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Abstract: This paper describes a meshless method with wavelet-
based nodes for the two-dimensional time-dependent simulation of
semiconductor devices. In this method the solution is approximated
using global radial basis functions (RBF) and distributed wavelet-
generated points. This allows the computation of problems with
complex-shaped boundaries and forming fine and coarse points abun-
dance in locations where variable solutions change rapidly and slowly,
respectively. The method is suitable for the semiconductor part of very
time consuming global modeling of microwave/millimeter wave circuits
due to a large reduction of number of nodes with an acceptable results.
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1 Introduction

Many different approaches to the simulation of semiconductor devices have
been developed in the past. All of these techniques are fundamentally depen-
dent upon the solution of the Poisson equation along with the basic carrier
transport equations. In this paper, the semiconductor analysis is based on the
time-domain drift-diffusion model (DDM). The set of DDM equations con-
tains the Poisson equation and the carrier transport equations, obtained by
splitting the Boltzmann transport equation (BTE) into its first two moments.
The DDM assumes that the carrier velocity is dependent on the electric field
only. In comparison to other, more rigorous techniques for numerical model-
ing of semiconductor devices, the DDM is a relatively simple technique with
better convergence of the algorithm and shorter computational times. There-
fore, it is more suitable for use by a design engineer. Recently, considerable
effort has been devoted to the development of meshless methods to find the
numeric solution of partial differential equations [1]. This method has shown
to be more efficient than the traditional Finite Difference and Finite Element
Methods [2]. A meshless method does not require any connectivity informa-
tion, but only requires nodes to generate shape functions. Usually, the nodes
are generated randomly. But in a semiconductor device simulation random
points are not appropriate because of large difference between substrate and
doped region sizes. Wavelets provide the scales of information at every lo-
cation which is needed for effective grid generation. This paper presents a
numerical method to solve the DDM equation by approximating directly the
solution using global radial basis functions. The nodes will be provided by
the wavelet based grid generation algorithm explained in [3]. The method is
similar to finite differences but with the advantage of arbitrary point loca-
tions.

2 Transistor physical model based on RBF

An approximation of a function u(x) may be written as a linear combination
of N radial basis functions as,

uh(x) �
N∑

i=1

φi(x)ai = ΦT (x)a ; x ∈ Rd (1)

where N is the number of data points, x = (x1, x2, . . . , xd) is the po-
sition vector, d is the dimension of the problem, ai’s are coefficients to be
determined, φi(x) = φ(x,xi) is the radial basis function, and Φ(x) = [φ1(x),
φ2(x), . . . , φN (x)]. Defining P(x) = ΦT (x)A−1, the coefficients ai are de-
termined by forcing the interpolation to pass through all the N collocation
points {x1,x2, . . . ,xN}, resulting in

uh(x) = P(x)U (2)
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where U = [u(x1), u(x2), . . . , u(xN )]T and

A =

⎡
⎢⎢⎢⎢⎢⎣

Φ(x1)
Φ(x2)

...
Φ(xN )

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

φ1(x1) φ2(x1) · · · φN (x1)
φ1(x2) φ2(x2) · · · φN (x2)

...
...

. . .
...

φ1(xN ) φ2(xN ) · · · φN (xN )

⎤
⎥⎥⎥⎥⎥⎦ (3)

The first-order partial derivative of function, respect to the space variables,
can be expressed as

∂uh(x)
∂X = P,X (x)U ; X ∈ {x1, x2, . . . , xd} (4)

where

P,X (x) = ΦT
,X (x)A−1 = [φ1,X (x), φ2,X (x), . . . , φN,X (x)]T A−1 (5)

and φj,X (x) = ∂φj(x)/∂X . The second-order partial derivative of function
is defined similarly using P,XX = ΦT

,XXA−1.
In this paper we simulate a microwave/mm-wave transistor MESFET

which is a unipolar device. For this device, the DDM equations to be solved
are as follows [4],

�Jn = qnμn( �E, N+
d ) �E + qDn( �E, N+

d )∇n (6)
∂n

∂t
=

1
q
∇ · �Jn (7)

∇2ϕ = − q

ε0εr
(N+

d − n) (8)

where ϕ is the potential, �E = −∇φ, N+
d is the doping profile, n is the electron

(carrier) density, μn is the mobility coefficient and Dn = μnKBT/q.
According to Eq. (4), the approximation of all components in the Eqs. (6)–

(8) can be expanded with the same RBF for d = 2 and x = (x, y) as,

n(x, t) = PN (t) (9)

ϕ(x, t) = PP(t) (10)

Jx(x, t) = PJx(t), Jy(x, t) = PJy(t) (11)

Ex(x, t) = PEx(t), Ey(x, t) = PEy(t) (12)

where N (t), P(t), Jx(t), Jy(t), Ex(t) and Ey(t) are unknown time coefficient
vectors to be computed at the collocation nodes. Thus, Eqs. (6)–(8) dis-
cretize using Eqs. (9)–(12) and the finite difference approximation for the
time derivative as,

N k+1 = P−1PN k + P−1(P,xJ k
x + P,yJ k

y )/q (13)

J k+1
x = −qnμP−1P,xPk + qDnP−1P,xN k (14)

J k+1
y = −qnμP−1P,yPk + qDnP−1P,yN k (15)

Pk+1 = −q(P,xx + P,yy)−1(N+
d − PN k)/ε (16)

The computations of unknowns are simple and straightforward operations
from Eqs. (13)–(16). Furthermore, if the same collocation points and a con-
stant time-stepping scheme are used throughout the computational process,
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P−1 computed only once, hence the right-hand-side of Eqs. (13)–(16) are
simple operations of O(N).

Similar to the finite differences, Eq. (14) is conditionally stable. However,
the stability of the scheme can easily be preserved by an automatic and
progressively discarded time sub-divisions as suggested in [1].

After calculating the distributions of potential and carrier density, we
can determine where quantities vary rapidly and slowly. In domains that the
variation of parameters is high, node generator subprogram add more nodes
to initial uniform mesh. By this method, we can generate a nonuniform mesh
that is dense in momentous places.

3 Mesh generation using wavelet scheme

The DC simulation is started with the evenly-spaced grid points. This grid
is used to calculate P for first time step. After solving Eqs. (13)–(16) for
this time step, we use the interpolating wavelet scheme and obtain a sparse
point representation for solving equations for the second time step. The
magnitude of wavelet coefficients choose which grid points to use [3] in the
following manner for a semiconductor simulation. First, a threshold on the
wavelet coefficients of carrier density is applied to the longitudinal cross sec-
tion of the structure to remove some grid points. Then, it is applied to the
transverse cross section of carrier density. These two grids are combined by
logical ‘AND’ in order to obtain an overall grid by applying wavelet scheme
to carrier density. The proposed scheme removes grid points where variable
solutions change slowly and maintain grid points where their change rapidly.
Similar operations are used to achieve a sparse grid from the potential dis-
tribution. Because the variation of potential is slow, therefore the number
of potential mesh nodes is smaller than the number of carrier density mesh
nodes. Final grid is obtained from logical ‘OR’ combination of the generated
grids from potential and carrier densities. Using this nodes, Eqs. (13)–(16)
are solved and then next step sparse points are obtained by applying wavelet
scheme to the results. This process is continued until reaching the maximum
desired ratio between the maximum and the minimum values of Δx and Δy

or reaching the steady-state DC solution. Because the DC solution is used
in the AC analysis as the initial values and also the level of AC excitation
is lower than the DC level at most times, therefore one can conclude after
applying the AC excitation to the structure, the distributions of parameters
will fix approximately. For this reason, we can use the nonuniform mesh
generated from the DC solution in the AC analysis.

4 Simulation results

Several choices are possible as radial basis φ(x,xi), e.g. multiquadratics or
spline functions. In this paper, the compactly supported RBF proposed by
Wu [5] is used as,

φ(x, xi) = φ(ri) =

{
(1 − ri)

4(4 + 16ri + 12r2
i + 3r3

i ) ri ≤ 1
0 others

(17)
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where ri = ‖x − xi‖ /dmi. Here, dmi represents the supported domain radius
at the collocation nodes xi,

dmi = dmaxCi (18)

where dmax is a scaling parameter and Ci at a particular node is determined
by searching for enough neighbor nodes such that A in Eq. (3) becomes non
singular. The use of a compactly supported version of the RBF kernel result
in a sparse matrix, and thus decrease the computational cost and memory
requirements. The transistor considered in this simulation is a 0.3 μm gate
MESFET. Fig. 1 presents the conventional 2D structure used in our simula-
tion. The simulation is started by a uniform mesh that covers the 2D cross
section of the MESFET with {(140−1)×(33−1)} internal and {2×140×33}
boundary points. The device is biased to Vds = 3 V and Vgs = −0.5 V. In a
trade off between the simulation time and the solution accuracy, the threshold
value in wavelet scheme has been set to 0.00008 for normalized quantities.
Therefore, the final non-uniform grid has 1219 internal and 115 boundary
points, that shows about 72% compression from uniform mesh. The state of
the MESFET under DC steady state is represented by the distribution of po-
tential and carrier density. Fig. 2 shows the potential and normalized carrier
density (n/NDI) distributions obtained by the conventional uniform FDTD
method, Meshfree method with the uniform distributed nodes, and Meshfree
method with wavelet-based non-uniform nodes, where NDI = 2 × 1017 cm−3

is the doping of the active layer. It is significant to indicate that the Mesh-
free with uniform nodes gives precisely the same results as the conventional
uniform FDTD method while the difference between the results of uniform
and nonuniform cases is less than 1%. The final non-uniform grid and the

Fig. 1. The simulated MESFET structure.

Fig. 2. Potential (left) and normalized carrier density
(Right) across the ‘x’ direction at ‘y = 0.09 μm’;
‘-’: uniform FDTD, ‘*’: uniform Meshfree, and
‘o’: wavelet-based non-uniform meshfree.
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related 2D potential and the normalized carrier density distribution contour
plot inside the transistor are shown in Fig. 3.

Fig. 3. Final non-uniform grid and contours of potential
(left) and the normalized carrier density (Right)
distribution.

5 Conclusion

This work proposed a numerical method for simulation of time dependent
drift-diffusion model of semiconductor devices in two dimensions. The
method is remarkably simple, especially for complicated domains and higher
dimensions. Between radial basis functions a compactly supported version
has been chosen due to the fact that it can result in a sparse matrix, and
thus decrease the computational cost and memory requirements. The in-
terpolating wavelet scheme was applied on DC simulation results to obtain
an optimal sparse points representation for the nodes of meshless method.
Large reduction in the number of nodes while the results remain acceptable
leads to a large reduction of CPU time for the next AC simulation steps.
Therefore, the presented method is suitable for the semiconductor part of
very time consuming global modeling of microwave/millimeter wave circuits.
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