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ABSTRACT 
 
Data mining is a valuable tool in meteorological applications. Properly selected data mining techniques enable 
researchers to process and analyze massive amounts of data collected by satellites and other instruments. Large 
spatial-temporal datasets can be analyzed using different linear and nonlinear methods. The Self-Organizing Map 
(SOM) is a promising tool for clustering and visualizing high dimensional data and mapping spatial-temporal 
datasets describing nonlinear phenomena. We present results of the application of the SOM technique in regions of 
interest within the European re-analysis data set. The possibility of detecting climate change signals through the 
visualization capability of SOM tools is examined.  
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1  INTRODUCTION 
 
There are hundreds of satellites observing and collecting enormous amounts of data about the Earth’s land, oceans, 
and atmosphere. These satellite observations are typically combined with a ground network and models to create a 
comprehensive view of the state of our planet. Analyzing these data helps us to obtain a global picture and helps to 
identify indicators of climate change. However, the scientific community faces a serious challenge because the 
volume of collected climate data has increased rapidly; data generation is growing faster than analysis capabilities 
because of advances in observational techniques and minimal growth in the number of human analysts. A huge 
amount of data accumulates in databases and has never been examined by scientists trained to extract relevant 
information (Kantardzic, 2003). 
 
In large meteorological databases, data mining presents an opportunity to facilitate the automation of feature 
extraction and pattern classification. Data mining has the potential to develop powerful tools for data analysis and 
interpolation of extracted patterns. Data mining itself can be described as an extraction of implicit, previously 
unknown and potentially useful information from data in databases (Berry & Linoff, 1997; Datta, 2006). Data 
mining is one step of knowledge discovery in databases (KDD) (Fayyad, Piatetsky-Shapiro, & Smyth, 1996) where 
scientific methods are used in an automated fashion. Typical KDD includes a method for extracting and preparing 
data as well as for making decisions about actions to be taken once the data mining is complete.   
 
Meteorological data mining applications work with huge meteorological databases created by reanalysis projects 
such as the National Center for Atmospheric Research (NCAR) (Kalnay, Kanamitsu, Kistler, Collins, Deaven, & 
Gandin, et al., 1996), and the European Centre for Medium-Range Forecasts (ECMWF). In both cases, the total 
volume of information is of the magnitude of terabytes.  
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Clustering (Fayyad, 1998) is one of the unsupervised data mining techniques in which data instances are grouped 
together based on a similarity scheme defined by the clustering system. Clustering can be viewed as unsupervised 
classification of unlabelled patterns, such as observations, data items, or feature vectors (Forgy, 1965). Since several 
clustering techniques are available, the results and their interpretations strongly depend on the choice of clustering 
technique. For example, clustering can be hard or soft, so that every instance belongs to only one group or more than 
one group respectively. In addition, clustering can be probabilistic, in which an instance is placed in each group 
depending on its assigned probability. Furthermore, clustering can be hierarchical, such that there is a crude division 
of the instances into groups at a high level that can then be refined into a finer level. The Self Organizing Map 
(SOM) method (Kohonen, 2001) was chosen because it is one of the most popular neural network models based on 
competitive learning (Haykin, 1999) and it is especially suitable for high dimensional data visualization. The self-
organizing map is a method that visualizes high-dimensional data in a two-dimensional space. This is done by 
keeping the topologic and metric relations of the two-dimensional space as close as possible to the relations of the 
initial space. 
 
The ECMWF Re-Analysis (ERA-40) project (Simmons & Gibson, 2000) has produced a comprehensive global 
analysis for the 45-year period covering September 1957 to August 2002.  The ERA-40 version of the atmospheric 
model had 60 vertical levels and a reduced Gaussian grid with an approximate uniform spacing of 125 km for 
surface and other fields. A Gaussian grid is used for scientific modeling on a sphere. The grid is rectangular, with 
orthogonal coordinates (usually latitude and longitude) chosen such that they can be easily accessed in a fixed array.  
The longitudes are equally spaced while the latitudes are not equally spaced and are defined by their Gaussian 
quadrate. There are no grid points at the poles, and the number of longitudes is usually double the number of 
latitudes. A reduced Gaussian grid is a grid in which the number of grid points in the rows decreases towards the 
poles, which keeps the grid-point separation approximately constant across the sphere (Hortal, 1991). Data is 
composed of approximately 45 variables (such as temperature, humidity, pressure, etc.) at 23 different pressure 
levels of a 360 × 180 nodes grid. The atmospheric model is coupled to an ocean-wave model, which resolves 25 
wave frequencies and 12 wave directions at the nodes of a 1.5º grid. Multiple archives of satellite observations are 
assimilated by the model. These input data streams represent one of the largest and most complete collections of 
observations ever assembled. These data products are computed on the grid four times per day (00:00, 06:00, 12:00, 
and 18:00 UTC). Some fields that complement the analyses have been extracted from the 6-hourly forecast data and 
are included in these products. This technique promotes easier access to groups of related fields and includes all of 
the chemical transport, net tendency, and some of the surface and single level fields, e.g., convective precipitation 
and surface sensible heat flux. 
 
ERA-40 data is stored as Network Common Data Format (NetCDF). NetCDF is a set of data formats, programming 
interfaces, and software libraries that help read and write scientific data files. The NetCDF was developed and 
maintained at Unidata, which is funded primarily by the National Science Foundation, one of the eight programs in 
the University Corporation for Atmospheric Research (UCAR) Office of Programs (UOP). 
 
Global atmospheric reanalysis projects (GARPs) are a major advance for studies in meteorology, oceanography, 
climatology, and other fields. The GARP uses fixed data assimilation systems that eliminate inconsistencies found in 
archives of operational model outputs caused by changes to the operational models. The GARP supply gridded data 
for early periods that are deficient (e.g., 1957-1969) or entirely lacking. It also consistently applies advanced data 
assimilation systems over longer periods than was previously possible. The GARPs have benefited from data 
recovery efforts undertaken at several institutions, including NCAR. These data sets are, therefore, ideal for the 
application of data mining tools. The long time period combined with a consistency of data make for a data set well 
suited for automated information extraction. 
 
In this paper, we analyze ERA-40 data in certain regions of interest by applying clustering techniques to extract new 
patterns in order to detect climate change over the 40 years. For this purpose, we employ an unsupervised data 
mining clustering technique known as a Self-Organizing Map (SOM) (Kohonen, 2001). 
 
This paper is organized as follows: in Section 2, we describe our approach using SOM. In Section 3, we show 
experimental results; and finally in Section 4, we conclude our work and present future plans. 
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2   APPROACH 
 
While the analysis of large spatial-temporal datasets can be achieved using different linear and nonlinear methods, 
we consider the SOM to be a very promising tool for clustering. It is preferable to other clustering techniques 
because the spatial organization of the neurons maps cluster similarity into prototype proximity in the 2D space.  
The distance among prototypes in the SOM map can, therefore, be considered as an estimate of the similarity 
between objects belonging to clusters. In addition, SOM is an excellent tool for visualizing high dimensional data 
and mapping spatial-temporal datasets describing nonlinear phenomena. Figure 1 shows the main stages of our work. 
 
 

 
Figure 1. Main Stage of the proposed approach 
 
2.1  Self-Organizing Map  
 
Due to its high-dimensionality, the data was first analyzed and simplified before proceeding with other analyses 
(Comrie & Glen, 1999). SOM is a special case of a neural network that simultaneously summarizes a set of variables 
and clusters observations. It can be viewed as a Principal Component Analysis (PCA) combined with a cluster 
analysis with both procedures influencing each other in the algorithm. The most commonly used algorithm for 
constructing the SOM follows the work of Kohonen (1995). The Kohonen maps are known to be “topology 
preserving,” i.e., observations with similar multi-dimensional vectors of variables find themselves positioned close 
to each other on the map, and they are also “self-organizing,” i.e., the variables tend to vary along the map in a 
meaningful way. 
 
Data clustering in a SOM is the unsupervised classification of patterns (observations, data items, or feature vectors) 
into groups (clusters). The input data for the model is described in terms of vectors, each of which consists of 
components representing an elementary feature (for instance, sea ice cover, sea surface temperature, etc.) of the data 
item, expressed as a numeric value. The output is a similarity-based map of the data items, similarity being defined 
as proximity of items in the feature space. The SOM is a neural model in which the output neurons will compete to 
be activated or fired. The neuron that wins the competition by having the minimum value using some distance 
measurement method (e.g., Euclidean distance) is called the “winning neuron.” In a “winner-takes-all" (WTA) 
strategy, only the weights associated with the winner neuron are updated. There is also a winner takes most (WTM) 
strategy, where many neurons in the neighborhood of the winner neuron adapt their weights in each learning 
iteration (Brocki, 2007). 
 
The lattice is usually one or two-dimensional. Higher dimensional maps are possible but not as common because the 
goal of the map is visualization for the applications of this kind of network.  Figure 2 shows the structure of the 5x5 
lattice in the SOM. 

 
Figure 2. Illustration of the SOM model 
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The main goal of the SOM is to transform an input signal pattern of arbitrary dimension into a lower (1, 2, or 3 
dimensions) dimensional discrete map and to perform this transformation adaptively in a topologically orderly 
fashion. 
 
The SOM leads to a topological ordering of the feature map in the input space in the sense that neurons that are 
adjacent in the lattice will tend to have similar synaptic weight vectors. The SOM algorithm consists of 5 steps: 1) 
choose an input pattern v of dimension m from the input space randomly; 2) assign the weight vectors wi(0)values 
randomly; 3) find the best matching or winning neuron k at time step n by using the Euclidean minimum-distance 
criterion as shown in Eq.(1); 4) update the weights using Eq.(2) and the neighborhood kernel function Eq.(3); and 5) 
repeat the weight updating process until there are no noticeable changes in the feature map.  

 
Niwherenwnvk ii

,...,1,)()(minarg =−=                                                                         (1) 

 
Where n and N are time step and total number of neurons respectively.  Then the weights are updated as: 

 
wi (n+1) = wi (n) +η(n) hki (n) [v(n) – wi(n)]                                                                                    (2) 

 
Where η (n) is the adaptation (learning) coefficient, and the neighborhood kernel function (hki (n)) is defined as: 

 

              (3) 
 

Where rk and ri are the positions of neuron k and i on the SOM grid, and σ (n) is the width of the neighbourhood 
function (Vesanto & Alhoniemi, 2000). The figures 3a, 3b, and 3c show an example of the SOM where a data set is 
represented by SOM 10x10 Map nodes. In these figures the red plus signs stand for the trained data while the black 
circles stand for the map nodes. The map nodes are randomly initialized to values between 0 and 1. The two input 
nodes represent X and Y values between -1 and 1. Therefore, by training the SOM continuously with random values 
for X and Y between -1 and 1, the SOM unfolds and flattens out into a grid pattern. 

 

       
   

Figure 3a. Initialization        Figure 3 b. Training    Figure 3c. Unfolding 
 
3  ANALYSIS AND RESULTS 
 
The ERA-40 data set is a climate data set consisting of surface and pressure level variables. In this paper, we pre-
selected five variables and two specific grid points from among the 45 surface variables and hundreds of possible 
grid points. These variables are sea ice cover, sea surface temperature, cloud cover, U-10m wind velocity (i.e., the  
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east wind velocity 10 m above the sea level), and V-10m wind velocity (i.e., the north wind velocity 10 m above the 
sea level).  
 
Initially the data need to be normalized to a zero mean value with a variance σ=1. The normalized input values are 
given random weights. All the units in the input layer are connected to each neuron of the output layer through the 
weights. At this point, the neurons of the networks are trained. The corresponding weights are modified based on the 
position of the input data. The aim of the neurons is to preserve the distribution of the input data while reducing the 
dimension “A salient feature of SOMs is their ability to preserve a dataset’s topology” (Villman, Herrmann, & 
Martinetz, 1997). 
 
The data were in an ASCII file, and the SOM toolbox was used in MATLAB to analyse the data. The data were 
normalized, initialized linearly, and batch trained. For this research, the grid of neurons was hexagonal. Figure 4 
shows the two regions of interest at 76N, 00E and 76N, 134W plotted on the globe for reference. The two locations 
are close to the North Pole and have a large variation in sea surface temperature. In addition, the chosen surface 
parameters are the most relevant variables at these locations. 
 

 
Figure 4. World atlas with black circles indicating areas of interest 

 
For the work in this paper we converted the original Grid (Li, 2003) data files to a fixed latitude/longitude grid in 
Common Data Format (NetCDF) (Unidata, 2004). The NetCDF is highly suitable for a variety of data types that 
include single-point observations, time series, regularly-spaced grids, and satellite or radar images. The MATLAB 
mexnc toolbox was used to read and access the NetCDF formatted data. The SOM toolbox (Vesanto, 1999) in 
MATLAB was used to analyse and visualize the data. Initially, data were normalized and placed in the hexagonal 
neuron grid lattice of the SOM. There are then many ways to visualize the data as explained below. 
 
3.1  U-matrix 
 
The U-Matrix shows the unified distance matrix of inter-neurons where the smaller of the distances are of higher 
density and similarity among the input data and vice versa. It allows the 2-D visualization of the five-dimensional 
data, and it detects the topological relations among neurons. To show real distribution of the decisions on the map, 
we added ‘hits’ on the U-matrix. To visualize them, we used a ‘pie’ structure. This structure shows percentage of 
input elements near each map unit. Also, we used a hexagonal map structure with a distribution of labels. Labels 
were obtained from the final map using a method vote. This method calculates a number of entries of each element 
in each region near each member unit and then uses the label with the biggest number of entries. Since data is being 
collected four times a day, the total number of collected data points over forty years is equal to 160 times the 
number of days in a given month. For example, for the month of February, the total number of measured data is 
4x40x28 for each dimension for 40 years. We made 20 experiments with 10 different sized maps. The size of the 
map influences mainly the scaling factor of the output space representation. Thus, we had to find a compromise 
between good visual appearance of the map and good representation of the map. After a series of experiments, we 
found that the default size of the map (21x16) gives a quite good representation of the results. Figures 5
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a and b show the U-matrix and its corresponding year label of the SOM network for the month of February at 76N, 
00E respectively.   
 
In Figure 5a, the blue color represents the cells that belong to the same cluster while the yellow color represents the 
boundary between the clustered data. Therefore, we can identify two clusters as circled in Figure 5a. The label 
matrix represents the cells with the corresponding year in Figure 5b.  
 

                         
 

Figure 5a. U-Matrix for February (76N, 00E)            Figure 5b. Label Matrix for February (76N, 00E) 
 
3.2 Component  Planes  
 
Component Planes (CPs) can be drawn for each input feature. They show the weights that connect each neuron with 
a particular input variable (Vesanto, 1999). CPs are used to detect correlations between input variables and to 
present the same color pattern distribution for all the CPs. CPs with the same color patterns are more strongly 
correlated, where light blue color represents similarity among data points and light red color represents the barrier 
between clusters. Figures 6 a and b represent the U-matrix and its CPs for the month of February at 76N, 00E and 
for January at 76N, 134W to realize the patterns on the SOM`s grid of the distributed data. The CPs have low values 
on the bottom and high values on top, with some exceptions. 
 

 
 
Figure 6a. U-Matrix and the 5 component planes of February at 76N, 00E 
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Figure 6b. U-Matrix and the 5 component planes of January at 76N, 134W 
 
Figure 7 shows the clustered data in two groups based on the U-Matrix as shown in Figure 5a. It also shows the 
corresponding year label matrix. 

                
 
Figure 7. SOM clustered map and the corresponding label matrix 
 
3.3 Principal Component Projections 
 
The Principal Component (PC) projection represents the distribution of units from the output map with a different 
color; the color represents the distance measure between clusters (units that belong to the same cluster have the same 
color). Figure 8 shows that there are two big clusters. The top cluster represents the period 1960-1979. The bottom 
cluster has three sub-clusters. The upper sub-cluster consists of samples from the upper right corner of the U-matrix.  
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The middle sub-cluster consists mostly of samples from the 1990s. The bottom sub-cluster consists mostly of 
samples from the 1980s.  Despite the noise in the output space, the ERA-40 partitioned samples quite well. 

   
 
Figure 8. Color code and PC projection  
 
Figure 9 illustrates the distribution of the values of each variable in the output map. This information can be used 
either as an additional tool for analysing data or for the confirmation of earlier conclusions. This bar plane confirms 
our conclusions about the ERA-40 data classification. 
 

 
 
Figure 9. Pipeline, Barplane, and Plotplane of U-matrix 
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Furthermore, from the year label matrix, we computed the histogram of each cluster based on the number of cells 
that belong to each year as shown in Figure 10. For example, 12 cells from cluster one were labelled as 1960 in the 
year label matrix. Figure 10 shows that data in cluster 1 started to appear more often in the early 1960s and after the 
1980s.  On the other hand, data in cluster 2 appeared more in the period between 1965 and 1970. 
 

 
 
Figure 10. Histogram for cluster 1 (left) and cluster 2 (right) 
 
In order to show that the proposed technique is robust and applicable, the same analysis and procedure explained 
earlier has been applied to another location, 76N, 134 W. The clustering and histogram distributions are shown in 
Figures 11, 12, and 13 for the same data variables as for the aforementioned location. 
 

              
 
Figure 11. U-Matrix and its corresponding Label Matrix 
 

              
 
Figure 12.The clustered map and its Label Matrix 
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Figure 13. Histogram for cluster 1 (left) and cluster 2 (right) 
 
The results from Figures 11, 12, and 13 show that the data in cluster 1 appeared more frequently in the 1970s and 
1980s while data in cluster 2 appeared more frequently in the 1960s. In addition, the total amount of data in cluster 2 
is larger than in cluster 1, with the amount of data in each cluster indicated by the frequency of appearance within 
each histogram. 
 
4  CONCLUSION & FUTURE WORK 
 
Classification or pattern recognition methods are intended to compare the unknown pattern with all known reference 
patterns on the basis of some criterion for the degree of similarity, in order to decide to which class the pattern 
belongs. In the case of unknown data, it is not obvious what mechanisms or rules are behind the actual data or 
classes of interest. This fact makes it difficult for these techniques to help discover new knowledge, unexpected 
patterns, trends, and relationships that can be hidden in very large geospatial datasets. 
 
The SOM method can identify from a vast collection of data changes which states may be indicators of climate 
change. By looking at changes in clustering over extended periods, multiple variables, and across many grid points, 
the technique can be used to alert the interested analyst to detected change. Whether this change is attributed to 
climate, natural cycles, or other causes is a matter of interpretation, but the technique vastly reduces the amount of 
data to be analyzed. 
 
In this study, data clustering on a SOM has been applied to the ERA-40 database over a 40 year period. The choice 
of SOM was based on the fact that it is a powerful tool for clustering and visualizing multi-variable data. We have 
shown that SOM can be used to investigate climate change in an untraditional and automated way and to extract 
potential new indicators of climate change. We focused on two locations close to the Arctic Ocean that can be 
extended as regions. The results show that the data can be clustered into two distinct groups. The data in one cluster 
appear more frequently in the 1970s and 1980s while data in the other cluster appear more in the 1960s. This 
indicates that there is a temporal component to the climate change or the mode of climate defined by these variables.  
It is commonly argued that the Self-Organizing Map can allow the extraction of patterns and the creation of 
abstractions, whereas conventional methods may be limited for analysis of data because underlying relationships are 
not clear and mechanisms or rules behind the actual data or classes of interest are not obvious. This potential of 
SOM is explored for complex geospatial data in combination with visualization techniques to help in the 
understanding of complexity and to enhance the overall effectiveness of exploratory data analysis. 
 
In the future, we plan to further investigate climate change phenomenon at different locations using different 
variables. This work is fully applicable to different climate databases.   
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