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Abstract. Many kinds of vasodilators induce relaxation of the vascular smooth muscle cells

(VSMCs) through the production of cyclic AMP (cAMP) or cyclic GMP (cGMP). The relaxant

effects mediated by these second messengers are thought to be mainly due to the decrease in

intracellular Ca2+ concentration ([Ca2+]i), as well as the decrease in Ca
2+ sensitivity of the

contractile apparatus of VSMCs. To explain the cAMP- or cGMP-mediated decrease in [Ca2+]i,

several mechanisms have been proposed, including the inhibition of Ca2+ influx due to a hyper-

polarization, a stimulation of Ca2+ uptake into the intracellular store, and an increase in Ca2+

extrusion from VSMCs by stimulation of sarcolemmal Ca2+-pump. VSMCs have two major

systems for Ca2+ extrusion, namely, sarcolemmal Ca2+-pump and Na+/Ca2+ exchanger (NCX).

However, the involvement of NCX in the vasodilator-induced relaxation of VSMCs has not been

well established. In this article, the possible involvement of NCX in the vasodilator-induced

relaxation of VSMCs will be reviewed.
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Introduction

Na+/Ca2+ exchanger (NCX) can move Ca2+ either into

(reverse mode) or out of the cells (forward mode),

depending on the electrochemical driving force on the

exchanger. It is generally accepted that NCX (both

forward mode and reverse mode) plays a crucial role in

the excitation-contraction coupling in the cardiac myo-

cyte. However, the role of NCX in the vascular smooth

muscle cells (VSMCs) has not been extensively investi-

gated, compared with the cardiac muscle. Previous

studies have defined three isoforms of the NCX (NCX1,

NCX2, and NCX3) that are coded by distinct genes in

mammals (1 – 3). NCX1-specific transcripts are most

abundant in the heart, although they are found in many

other tissues (3, 4). NCX activity and NCX1 gene

expression have been reported in blood vessels (5 – 8)

and functional studies indicated that this exchanger

plays an important role in the regulation of the

intracellular Ca2+ concentration ([Ca2+]i) in VSMCs

(9 – 13). Slaughter et al. (14) reported that the NCX has

3 – 6-fold greater transporting capacity than that of the

sarcolemmal Ca2+ pump. It is thus not surprising that the

activity of the exchanger is regulated in many different

ways and extents.

Recently, genetically engineered mouse models for

human diseases have been produced and a number of

new findings have been accumulating. Concerning the

NCX, there are some limitations in using the NCX-

knockout mouse, since it has been reported from several

laboratories that the NCX-knockout mouse is embryonic

lethal (8, 15 – 17). This fetal death induced by the

deficiency in NCX expression could easily be supposed

to be due to the loss of NCX function in the cardiac

muscle because NCX is believed to be more important in

cardiac muscle than in VSMCs as mentioned above.

However, it has recently been reported that the cardiac-

specific knockout of NCX does not lead to embryonic
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fetal death (18). Similarly, Cho et al. (19) reported that

the transgenic re-expression of NCX1 in the NCX null

mutant mouse cardiac myocytes failed to rescue the

lethal defects. These authors observed the lack of an

organized vasculature in the yolk sacs and a vascular

placental labyrinth layer in the NCX null mouse. These

results might indicate that NCX functioning in the

VSMCs is more important than that functioning in

cardiac myocytes, at least, in terms of fetal survival. It

has recently been reported that NCX-over-expressing

transgenic mice that specifically express NCX1.3 (an

NCX1 isoform produced by an alternative splicing of

the NCX1 gene) in smooth muscle are hypersensitive to

salt intake in terms of inducing hypertension, indicating

that salt-sensitive hypertension is triggered by Ca2+ entry

through NCX1 in vascular smooth muscle (20). It is

thus clear that NCX is operating in a reverse mode

during the pathogenesis of the salt-sensitive hyperten-

sion. However, the role of the forward mode NCX

under the normal condition has neither been extensively

investigated nor been explored in the genetically

engineered mouse models.

Involvement of NCX in the cAMP-mediated decrease

in [Ca2+]i

Cyclic AMP (cAMP) induces the relaxation of

VSMCs through various mechanisms. However, in this

section, we focus on the mechanism underlying the

cAMP-mediated decrease in [Ca2+]i, since the brief

outline of these mechanisms are described in the abstract

section. The cAMP-mediated decrease in [Ca2+]i is

thought to be induced by the inhibition of Ca2+ influx due

to a hyperpolarization by the stimulation of Ca2+-

activated K+ channels (21), a stimulation of Ca2+ uptake

into the intracellular stores (22), and an increase in Ca2+

extrusion from cells through the sarcolemmal Ca2+-

pump (23). As mentioned above, since NCX is playing

an important role not only in cardiac muscle but also in

VSMCs, it would be natural to consider that the forward

mode NCX might be involved in the cAMP-mediated

decrease in [Ca2+]i.

In mammalian cells, it has been reported that NCX1 is

activated by [Ca2+]i (24) and external monovalent cations

(25) and is inhibited by high cytoplasmic Na+ concentra-

tions (24, 25), low cytoplasmic pH (26), and adenosine

triphosphate (ATP) depletion (27, 28). In addition, the

consensus phosphorylation sites have been identified,

suggesting that the NCX may be a target for cAMP-

dependent protein kinase (PKA) and /or protein kinase C

(PKC) (12). However, a variety of conflicting physio-

logical results have been obtained following PKA

activation. Mene et al. (29) reported that both basal and

vasoconstrictor-stimulated NCX activity in human

mesangial cells were acutely inhibited by the cAMP-

mediated pathways, including forskolin, dibutyryl

cAMP, and receptor stimulation coupled with adenylate

cyclase. However, it is also reported that the activity of

the neural isoform of the NCX is preferentially increased

by PKA activation (30). We have previously reported

that isoproterenol increases the activity of the NCX

based on the following observations (31): 1) Various

types of K+ channel blockers, even if used in combina-

tion, could not completely reverse the isoproterenol-

induced decreases in [Ca2+]i and tension induced by

U46619, a thromboxane A2 analogue, in normal PSS

(137.3 mM Na+). 2) Isoproterenol-induced decrease in

[Ca2+]i became only transient when U46619 was applied

in the low Na+ (25.2 mM) PSS. 3) Although iso-

proterenol induced a sustained decrease in [Ca2+]i
when the concentration of K+ was reduced to 30 mM,

isoproterenol induced only a transient decrease in [Ca2+]i
when the Na+ concentration was reduced to 25.2 mM.

4) When Ca2+ was substituted with Ba2+, which cannot

be extruded by the Ca2+ pumps but can be extruded

through NCX (32 – 35), isoproterenol decreased [Ba2+]i
in the presence of high Na+ (137.3 mM), while

isoproterenol did not decrease [Ba2+]i in the presence of

low Na+ (25.2 mM). 5) An NCX inhibitor, 2,4-DCB

(2',4'-dichlorobenzamil), inhibited the isoproterenol-

induced relaxation. 6) Ouabain, an inhibitor of Na+/K+

ATPase, had only a partial effect on the isoproterenol-

induced decrease in [Ca2+]i. These results indicated that

isoproterenol decreases [Ca2+]i and tension via activation

of NCX, which is functionally expressed in porcine

coronary arterial smooth muscle.

Concerning the site of action at which isoproterenol

induces the Ca2+ extrusion through NCX, it is possible

that isoproterenol activates Na+-K+ ATPase to induce

activation of NCX by increasing the electrochemical

driving force. The sarcolemmal Na+-K+ ATPase has

been implicated in the mechanism of β-adrenoceptor

agonist-induced relaxation of airway and vascular

smooth muscle (36, 37). Stimulation of the enzymatic

activity of Na+-K+ ATPase by cAMP may lead to

generation of the Na gradient necessary to exclude Ca2+

via the NCX or hyperpolarization of the membrane,

which in turn reduces Ca2+ influx through membrane

potential-dependent Ca2+ channels (38). However, the

present results could not be explained by this mechanism

alone because ouabain, a specific inhibitor of Na+-K+

ATPase, failed to completely inhibit the isoproterenol-

induced decrease in [Ca2+]i. Figure 1 illustrates the

mechanism by which the cAMP-mediated pathway

activates NCX and reduces [Ca2+]i. In addition, if this

hypothesis is correct, we considered that the decrease in
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[Ca2+]i induced by the cAMP-mediated pathway should

be enhanced in the NCX-over-expressing transgenic

mice that specifically express NCX1.3 in smooth

muscle. We are now investigating this in order to further

confirm this hypothesis and already obtained positive

data that shows that forskolin (an activator of adenylate

cyclase)-induced decrease in [Ca2+]i is enhanced in the

NCX-over-expressing transgenic mice (manuscript in

preparation).

Involvement of NCX in the cGMP-mediated [Ca2+]i
decrease

Nitric oxide (NO) donors such as nitroglycerin and

isosorbide dinitrate (ISDN) have been commonly used

in the treatment of the coronary artery disease. However,

the mechanism underlying the NO donor-induced

relaxation of the VSMCs is not fully understood. NO

donors induce a relaxation of VSMCs mainly through

the activation of the soluble guanylate cyclase and

subsequent increases in cyclic GMP (cGMP) levels

(39 – 41), although cGMP-independent mechanisms

have also been reported (42, 43). The relaxation

mediated by cGMP also involves a decrease in [Ca2+]i
(44) due to the activation of the sarcoendoplasmic

reticulum Ca2+-ATPase (45, 46), the plasma membrane

Ca2+-ATPase (39), the Na+-K+-ATPase (47 – 50), and

various potassium channels (51 – 54). Potassium

channel activation hyperpolarizes the cell membrane

and inhibits the activity of L-type Ca2+ channels (55). In

addition, a direct reduction of the sensitivity of the

contractile apparatus to Ca2+ also mediates cGMP-

induced relaxation (56).

Since both cAMP- and cGMP-induced vasorelaxations

are accompanied by the reductions of [Ca2+]i and Ca
2+

sensitivity, it can be speculated that cGMP-induced

decrease in [Ca2+]i might also require the activation of

NCX. Although the manuscript is in preparation, we

obtained the similar results as in the case of the cAMP-

mediated pathways. The ISDN-induced decreases in

[Ca2+]i and tension were significantly inhibited in low

Na+ PSS or by 2,4-DCB, an inhibitor of NCX. Another

inhibitor of NCX, KB-R7943, also significantly inhibited

ISDN-induced relaxation. The ISDN decreased [Ba2+]i
in normal concentrations of Na+, while ISDN did not

decrease [Ba2+]i in low Na
+ PSS. These results are almost

the same as those obtained by using isoproterenol as a

stimulant (31). However, the major difference between

the cAMP-mediated pathway and the cGMP-mediated

was the effect of ouabain, a selective inhibitor of Na+-K+

ATPase. A large part of the ISDN-induced decreases in

[Ca2+]i and tension was inhibited by ouabain, while

isoproterenol-induced decreases in [Ca2+]i and tension

could be only be partially inhibited by ouabain. These

results indicated that the NCX plays a role in cGMP-

mediated decreases in [Ca2+]i and tension. However,

the primary site of action for the cGMP-mediated

pathway was considered to be activation of Na+-K+

ATPase. In support of this notion, it has been reported

that Na+-K+ ATPase in the plasma membrane is

activated by cGMP through cGMP-dependent protein

kinase (PKG) (47 – 51, 57, 58). From these results, we

considered that cGMP-mediated activation of PKG, due

to increased cGMP production by the soluble guanylate

cyclase, activated Na+-K+ ATPase, which decreased

[Na+]i, thus increasing the Na
+ gradient across the

plasma membrane. The increased Na+ gradient would

enhance the Ca2+ extrusion via the NCX to decrease

[Ca2+]i, as shown in Fig. 2. Taken together, it is proposed

that NCX is involved in the vasodilator-induced

decrease in [Ca2+]i and tension in both cAMP- (direct

activation of NCX) and cGMP- (indirect activation of

Fig. 1. The activation of NCX by the cAMP-mediated pathway.

AC, adenylate cyclase; Gs, GTP binding protein αs; PKA, cAMP-

dependent protein kinase.

Fig. 2. The activation of NCX by the cGMP-mediated pathway.

GC, guanylate cyclase; NO donors, nitric oxide donors; PKG, cGMP-

dependent protein kinase.
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NCX) mediated pathways. However, it should be noted

that the activation of NCX by the cAMP- or cGMP-

mediated pathways may not be a major mechanism

for the cAMP- or cGMP-mediated vasorelaxation. Other

mechanisms, especially the decrease in Ca2+ sensitivity,

are also playing an important role in the vasodilator-

induced vasorelaxation.
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