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Abstract. The present study examines the effect of the cognition enhancer (1R)-1-

benzo[b]thiophen-5-yl-2-[2-(diethylamino)ethoxy]ethan-1-ol hydrochloride (T-588) on neuronal

injury induced by serum deprivation or amyloid-�  protein (A�). T-588 protected partially against

neuronal injury induced by serum deprivation or A�  in cultured cortical neurons. T-588 did

not affect the phosphorylation of extracellular signal-regulated kinase (ERK) in cortical neurons

and SH-SY5Y cells. These results suggest that T-588 has a protective effect in neuronal injury

models and the effect is not mediated by an ERK signal pathway.
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(1R)-1-Benzo[b]thiophen-5-yl-2-[2-(diethylamino)

ethoxy]ethan-1-ol hydrochloride (T-588) has been

selected for development as a therapeutic agent for

reversing the dementia associated with Alzheimer’s

disease and cerebrovascular disease. This compound

has an anti-hypoxic effect in mice (1) and ameliorates

memory and learning impairments in animal models

including cerebral embolization, basal forebrain lesion,

and transient forebrain ischemia (2). However, the

molecular mechanisms underlying these effects are not

known. We have reported that T-588 protects astrocytes

against hydrogen peroxide (H2O2)-induced injury via

activation of the mitogen-activated protein kinase

(MAPK)/extracellular signal-regulated kinase (ERK)

pathway (3). However, whether T-588 stimulates ERK

phosphorylation in neurons in addition to in astrocytes

is not known. In this paper, we examine the effect of

T-588 on neuronal injury induced by amyloid-�  protein

(A�) or serum deprivation and the possible involvement

of the ERK signal pathway.

Drugs were obtained from the following sources:

fetal bovine serum, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT), nerve growth

factor (NGF), A�  fragment 25 – 35 (A� 25 – 35) (Sigma,

St. Louis, MO, USA); mouse anti-microtubule-asso-

ciated protein-2 antibody (Chemicon International, Inc.,

Temecula, CA, USA); fluorescein-conjugated goat anti-

mouse IgG antibody (Organon Teknika N.V.-Cappel

Product, West Chester, PA, USA); brain-derived neuro-

trophic factor (BDNF), Dulbecco’s modified eagle

medium, horse serum (Gibco BRL, Rockville, MD,

USA); phospho-p44 /42 MAPK antibody, p44 /42

MAPK antibody (New England Biolabs, Beverly, MA,

USA); T-588 was a gift from Toyama Chemical

(Toyama). All other chemicals used were of the highest

purity commercially available. A� 25 – 35 was dissolved in

water and incubated at 37�C for 24 h before use.

Primary culture of cortical neurons was prepared as

described previously (4, 5). Briefly, cerebral cortices

were removed from 18-day-old embryonic rat fetuses

and dissociated using papain /DNase I. Neurons were

seeded at a density of 1 � 106 cells on 24-well plastic

tissue culture plates and cultured in Dulbecco’s modified

Eagle medium containing 5% fetal bovine serum, 5%*Corresponding author. FAX: +81-6-6879-8159
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horse serum, 2 mM sodium pyruvate, 30 nM selenate,

and antibiotics. Cells were placed in a humidified

atmosphere of 95% air and 5% CO2 for 24 h, and then

the cells were treated with 10 �M 5-fluoro-2'-deoxy-

uridine for 45 h. The medium was changed every 3 days.

After 7 – 8 days, the cells were used for colorimetric

assay and collected for Western blot analysis. More

than 90% of the cells were neurons, as confirmed by

phase-contrast microscopy and positive immunostaining

with anti-microtubule-associated protein-2 antibody.

The SH-SY5Y cell line was a gift from Dr. Wolfgang

Sadee (University of California, San Francisco). The

cells were cultured in RPMI1640 medium containing

10% fetal bovine serum and antibiotics (6) and were

plated at 5 � 104 cells per well in 48-well plastic tissue

culture plates.

The colorimetric MTT reduction assay was performed

as previously described (3). This method assesses mito-

chondrial activity by measuring the ability of viable cells

to reduce MTT to a colored formazan. In general, each

culture well was incubated in culture medium containing

0.05 mg /ml MTT for 2 h in 5% CO2 at 37�C. The cells

were lysed thoroughly with lysis buffer (20% sodium

dodecylsulfate (SDS), 50% N,N-dimethylformamide)

and the absorbance at 570 nm was measured. MTT

reduction activity is expressed as a percentage of the

control.

The neuronal cells were washed with phosphate-

buffered saline and harvested. The cells were solubilized

in sample buffer (3% SDS, 62.5 mM Tris-HCl (pH 6.8),

and 10% glycerol). The protein concentration in the

sample was determined by using the bicinchoninic acid

protein assay reagent (Pierce, Rockford, IL, USA). The

sample was mixed with 125 mM Tris-HCl (pH 6.5)

containing 0.25% (w /v) bromophenol blue, 0.05% (v /v)

2-mercaptoethanol, 25% glycerol and 5% SDS; boiled

for 5 min; and then loaded (equal amount of protein

/ lane) on a 10% SDS-polyacrylamide gel. After electro-

phoresis, the proteins were transferred to polyvinylidene

difluoride membrane and immunoblotting was carried

out as reported previously, using phospho-p44 /42

MAPK antibody and horseradish peroxidase-conjugated

anti-rabbit antibody (3). Protein bands were detected

using an enhanced chemiluminescence system.

Data were analyzed by one-way ANOVA followed by

the Dunnett test (Fig. 1A) and Student’s t-test (Fig. 1B).

Statistical analyses were performed with a software

package (StatView 5.0; SAS Institute, Inc., Cary, NC,

USA). P values of 5% or less were considered statisti-

cally significant.

Previous studies showed that serum deprivation and

A� 25 – 35 cause apoptosis in cultured cortical neurons (7,

8). Figure 1 shows the effect of T-588 on neuronal injury

induced by serum deprivation or A� 25 – 35. Serum depri-

vation for 96 h or treatment with 10 �M A� 25 – 35 for 48 h

decreased MTT reduction activity in cultured cortical

neurons. The decrease in MTT reduction activity was

due to cell death, especially apoptosis, since the number

of microtubule-associated protein 2-immunopossitive

cells was decreased and Hoechst 33342 staining showed

Fig. 1. Effect of T-588 on neuronal injury induced by serum deprivation or A� 25 – 35 in cultured rat cortical neurons. A: Effect

of T-588 on A� -induced neuronal injury. The indicated concentrations of T-588 were added 24 h before A� 25 – 35 (10 �M)

exposure and then incubated for 48 h. B: Effect of T-588 on serum deprivation-induced neuronal injury. T-588 was added 24 h

before serum deprivation and then incubated for 96 h. Results are means � S.E.M of 9 – 15 wells and were obtained from 3 to 5

separate experiments. *P�0.05, compared with neuronal injury group without T-588.
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nuclear condensation (data now shown). BDNF at 50

ng /ml showed a significant protection against A� 25 – 35-

induced toxic damage in cultured neurons (data not

shown). T-588 at 1 – 10 �M protected cultured neurons

against A� 25 – 35-induced toxic damage in a dose-depen-

dent way (Fig. 1A). T-588 at 10 �M also protected the

neurons against serum deprivation-induced damage

(Fig. 1B). The effective concentrations are similar to

those in the previous study in astrocytes (3). It should

be noted that T-588 at 10 �M appeared to be more

protective against A� 25 – 35-induced damage than that

induced by serum deprivation. This suggests the differ-

ence in mechanism between neuronal injury models

induced by A� 25 – 35 and serum deprivation. T-588 at

10 �M did not affect the levels of phospho-ERK in

cultured neurons and SH-SY5Y cells (Fig. 2).

Since an ERK signal pathway is proposed to play a

role in cell survival (9 – 12), the ERK signal pathway

may be a target for drugs to ameliorate ischemia /reper-

fusion injury. We have previously demonstrated that

T-588 protected against H2O2-induced cell injury via

stimulation of ERK phosphorylation in cultured astro-

cytes (3). Furthermore, we found that the neuroprotec-

tive agent CV-2619 inhibited the H2O2-induced astro-

cyte injury via the ERK signal pathway (13). These

observations suggest that the ERK signal pathway may

be a target for drugs to protect against cell toxicity. In

this study, we examined whether the ERK signal path-

way is involved in the effect of T-588 in cultured

neurons. We found that T-588, like BDNF, which was

reported to stimulate MAPK (8), had a neuroprotective

effect in cultured neurons. However, we failed to

observe any stimulatory effect of T-588 on ERK phos-

phorylation in the cells. In addition, T-588 did not affect

ERK phosphorylation in the human neuroblastoma

SH-SY5Y cells. The SH-SY5Y cells were used as a pure

neuronal preparation, since cultured cortical cells used

here contained not only neurons but also other cells

such as astrocytes and microglia. These results suggest

that T-588 has a protective effect in neuronal injury

models and its effect is not mediated by an ERK signal

pathway. It is not known why the ERK signal pathway

differs in the response to T588 between neurons and

astrocytes, although it is likely that T-588 affects indi-

rectly ERK phosphorylation in astrocytes. Nevertheless,

the previous (3) and present findings imply that T-588

has a neuroprotective effect via the interaction not only

with astrocytes but also with neurons.
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