of dissolved oxygen; further-
more, these changes were strongly correlated with
increased air temperatures (Table 2, Fig. 6). There-
fore, it is possible that the warming climate changed
the lake’s stratification as water temperature in-
creased and the ice-covered period became shorter.
In addition to the influence of increasing epilimnetic
temperatures in summer in deepening the thermo-
cline (e.g. Schindler et al. 1996), it is possible that the
thermocline deepened following the longer ice-free
period, which allowed greater mixing of the water
column due to increased effects of wind-induced tur-
bulence. The general summertime position of the
thermocline depth must have deepened below the
sampling depth so that the oxyphilic Micropsectra
 radialis-type could have succeeded at the depth of
the sampling point. According to an analysis of syn-
optic survey data of European alpine lakes, Procla-
dius, which declined in the Twenger Almsee, and M.
radialis, which increased, are species that segregate
mainly according to the sediment organic matter, a
variable closely related to lake productivity and oxy-
gen availability (Catalan et al. 2009). Further evi-
dence for the fact that the chironomids were indeed

responding to changes in stratification and not di-
rectly to air temperatures is provided by the cold tem-
perature optimum of M. radialis-type (Brooks & Birks
2000, Luoto 2009); the increased temperatures should
have caused a general decrease in the abundance of
M. radialis-type if the influence of temperature was
direct. This also indicates that problems arise when
using fossil chironomids as paleoclimatic proxies in
lakes that have undergone changes in their mixing
depth. In fact, a recent study from Canada demon-
strated that chironomid assemblages are strongly in-
fluenced by climate-mediated thermal regimes in
lakes (Quinlan et al. 2012). Catalan et al. (2009)
showed that the cladocerans Daphnia and Bosmina in
European alpine lakes have an opposite response to
ice-cover length, with Daphnia preferring a shorter
and Bosmina a longer ice-free period that could in-
stead imply a direct influence of warmed epilimnetic
waters on the planktonic taxa.

The low-oxygen tolerant chironomids further de -
creased during the 20th century, while the oxy phi lic
chironomids Paracladius and Heterotrissocladius
marcidus-type (Moller Pillot & Buskens 1990, Luoto &
Salonen 2010) increased during the most recent
decades (Fig. 4). Furthermore, the BQI continued
increasing slightly toward the present (Fig. 6). These
faunal trends may reflect enhanced mixing of the
lake during summers. Furthermore, oxygen deple-
tion also often occurs during the ice-covered period
in high alpine lakes (Ohlendorf et al. 2000), and as
climate warming typically leads to a shorter duration
of ice cover, the time of oxygen depletion decreases
and oxygen levels may thus increase with warming.
The duration of the rather short growing season
would increase along with a decrease in ice-cover
duration and, as a consequence, seasonal growth of
phytoplankton and interactions with zooplankton
would also change.

In the cladoceran community, Daphnia pulex-type
and Alona affinis showed progressively declining
trends in their abundances (Fig. 5). Daphnia is very
sensitive to fish predation in clear-water alpine lakes
(Cammarano & Manca 1997) and is known to use ver-
tical migration and the hypolimnion below the ther-
mocline as a refuge to avoid visual fish predators
(Wright & Shapiro 1990, Hartleb & Haney 1998).
However, it is unlikely that fish stocking has taken
place in the area since medieval times (Zick et al.
2007), and the present Arctic charr population, there-
fore, originates from the 15th and 16th centuries.
 Previous studies have confirmed that Daphnia is sen-
sitive to changes in mixing depth and water temper-
ature (Fischer et al. 2011). Both mixing depth and
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water temperature are closely related to air tempera-
tures but also to precipitation. Therefore, changes in
lake depth are also a potential influence on biotic
changes, not only in the littoral and profundal areas,
but also around the thermocline. However, the biotic
as semblages in the Twenger Almsee are composed
of taxa typical of deep lakes, and there is no clear evi-
dence to suggest any direct effects of changes in lake
depth on these assemblages. Furthermore, alpine
lakes in general have shown an increase in DOC
with warming (Sommaruga et al. 1999), over longer
time scales (Schmidt et al. 2008), that may explain
part of the faunal changes observed in our study, but
there is no direct evidence for this.

Chydorus sphaericus-type was common through
the sediment profile but showed a sudden increase in
its relative abundance around the year 2000 with a si-
multaneous decline in Bosmina longispina. However,
due to the taxonomic plurality and ubiquitous nature
of C. sphaericus-type (Frey 1980), it is very difficult to
determine the factors responsible for this change. On
the other hand, the occurrence of Bos mina in the Aus-
trian Alps is related to a specific climatic threshold
and thus it can be used as a climate proxy (Kamenik
et al. 2007). In our records, the abundance of B.
longispina corresponded with the calculated air tem-
peratures (Table 2); B. longispina ap peared at the end
of the LIA and became dominant around 1900
(Fig. 4), when the temperatures further increased
(Fig. 6). The short-lived decline in the abundance of
B. longispina in the late 20th century also corre-
sponded with the slight decline in alpine annual tem-
peratures (Fig. 6), hence suggesting a direct response
of this planktonic species to air temperature. Further-
more, if Daphnia declined as a response to fish preda-
tion under deepening of the thermocline and its pre-
dation refuge, an available niche for Bosmina may
have emerged for it to colonize, and this succession
may have been further emphasized by climate warm-
ing. Moreover, deepening of the thermocline and
vertical mixing makes deep water areas more avail-
able for epilimnetic plankton species, including B.
longispina (Nykänen et al. 2009), because nutrient
concentrations are usually higher in deeper parts of
lakes (Kristensen et al. 1992; our Fig. 2).

In the present study, the organic content of the sed-
iment showed no distinct change over the examined
time period (Fig. 6), suggesting that the trophic status
probably did not change and that faunal trends were
indeed driven by changes in the oxygen regime,
most likely through climate forcing. The or ganic con-
tent remained relatively high for an alpine lake, most
likely due to the deepness of the sampling site. This

is because the organic content is strongly related to
water depth in the Niedere Tauern lakes (Luoto
2012). Further evidence that productivity did not
change is provided by the magnetic susceptibility
results, which show an increase along with climate
warming (Fig. 6). Magnetic susceptibility is sensitive
to climate changes (Geiss et al. 2003, Luoto et al.
2008) and also to changes in thermocline depth
(Anderson et al. 2005). Magnetic susceptibility in
lake sediments largely depends on the input and
abundance of magnetic particles, mostly iron-
 bearing minerals (Dearing 1999), thus indicating
changes in processes in the catchment. Due to the
extremely steep topography, the Twenger Almsee is
above the modern and historical cattle pastures and
direct human influence that could influence the lake
tro phic status. Therefore, the simultaneous changes
in faunal assemblages and magnetic susceptibility
were probably climate driven through thermocline
and/or erosional changes and hence are most likely
unrelated to any change in the lake’s trophic status.

Previous studies have shown that changes in water
quality, stratification, and circulation patterns can be
climate-driven (DeStasio et al. 1996, Schmidt et al.
1998, King et al. 1999, Quinlan et al. 2012). Although
the Twenger Almsee has gone through a complete
faunal turnover during the past centuries, the aquatic
communities are likely to experience major changes
in the future following the warming of epi lim netic
waters. These potential future ecosystem changes
will be, at least partly, indirectly forced by the pres-
ent climate warming through altered limnological
stratification. Following the rapidly increased tem-
peratures in the Alps during the past decades, sev-
eral key taxa, such as Sergentia, Zavrelimyia, and
Daphnia, have already disappeared from our sam-
pling site in the Twenger Almsee and have been
replaced by new taxa, such as Heterotrissocladius
marcidus-type and Bosmina longispina.

CONCLUSIONS

Our study shows that cold-adapted/oxyphilous
species have increased in the Twenger Almsee over
the past 2 centuries, with the ecological turnover at
around 1850 probably caused mainly by indirect,
rather than direct, effects of climate change. The crit-
ical thresholds for faunal turnovers were apparently
determined by the summer mixing depth and by the
duration of the ice-covered period. During the LIA,
long ice-covered periods prevailed, and the summer-
time thermocline was probably shallow, causing

55



Aquat Biol 18: 47–58, 2013

hypolimnetic oxygen deficiency and allowing the
invertebrates that can survive in anoxic conditions to
dominate in the lake. After 1850, the deepening of
the thermocline due to increased epilimetic water
temperatures and the longer ice-free period follow-
ing an increase in air temperature apparently caused
the improvement in lake water quality and led to the
increase in oxyphilous taxa. Our record also suggests
that major ecological changes have occurred in the
Twenger Almsee over the most recent decades.
Under the present conditions of climate warming, it
appears that, in addition to direct climate influences,
indirect climate-driven limnological change, such as
changes in the depth of the thermocline, the length of
the ice-free period and consequent changes in oxy-
gen availability, may influence alpine lake ecosys-
tems, leading to changes in species distribution and
dominance.
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