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Abstract: An approach for the analysis of dispersive media, based
on a special transmission-line modelling method with symmetrical con-
densed node (TLM-SCN) with voltage sources, is proposed. It is used
in the case of linear and isotropic Lorentz frequency dependence media.
The scattering matrix of the proposed SCN is provided and the effi-
ciency and the validity of this approach are proved by the computation
of the reflection coefficients of air-Lorentz medium interfaces and the
RCS of a dispersive sphere.
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1 Introduction

The Transmission Line Matrix (TLM) method is a discrete implementation of
Huygens’s principle. Theoretically, it is based on existing similarities between
the equations describing voltages and currents propagation in transmission-
lines and Maxwell’s equations describing electromagnetic (EM)-waves prop-
agation. This method substitutes the problem of EM-waves propagation by
an equivalent problem of voltage reflection and transmission through a lat-
tice of transmission lines consisting of fundamental interconnected elements,
namely, the nodes [1-4]. It is a powerful and versatile method for the time
domain numerical analysis of EM field problems [3-9]. Recently, The TLM
method has been successfully used for the analysis of dispersive media [6-9].
In this paper, we propose an approach for the modelling of Lorentz disper-
sive media using the TLM method with the SCN and voltage sources. In
order to validate this model, the reflection coefficients at air-Lorentz medium
interfaces and the RCS of a dispersive sphere are computed.

2 Formulation

Since its first introduction in 1987 by P. B. Johns [2], the SCN was a very
significant advance in the TLM method. The basic SCN consists of 12 main
lines modelling vacuum. Three open-circuit stubs (13, 14, 15) are added to
this node to model permittivity, and three short-circuit stubs (16, 17, 18) are
added to model permeability, other stubs (19, 20, 20) with voltage feeds Vsvu,
characterizing the physical properties of the linear isotropic nonmagnetic
Lorentz dispersive media, can be added. At an instant (n + 1)∆t, these
voltage sources verify [9]:

n+1Vsvu+nVsvu

= −4χ0 · nVu − 4
n−1∑

m=0

(
χ∗

m+1 − χ∗
m

)
n−mVu, u ∈ {x, y, z}, (1)

Where χ0 is the static dielectric susceptibility, χ∗
m is the general complex
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dielectric susceptibility of the Lorentz medium, which can be written in the
following recursive form [10]:

χ∗
m+1 = e(−δ+jβ)∆tχ∗

m (2)

In this equation, δ is the damping coefficient, β = (ω2
0 − δ2)1/2 and ω0 is

the angular resonant frequency. The exponential nature of the generalized
dielectric susceptibility permits to recursively evaluate, using two complex
multiplications and a summation, the summation term in Eq. (1). This
term, obtained from the convolution constant discretization, reduces to the
following recursive expression:

nS∗
u = e(−δ+jβ)∆t

n−1S
∗
u + (χ∗

1 − χ∗
0)nVu (3)

Eq. (1), giving the voltage sources, takes a simple form and becomes more
practical for numerical computations. This can be written as follows:

n+1Vsvu + nVsvu = −4(χ0 nVu − Re(nS∗
u)) (4)

Thus, making use of charge and magnetic flux conservation principle
through the transmission lines forming the SCN, and imposing the conti-
nuity conditions on the electric and magnetic fields [1], we obtain at time
n∆t the following scattering matrix of the SCN with voltage sources

Where :
a = −0.5Y/(4 + Y) + 0.5Z/(4 + Z), b = 2/(4 + Y), c = −0.5Y/(4 +
Y) − 0.5Z/(4 + Z), d = 2/(4 + Z), e = b, f = Z.d, g = Y.b, h =
(Y − 4)/(Y + 4), i = d, J = (Z − 4)/(4 + Z), te = nVsvu/(4 + Y).
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Y and Z are respectively the admittance and the impedance of the linear
isotropic Lorentz dispersive medium. Columns 19, 20 and 21 of the scatter-
ing matrix are associated respectively with the electric field components Ex,
Ey and Ez which affect the scattering without taking part in it and which
characterize the dispersive medium. So for the modelling of other kind of
dispersive nonmagnetic medium, only the elements te of this matrix need to
be determined.

3 Numerical results

In order to prove the validity and the efficiency of the SCN-TLM method and
voltage sources to model Lorentz media, the reflection coefficients of a z po-
larised plane Gaussian wave at air-Lorentz medium interfaces are computed.
Both, second-order Lorentz medium and the two poles second order medium
are considered. In the first example, the TLM mesh considered is (1000,
1, 1) cells, and the spatial step is ∆l = 250µm. The second-order Lorentz
medium is located between 50 and 1000 cells, the physical characteristics of
this medium are: εs = 3.0, ε∞ = 1.5 et ω0 = (2.π) 20.0 × 109 rad/s and
δ = 0.1ω0. To calculate the reflection coefficient of the air-Lorentz medium
interface, we store the reflected and incident fields just in front of this inter-
face, and then these fields versus time data were transformed to the frequency
domain via a simple fast Fourier transform (FFT). Fig. 1 depicts the reflection
coefficient magnitude versus frequency, obtained using the proposed model.

Fig. 1. Reflection coefficient magnitude at an air/Lorentz
material interface.
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For the sake of comparison these results are compared with those computed
analytically [8, 11].

In the second example, we compute the reflection coefficient of the in-
terface between air and a two poles second-order Lorentz medium. The
spatial TLM Lattice considered is (1500, 1, 1) cells, with a spatial step
∆l = 37.5µ m. Lorentz medium spans the space comprised between 500
and 1500 cells. The physical characteristics of this medium are: εs = 3.0,
ε∞ = 1.5, ω1 = (2π) 20.0× 109 rad/s, ω2 = (2π) 50.0× 109 rad/s, δ1 = 0.1ω1,
δ2 = 0.1ω2, G1 = 0.4 and G2 = 0.6. Where ωp is the pth resonant frequency,
p ∈ {1, 2}, δp is the pth damping coefficient and Gp is a constant value such
that G1+G2 = 1. Fig. 2 shows the reflection coefficient magnitude for the air-
two poles second-order Lorentz medium interface, versus frequency. A very
good agreement is obtained between our results and those of the analytical
ones [10].

Fig. 2. Reflection coefficient magnitude at an air/two
poles second-order Lorentz medium interface.

Finally, using the near-to-far-field transformation based on the electro-
magnetic equivalence principle described in references [5, 9], we compute the
radar cross section RCS of a second-order Lorentz sphere of diameter 4mm,
placed in free space. The physical parameters of this sphere are: εs = 3.0 et
ε∞ = 1.5, ω0 = (2π) 20.0×109 rad/s and δ = (2π) 2.0×109 rad/s. The TLM
space domain dimensions are (40, 40, 40) cells and the sphere’s diameter is
27∆l. The imaginary surfaces surrounding this sphere and which are used
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to compute the equivalent currents according to the equivalence principle
are placed 5∆l away from the TLM lattice. Fig. 3 shows the backscat-
tered RCS versus frequency corresponding to this sphere where a fairly good
agreement can be seen between the TLM results and those of the analytical
solutions [12].

Fig. 3. Normalized monostatic RCS of a Lorentz sphere
scatterer.

4 Conclusion

A time domain procedure allowing to model Lorentz dispersive media us-
ing the TLM with special symmetrical condensed node (SCN) and voltage
sources is proposed. Dispersion effects of the SCN are modified adding volt-
age sources in three new ports controlling dispersive properties of the Lorentz
material. The scattering matrix of the proposed node has been presented and
the obtained results prove the capabilities of the TLM with this node to anal-
yse electromagnetic-waves propagation and scattering by Lorentz dispersive
media.
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